1 // SPDX-License-Identifier: GPL-2.0-only
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
5 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
23 * - Platform conveys its decision back to OS
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
43 #include <acpi/cppc_acpi.h>
45 struct cppc_pcc_data {
46 struct pcc_mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
57 * Lock to provide controlled access to the PCC channel.
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
70 struct rw_semaphore pcc_lock;
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
103 /* Evaluates to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
110 /* Evaluates to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
119 #define NUM_RETRIES 500ULL
121 #define define_one_cppc_ro(_name) \
122 static struct kobj_attribute _name = \
123 __ATTR(_name, 0444, show_##_name, NULL)
125 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
127 #define show_cppc_data(access_fn, struct_name, member_name) \
128 static ssize_t show_##member_name(struct kobject *kobj, \
129 struct kobj_attribute *attr, char *buf) \
131 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
132 struct struct_name st_name = {0}; \
135 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
139 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
140 (u64)st_name.member_name); \
142 define_one_cppc_ro(member_name)
144 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
151 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
152 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
154 static ssize_t show_feedback_ctrs(struct kobject *kobj,
155 struct kobj_attribute *attr, char *buf)
157 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
158 struct cppc_perf_fb_ctrs fb_ctrs = {0};
161 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
165 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
166 fb_ctrs.reference, fb_ctrs.delivered);
168 define_one_cppc_ro(feedback_ctrs);
170 static struct attribute *cppc_attrs[] = {
172 &reference_perf.attr,
173 &wraparound_time.attr,
176 &lowest_nonlinear_perf.attr,
182 ATTRIBUTE_GROUPS(cppc);
184 static struct kobj_type cppc_ktype = {
185 .sysfs_ops = &kobj_sysfs_ops,
186 .default_groups = cppc_groups,
189 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
192 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
193 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
194 pcc_ss_data->pcc_comm_addr;
196 if (!pcc_ss_data->platform_owns_pcc)
200 * Poll PCC status register every 3us(delay_us) for maximum of
201 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
203 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
204 status & PCC_CMD_COMPLETE_MASK, 3,
205 pcc_ss_data->deadline_us);
208 pcc_ss_data->platform_owns_pcc = false;
209 if (chk_err_bit && (status & PCC_ERROR_MASK))
214 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
221 * This function transfers the ownership of the PCC to the platform
222 * So it must be called while holding write_lock(pcc_lock)
224 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
227 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
228 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
229 pcc_ss_data->pcc_comm_addr;
230 unsigned int time_delta;
233 * For CMD_WRITE we know for a fact the caller should have checked
234 * the channel before writing to PCC space
236 if (cmd == CMD_READ) {
238 * If there are pending cpc_writes, then we stole the channel
239 * before write completion, so first send a WRITE command to
242 if (pcc_ss_data->pending_pcc_write_cmd)
243 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
245 ret = check_pcc_chan(pcc_ss_id, false);
248 } else /* CMD_WRITE */
249 pcc_ss_data->pending_pcc_write_cmd = FALSE;
252 * Handle the Minimum Request Turnaround Time(MRTT)
253 * "The minimum amount of time that OSPM must wait after the completion
254 * of a command before issuing the next command, in microseconds"
256 if (pcc_ss_data->pcc_mrtt) {
257 time_delta = ktime_us_delta(ktime_get(),
258 pcc_ss_data->last_cmd_cmpl_time);
259 if (pcc_ss_data->pcc_mrtt > time_delta)
260 udelay(pcc_ss_data->pcc_mrtt - time_delta);
264 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
265 * "The maximum number of periodic requests that the subspace channel can
266 * support, reported in commands per minute. 0 indicates no limitation."
268 * This parameter should be ideally zero or large enough so that it can
269 * handle maximum number of requests that all the cores in the system can
270 * collectively generate. If it is not, we will follow the spec and just
271 * not send the request to the platform after hitting the MPAR limit in
274 if (pcc_ss_data->pcc_mpar) {
275 if (pcc_ss_data->mpar_count == 0) {
276 time_delta = ktime_ms_delta(ktime_get(),
277 pcc_ss_data->last_mpar_reset);
278 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
279 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
284 pcc_ss_data->last_mpar_reset = ktime_get();
285 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
287 pcc_ss_data->mpar_count--;
290 /* Write to the shared comm region. */
291 writew_relaxed(cmd, &generic_comm_base->command);
293 /* Flip CMD COMPLETE bit */
294 writew_relaxed(0, &generic_comm_base->status);
296 pcc_ss_data->platform_owns_pcc = true;
299 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
301 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
302 pcc_ss_id, cmd, ret);
306 /* wait for completion and check for PCC errro bit */
307 ret = check_pcc_chan(pcc_ss_id, true);
309 if (pcc_ss_data->pcc_mrtt)
310 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
312 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
313 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
315 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
318 if (cmd == CMD_WRITE) {
320 for_each_possible_cpu(i) {
321 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
326 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
327 desc->write_cmd_status = ret;
330 pcc_ss_data->pcc_write_cnt++;
331 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
337 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
340 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
343 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
347 static struct mbox_client cppc_mbox_cl = {
348 .tx_done = cppc_chan_tx_done,
349 .knows_txdone = true,
352 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
354 int result = -EFAULT;
355 acpi_status status = AE_OK;
356 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
357 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
358 struct acpi_buffer state = {0, NULL};
359 union acpi_object *psd = NULL;
360 struct acpi_psd_package *pdomain;
362 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
363 &buffer, ACPI_TYPE_PACKAGE);
364 if (status == AE_NOT_FOUND) /* _PSD is optional */
366 if (ACPI_FAILURE(status))
369 psd = buffer.pointer;
370 if (!psd || psd->package.count != 1) {
371 pr_debug("Invalid _PSD data\n");
375 pdomain = &(cpc_ptr->domain_info);
377 state.length = sizeof(struct acpi_psd_package);
378 state.pointer = pdomain;
380 status = acpi_extract_package(&(psd->package.elements[0]),
382 if (ACPI_FAILURE(status)) {
383 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
387 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
388 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
392 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
393 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
397 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
398 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
399 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
400 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
406 kfree(buffer.pointer);
410 bool acpi_cpc_valid(void)
412 struct cpc_desc *cpc_ptr;
415 for_each_possible_cpu(cpu) {
416 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
423 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
426 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
427 * @cpu: Find all CPUs that share a domain with cpu.
428 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
430 * Return: 0 for success or negative value for err.
432 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
434 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
435 struct acpi_psd_package *match_pdomain;
436 struct acpi_psd_package *pdomain;
440 * Now that we have _PSD data from all CPUs, let's setup P-state
443 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
447 pdomain = &(cpc_ptr->domain_info);
448 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
449 if (pdomain->num_processors <= 1)
452 /* Validate the Domain info */
453 count_target = pdomain->num_processors;
454 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
455 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
456 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
457 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
458 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
459 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
461 for_each_possible_cpu(i) {
465 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
469 match_pdomain = &(match_cpc_ptr->domain_info);
470 if (match_pdomain->domain != pdomain->domain)
473 /* Here i and cpu are in the same domain */
474 if (match_pdomain->num_processors != count_target)
477 if (pdomain->coord_type != match_pdomain->coord_type)
480 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
486 /* Assume no coordination on any error parsing domain info */
487 cpumask_clear(cpu_data->shared_cpu_map);
488 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
489 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
493 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
495 static int register_pcc_channel(int pcc_ss_idx)
497 struct pcc_mbox_chan *pcc_chan;
500 if (pcc_ss_idx >= 0) {
501 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
503 if (IS_ERR(pcc_chan)) {
504 pr_err("Failed to find PCC channel for subspace %d\n",
509 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
511 * cppc_ss->latency is just a Nominal value. In reality
512 * the remote processor could be much slower to reply.
513 * So add an arbitrary amount of wait on top of Nominal.
515 usecs_lat = NUM_RETRIES * pcc_chan->latency;
516 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
517 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
518 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
519 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
521 pcc_data[pcc_ss_idx]->pcc_comm_addr =
522 acpi_os_ioremap(pcc_chan->shmem_base_addr,
523 pcc_chan->shmem_size);
524 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
525 pr_err("Failed to ioremap PCC comm region mem for %d\n",
530 /* Set flag so that we don't come here for each CPU. */
531 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
538 * cpc_ffh_supported() - check if FFH reading supported
540 * Check if the architecture has support for functional fixed hardware
541 * read/write capability.
543 * Return: true for supported, false for not supported
545 bool __weak cpc_ffh_supported(void)
551 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
553 * Check and allocate the cppc_pcc_data memory.
554 * In some processor configurations it is possible that same subspace
555 * is shared between multiple CPUs. This is seen especially in CPUs
556 * with hardware multi-threading support.
558 * Return: 0 for success, errno for failure
560 static int pcc_data_alloc(int pcc_ss_id)
562 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
565 if (pcc_data[pcc_ss_id]) {
566 pcc_data[pcc_ss_id]->refcount++;
568 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
570 if (!pcc_data[pcc_ss_id])
572 pcc_data[pcc_ss_id]->refcount++;
578 /* Check if CPPC revision + num_ent combination is supported */
579 static bool is_cppc_supported(int revision, int num_ent)
581 int expected_num_ent;
585 expected_num_ent = CPPC_V2_NUM_ENT;
588 expected_num_ent = CPPC_V3_NUM_ENT;
591 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
596 if (expected_num_ent != num_ent) {
597 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
598 num_ent, expected_num_ent, revision);
606 * An example CPC table looks like the following.
608 * Name(_CPC, Package()
614 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
615 * // Highest Performance
616 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
617 * // Nominal Performance
618 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
619 * // Lowest Nonlinear Performance
620 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
621 * // Lowest Performance
622 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
623 * // Guaranteed Performance Register
624 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
625 * // Desired Performance Register
626 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
632 * Each Register() encodes how to access that specific register.
633 * e.g. a sample PCC entry has the following encoding:
637 * AddressSpaceKeyword
641 * //RegisterBitOffset
645 * //AccessSize (subspace ID)
651 #ifndef init_freq_invariance_cppc
652 static inline void init_freq_invariance_cppc(void) { }
656 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
657 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
659 * Return: 0 for success or negative value for err.
661 int acpi_cppc_processor_probe(struct acpi_processor *pr)
663 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
664 union acpi_object *out_obj, *cpc_obj;
665 struct cpc_desc *cpc_ptr;
666 struct cpc_reg *gas_t;
667 struct device *cpu_dev;
668 acpi_handle handle = pr->handle;
669 unsigned int num_ent, i, cpc_rev;
670 int pcc_subspace_id = -1;
674 /* Parse the ACPI _CPC table for this CPU. */
675 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
677 if (ACPI_FAILURE(status)) {
682 out_obj = (union acpi_object *) output.pointer;
684 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
690 /* First entry is NumEntries. */
691 cpc_obj = &out_obj->package.elements[0];
692 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
693 num_ent = cpc_obj->integer.value;
695 pr_debug("Unexpected entry type(%d) for NumEntries\n",
699 cpc_ptr->num_entries = num_ent;
701 /* Second entry should be revision. */
702 cpc_obj = &out_obj->package.elements[1];
703 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
704 cpc_rev = cpc_obj->integer.value;
706 pr_debug("Unexpected entry type(%d) for Revision\n",
710 cpc_ptr->version = cpc_rev;
712 if (!is_cppc_supported(cpc_rev, num_ent))
715 /* Iterate through remaining entries in _CPC */
716 for (i = 2; i < num_ent; i++) {
717 cpc_obj = &out_obj->package.elements[i];
719 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
720 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
721 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
722 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
723 gas_t = (struct cpc_reg *)
724 cpc_obj->buffer.pointer;
727 * The PCC Subspace index is encoded inside
728 * the CPC table entries. The same PCC index
729 * will be used for all the PCC entries,
730 * so extract it only once.
732 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
733 if (pcc_subspace_id < 0) {
734 pcc_subspace_id = gas_t->access_width;
735 if (pcc_data_alloc(pcc_subspace_id))
737 } else if (pcc_subspace_id != gas_t->access_width) {
738 pr_debug("Mismatched PCC ids.\n");
741 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
742 if (gas_t->address) {
745 addr = ioremap(gas_t->address, gas_t->bit_width/8);
748 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
751 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
752 /* Support only PCC ,SYS MEM and FFH type regs */
753 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
758 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
759 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
761 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
765 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
768 * Initialize the remaining cpc_regs as unsupported.
769 * Example: In case FW exposes CPPC v2, the below loop will initialize
770 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
772 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
773 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
774 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
778 /* Store CPU Logical ID */
779 cpc_ptr->cpu_id = pr->id;
781 /* Parse PSD data for this CPU */
782 ret = acpi_get_psd(cpc_ptr, handle);
786 /* Register PCC channel once for all PCC subspace ID. */
787 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
788 ret = register_pcc_channel(pcc_subspace_id);
792 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
793 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
796 /* Everything looks okay */
797 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
799 /* Add per logical CPU nodes for reading its feedback counters. */
800 cpu_dev = get_cpu_device(pr->id);
806 /* Plug PSD data into this CPU's CPC descriptor. */
807 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
809 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
812 per_cpu(cpc_desc_ptr, pr->id) = NULL;
813 kobject_put(&cpc_ptr->kobj);
817 init_freq_invariance_cppc();
819 kfree(output.pointer);
823 /* Free all the mapped sys mem areas for this CPU */
824 for (i = 2; i < cpc_ptr->num_entries; i++) {
825 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
833 kfree(output.pointer);
836 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
839 * acpi_cppc_processor_exit - Cleanup CPC structs.
840 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
844 void acpi_cppc_processor_exit(struct acpi_processor *pr)
846 struct cpc_desc *cpc_ptr;
849 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
851 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
852 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
853 pcc_data[pcc_ss_id]->refcount--;
854 if (!pcc_data[pcc_ss_id]->refcount) {
855 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
856 kfree(pcc_data[pcc_ss_id]);
857 pcc_data[pcc_ss_id] = NULL;
862 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
866 /* Free all the mapped sys mem areas for this CPU */
867 for (i = 2; i < cpc_ptr->num_entries; i++) {
868 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
873 kobject_put(&cpc_ptr->kobj);
876 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
879 * cpc_read_ffh() - Read FFH register
880 * @cpunum: CPU number to read
881 * @reg: cppc register information
882 * @val: place holder for return value
884 * Read bit_width bits from a specified address and bit_offset
886 * Return: 0 for success and error code
888 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
894 * cpc_write_ffh() - Write FFH register
895 * @cpunum: CPU number to write
896 * @reg: cppc register information
897 * @val: value to write
899 * Write value of bit_width bits to a specified address and bit_offset
901 * Return: 0 for success and error code
903 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
909 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
910 * as fast as possible. We have already mapped the PCC subspace during init, so
911 * we can directly write to it.
914 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
917 void __iomem *vaddr = NULL;
918 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
919 struct cpc_reg *reg = ®_res->cpc_entry.reg;
921 if (reg_res->type == ACPI_TYPE_INTEGER) {
922 *val = reg_res->cpc_entry.int_value;
927 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
928 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
929 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
930 vaddr = reg_res->sys_mem_vaddr;
931 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
932 return cpc_read_ffh(cpu, reg, val);
934 return acpi_os_read_memory((acpi_physical_address)reg->address,
935 val, reg->bit_width);
937 switch (reg->bit_width) {
939 *val = readb_relaxed(vaddr);
942 *val = readw_relaxed(vaddr);
945 *val = readl_relaxed(vaddr);
948 *val = readq_relaxed(vaddr);
951 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
952 reg->bit_width, pcc_ss_id);
959 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
962 void __iomem *vaddr = NULL;
963 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
964 struct cpc_reg *reg = ®_res->cpc_entry.reg;
966 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
967 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
968 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
969 vaddr = reg_res->sys_mem_vaddr;
970 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
971 return cpc_write_ffh(cpu, reg, val);
973 return acpi_os_write_memory((acpi_physical_address)reg->address,
974 val, reg->bit_width);
976 switch (reg->bit_width) {
978 writeb_relaxed(val, vaddr);
981 writew_relaxed(val, vaddr);
984 writel_relaxed(val, vaddr);
987 writeq_relaxed(val, vaddr);
990 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
991 reg->bit_width, pcc_ss_id);
999 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1001 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1002 struct cpc_register_resource *reg;
1005 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1009 reg = &cpc_desc->cpc_regs[reg_idx];
1011 if (CPC_IN_PCC(reg)) {
1012 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1013 struct cppc_pcc_data *pcc_ss_data = NULL;
1019 pcc_ss_data = pcc_data[pcc_ss_id];
1021 down_write(&pcc_ss_data->pcc_lock);
1023 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1024 cpc_read(cpunum, reg, perf);
1028 up_write(&pcc_ss_data->pcc_lock);
1033 cpc_read(cpunum, reg, perf);
1039 * cppc_get_desired_perf - Get the desired performance register value.
1040 * @cpunum: CPU from which to get desired performance.
1041 * @desired_perf: Return address.
1043 * Return: 0 for success, -EIO otherwise.
1045 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1047 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1049 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1052 * cppc_get_nominal_perf - Get the nominal performance register value.
1053 * @cpunum: CPU from which to get nominal performance.
1054 * @nominal_perf: Return address.
1056 * Return: 0 for success, -EIO otherwise.
1058 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1060 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1064 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1065 * @cpunum: CPU from which to get capabilities info.
1066 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1068 * Return: 0 for success with perf_caps populated else -ERRNO.
1070 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1072 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1073 struct cpc_register_resource *highest_reg, *lowest_reg,
1074 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1075 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1076 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1077 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1078 struct cppc_pcc_data *pcc_ss_data = NULL;
1079 int ret = 0, regs_in_pcc = 0;
1082 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1086 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1087 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1088 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1089 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1090 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1091 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1092 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1094 /* Are any of the regs PCC ?*/
1095 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1096 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1097 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1098 if (pcc_ss_id < 0) {
1099 pr_debug("Invalid pcc_ss_id\n");
1102 pcc_ss_data = pcc_data[pcc_ss_id];
1104 down_write(&pcc_ss_data->pcc_lock);
1105 /* Ring doorbell once to update PCC subspace */
1106 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1112 cpc_read(cpunum, highest_reg, &high);
1113 perf_caps->highest_perf = high;
1115 cpc_read(cpunum, lowest_reg, &low);
1116 perf_caps->lowest_perf = low;
1118 cpc_read(cpunum, nominal_reg, &nom);
1119 perf_caps->nominal_perf = nom;
1121 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1122 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1123 perf_caps->guaranteed_perf = 0;
1125 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1126 perf_caps->guaranteed_perf = guaranteed;
1129 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1130 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1132 if (!high || !low || !nom || !min_nonlinear)
1135 /* Read optional lowest and nominal frequencies if present */
1136 if (CPC_SUPPORTED(low_freq_reg))
1137 cpc_read(cpunum, low_freq_reg, &low_f);
1139 if (CPC_SUPPORTED(nom_freq_reg))
1140 cpc_read(cpunum, nom_freq_reg, &nom_f);
1142 perf_caps->lowest_freq = low_f;
1143 perf_caps->nominal_freq = nom_f;
1148 up_write(&pcc_ss_data->pcc_lock);
1151 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1154 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1155 * @cpunum: CPU from which to read counters.
1156 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1158 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1160 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1162 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1163 struct cpc_register_resource *delivered_reg, *reference_reg,
1164 *ref_perf_reg, *ctr_wrap_reg;
1165 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1166 struct cppc_pcc_data *pcc_ss_data = NULL;
1167 u64 delivered, reference, ref_perf, ctr_wrap_time;
1168 int ret = 0, regs_in_pcc = 0;
1171 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1175 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1176 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1177 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1178 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1181 * If reference perf register is not supported then we should
1182 * use the nominal perf value
1184 if (!CPC_SUPPORTED(ref_perf_reg))
1185 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1187 /* Are any of the regs PCC ?*/
1188 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1189 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1190 if (pcc_ss_id < 0) {
1191 pr_debug("Invalid pcc_ss_id\n");
1194 pcc_ss_data = pcc_data[pcc_ss_id];
1195 down_write(&pcc_ss_data->pcc_lock);
1197 /* Ring doorbell once to update PCC subspace */
1198 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1204 cpc_read(cpunum, delivered_reg, &delivered);
1205 cpc_read(cpunum, reference_reg, &reference);
1206 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1209 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1210 * performance counters are assumed to never wrap during the lifetime of
1213 ctr_wrap_time = (u64)(~((u64)0));
1214 if (CPC_SUPPORTED(ctr_wrap_reg))
1215 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1217 if (!delivered || !reference || !ref_perf) {
1222 perf_fb_ctrs->delivered = delivered;
1223 perf_fb_ctrs->reference = reference;
1224 perf_fb_ctrs->reference_perf = ref_perf;
1225 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1228 up_write(&pcc_ss_data->pcc_lock);
1231 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1234 * cppc_set_perf - Set a CPU's performance controls.
1235 * @cpu: CPU for which to set performance controls.
1236 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1238 * Return: 0 for success, -ERRNO otherwise.
1240 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1242 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1243 struct cpc_register_resource *desired_reg;
1244 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1245 struct cppc_pcc_data *pcc_ss_data = NULL;
1249 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1253 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1256 * This is Phase-I where we want to write to CPC registers
1257 * -> We want all CPUs to be able to execute this phase in parallel
1259 * Since read_lock can be acquired by multiple CPUs simultaneously we
1260 * achieve that goal here
1262 if (CPC_IN_PCC(desired_reg)) {
1263 if (pcc_ss_id < 0) {
1264 pr_debug("Invalid pcc_ss_id\n");
1267 pcc_ss_data = pcc_data[pcc_ss_id];
1268 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1269 if (pcc_ss_data->platform_owns_pcc) {
1270 ret = check_pcc_chan(pcc_ss_id, false);
1272 up_read(&pcc_ss_data->pcc_lock);
1277 * Update the pending_write to make sure a PCC CMD_READ will not
1278 * arrive and steal the channel during the switch to write lock
1280 pcc_ss_data->pending_pcc_write_cmd = true;
1281 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1282 cpc_desc->write_cmd_status = 0;
1286 * Skip writing MIN/MAX until Linux knows how to come up with
1289 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1291 if (CPC_IN_PCC(desired_reg))
1292 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1294 * This is Phase-II where we transfer the ownership of PCC to Platform
1296 * Short Summary: Basically if we think of a group of cppc_set_perf
1297 * requests that happened in short overlapping interval. The last CPU to
1298 * come out of Phase-I will enter Phase-II and ring the doorbell.
1300 * We have the following requirements for Phase-II:
1301 * 1. We want to execute Phase-II only when there are no CPUs
1302 * currently executing in Phase-I
1303 * 2. Once we start Phase-II we want to avoid all other CPUs from
1305 * 3. We want only one CPU among all those who went through Phase-I
1308 * If write_trylock fails to get the lock and doesn't transfer the
1309 * PCC ownership to the platform, then one of the following will be TRUE
1310 * 1. There is at-least one CPU in Phase-I which will later execute
1311 * write_trylock, so the CPUs in Phase-I will be responsible for
1312 * executing the Phase-II.
1313 * 2. Some other CPU has beaten this CPU to successfully execute the
1314 * write_trylock and has already acquired the write_lock. We know for a
1315 * fact it (other CPU acquiring the write_lock) couldn't have happened
1316 * before this CPU's Phase-I as we held the read_lock.
1317 * 3. Some other CPU executing pcc CMD_READ has stolen the
1318 * down_write, in which case, send_pcc_cmd will check for pending
1319 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1320 * So this CPU can be certain that its request will be delivered
1321 * So in all cases, this CPU knows that its request will be delivered
1322 * by another CPU and can return
1324 * After getting the down_write we still need to check for
1325 * pending_pcc_write_cmd to take care of the following scenario
1326 * The thread running this code could be scheduled out between
1327 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1328 * could have delivered the request to Platform by triggering the
1329 * doorbell and transferred the ownership of PCC to platform. So this
1330 * avoids triggering an unnecessary doorbell and more importantly before
1331 * triggering the doorbell it makes sure that the PCC channel ownership
1332 * is still with OSPM.
1333 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1334 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1335 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1336 * case during a CMD_READ and if there are pending writes it delivers
1337 * the write command before servicing the read command
1339 if (CPC_IN_PCC(desired_reg)) {
1340 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1341 /* Update only if there are pending write commands */
1342 if (pcc_ss_data->pending_pcc_write_cmd)
1343 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1344 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1346 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1347 wait_event(pcc_ss_data->pcc_write_wait_q,
1348 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1350 /* send_pcc_cmd updates the status in case of failure */
1351 ret = cpc_desc->write_cmd_status;
1355 EXPORT_SYMBOL_GPL(cppc_set_perf);
1358 * cppc_get_transition_latency - returns frequency transition latency in ns
1360 * ACPI CPPC does not explicitly specify how a platform can specify the
1361 * transition latency for performance change requests. The closest we have
1362 * is the timing information from the PCCT tables which provides the info
1363 * on the number and frequency of PCC commands the platform can handle.
1365 unsigned int cppc_get_transition_latency(int cpu_num)
1368 * Expected transition latency is based on the PCCT timing values
1369 * Below are definition from ACPI spec:
1370 * pcc_nominal- Expected latency to process a command, in microseconds
1371 * pcc_mpar - The maximum number of periodic requests that the subspace
1372 * channel can support, reported in commands per minute. 0
1373 * indicates no limitation.
1374 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1375 * completion of a command before issuing the next command,
1378 unsigned int latency_ns = 0;
1379 struct cpc_desc *cpc_desc;
1380 struct cpc_register_resource *desired_reg;
1381 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1382 struct cppc_pcc_data *pcc_ss_data;
1384 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1386 return CPUFREQ_ETERNAL;
1388 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1389 if (!CPC_IN_PCC(desired_reg))
1390 return CPUFREQ_ETERNAL;
1393 return CPUFREQ_ETERNAL;
1395 pcc_ss_data = pcc_data[pcc_ss_id];
1396 if (pcc_ss_data->pcc_mpar)
1397 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1399 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1400 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1404 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);