]> Git Repo - J-linux.git/blob - drivers/gpu/drm/vc4/vc4_kms.c
Merge tag 'irq-urgent-2020-11-08' of git://git.kernel.org/pub/scm/linux/kernel/git...
[J-linux.git] / drivers / gpu / drm / vc4 / vc4_kms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 KMS
8  *
9  * This is the general code for implementing KMS mode setting that
10  * doesn't clearly associate with any of the other objects (plane,
11  * crtc, HDMI encoder).
12  */
13
14 #include <linux/clk.h>
15
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
23
24 #include "vc4_drv.h"
25 #include "vc4_regs.h"
26
27 struct vc4_ctm_state {
28         struct drm_private_state base;
29         struct drm_color_ctm *ctm;
30         int fifo;
31 };
32
33 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
34 {
35         return container_of(priv, struct vc4_ctm_state, base);
36 }
37
38 struct vc4_load_tracker_state {
39         struct drm_private_state base;
40         u64 hvs_load;
41         u64 membus_load;
42 };
43
44 static struct vc4_load_tracker_state *
45 to_vc4_load_tracker_state(struct drm_private_state *priv)
46 {
47         return container_of(priv, struct vc4_load_tracker_state, base);
48 }
49
50 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
51                                                struct drm_private_obj *manager)
52 {
53         struct drm_device *dev = state->dev;
54         struct vc4_dev *vc4 = to_vc4_dev(dev);
55         struct drm_private_state *priv_state;
56         int ret;
57
58         ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
59         if (ret)
60                 return ERR_PTR(ret);
61
62         priv_state = drm_atomic_get_private_obj_state(state, manager);
63         if (IS_ERR(priv_state))
64                 return ERR_CAST(priv_state);
65
66         return to_vc4_ctm_state(priv_state);
67 }
68
69 static struct drm_private_state *
70 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
71 {
72         struct vc4_ctm_state *state;
73
74         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
75         if (!state)
76                 return NULL;
77
78         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
79
80         return &state->base;
81 }
82
83 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
84                                   struct drm_private_state *state)
85 {
86         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
87
88         kfree(ctm_state);
89 }
90
91 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
92         .atomic_duplicate_state = vc4_ctm_duplicate_state,
93         .atomic_destroy_state = vc4_ctm_destroy_state,
94 };
95
96 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
97 {
98         struct vc4_dev *vc4 = to_vc4_dev(dev);
99
100         drm_atomic_private_obj_fini(&vc4->ctm_manager);
101 }
102
103 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
104 {
105         struct vc4_ctm_state *ctm_state;
106
107         drm_modeset_lock_init(&vc4->ctm_state_lock);
108
109         ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
110         if (!ctm_state)
111                 return -ENOMEM;
112
113         drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
114                                     &vc4_ctm_state_funcs);
115
116         return drmm_add_action(&vc4->base, vc4_ctm_obj_fini, NULL);
117 }
118
119 /* Converts a DRM S31.32 value to the HW S0.9 format. */
120 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
121 {
122         u16 r;
123
124         /* Sign bit. */
125         r = in & BIT_ULL(63) ? BIT(9) : 0;
126
127         if ((in & GENMASK_ULL(62, 32)) > 0) {
128                 /* We have zero integer bits so we can only saturate here. */
129                 r |= GENMASK(8, 0);
130         } else {
131                 /* Otherwise take the 9 most important fractional bits. */
132                 r |= (in >> 23) & GENMASK(8, 0);
133         }
134
135         return r;
136 }
137
138 static void
139 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
140 {
141         struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
142         struct drm_color_ctm *ctm = ctm_state->ctm;
143
144         if (ctm_state->fifo) {
145                 HVS_WRITE(SCALER_OLEDCOEF2,
146                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
147                                         SCALER_OLEDCOEF2_R_TO_R) |
148                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
149                                         SCALER_OLEDCOEF2_R_TO_G) |
150                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
151                                         SCALER_OLEDCOEF2_R_TO_B));
152                 HVS_WRITE(SCALER_OLEDCOEF1,
153                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
154                                         SCALER_OLEDCOEF1_G_TO_R) |
155                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
156                                         SCALER_OLEDCOEF1_G_TO_G) |
157                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
158                                         SCALER_OLEDCOEF1_G_TO_B));
159                 HVS_WRITE(SCALER_OLEDCOEF0,
160                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
161                                         SCALER_OLEDCOEF0_B_TO_R) |
162                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
163                                         SCALER_OLEDCOEF0_B_TO_G) |
164                           VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
165                                         SCALER_OLEDCOEF0_B_TO_B));
166         }
167
168         HVS_WRITE(SCALER_OLEDOFFS,
169                   VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
170 }
171
172 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
173                                      struct drm_atomic_state *state)
174 {
175         struct drm_crtc_state *crtc_state;
176         struct drm_crtc *crtc;
177         unsigned int i;
178
179         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
180                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
181                 u32 dispctrl;
182                 u32 dsp3_mux;
183
184                 if (!crtc_state->active)
185                         continue;
186
187                 if (vc4_state->assigned_channel != 2)
188                         continue;
189
190                 /*
191                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
192                  * FIFO X'.
193                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
194                  *
195                  * DSP3 is connected to FIFO2 unless the transposer is
196                  * enabled. In this case, FIFO 2 is directly accessed by the
197                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
198                  * route.
199                  */
200                 if (vc4_state->feed_txp)
201                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
202                 else
203                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
204
205                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
206                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
207                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
208         }
209 }
210
211 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
212                                      struct drm_atomic_state *state)
213 {
214         struct drm_crtc_state *crtc_state;
215         struct drm_crtc *crtc;
216         unsigned char dsp2_mux = 0;
217         unsigned char dsp3_mux = 3;
218         unsigned char dsp4_mux = 3;
219         unsigned char dsp5_mux = 3;
220         unsigned int i;
221         u32 reg;
222
223         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
224                 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
225                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
226
227                 if (!crtc_state->active)
228                         continue;
229
230                 switch (vc4_crtc->data->hvs_output) {
231                 case 2:
232                         dsp2_mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
233                         break;
234
235                 case 3:
236                         dsp3_mux = vc4_state->assigned_channel;
237                         break;
238
239                 case 4:
240                         dsp4_mux = vc4_state->assigned_channel;
241                         break;
242
243                 case 5:
244                         dsp5_mux = vc4_state->assigned_channel;
245                         break;
246
247                 default:
248                         break;
249                 }
250         }
251
252         reg = HVS_READ(SCALER_DISPECTRL);
253         HVS_WRITE(SCALER_DISPECTRL,
254                   (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
255                   VC4_SET_FIELD(dsp2_mux, SCALER_DISPECTRL_DSP2_MUX));
256
257         reg = HVS_READ(SCALER_DISPCTRL);
258         HVS_WRITE(SCALER_DISPCTRL,
259                   (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
260                   VC4_SET_FIELD(dsp3_mux, SCALER_DISPCTRL_DSP3_MUX));
261
262         reg = HVS_READ(SCALER_DISPEOLN);
263         HVS_WRITE(SCALER_DISPEOLN,
264                   (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
265                   VC4_SET_FIELD(dsp4_mux, SCALER_DISPEOLN_DSP4_MUX));
266
267         reg = HVS_READ(SCALER_DISPDITHER);
268         HVS_WRITE(SCALER_DISPDITHER,
269                   (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
270                   VC4_SET_FIELD(dsp5_mux, SCALER_DISPDITHER_DSP5_MUX));
271 }
272
273 static void
274 vc4_atomic_complete_commit(struct drm_atomic_state *state)
275 {
276         struct drm_device *dev = state->dev;
277         struct vc4_dev *vc4 = to_vc4_dev(dev);
278         struct vc4_hvs *hvs = vc4->hvs;
279         struct drm_crtc_state *new_crtc_state;
280         struct drm_crtc *crtc;
281         int i;
282
283         for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
284                 struct vc4_crtc_state *vc4_crtc_state;
285
286                 if (!new_crtc_state->commit)
287                         continue;
288
289                 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
290                 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
291         }
292
293         if (vc4->hvs->hvs5)
294                 clk_set_min_rate(hvs->core_clk, 500000000);
295
296         drm_atomic_helper_wait_for_fences(dev, state, false);
297
298         drm_atomic_helper_wait_for_dependencies(state);
299
300         drm_atomic_helper_commit_modeset_disables(dev, state);
301
302         vc4_ctm_commit(vc4, state);
303
304         if (vc4->hvs->hvs5)
305                 vc5_hvs_pv_muxing_commit(vc4, state);
306         else
307                 vc4_hvs_pv_muxing_commit(vc4, state);
308
309         drm_atomic_helper_commit_planes(dev, state, 0);
310
311         drm_atomic_helper_commit_modeset_enables(dev, state);
312
313         drm_atomic_helper_fake_vblank(state);
314
315         drm_atomic_helper_commit_hw_done(state);
316
317         drm_atomic_helper_wait_for_flip_done(dev, state);
318
319         drm_atomic_helper_cleanup_planes(dev, state);
320
321         drm_atomic_helper_commit_cleanup_done(state);
322
323         if (vc4->hvs->hvs5)
324                 clk_set_min_rate(hvs->core_clk, 0);
325
326         drm_atomic_state_put(state);
327
328         up(&vc4->async_modeset);
329 }
330
331 static void commit_work(struct work_struct *work)
332 {
333         struct drm_atomic_state *state = container_of(work,
334                                                       struct drm_atomic_state,
335                                                       commit_work);
336         vc4_atomic_complete_commit(state);
337 }
338
339 /**
340  * vc4_atomic_commit - commit validated state object
341  * @dev: DRM device
342  * @state: the driver state object
343  * @nonblock: nonblocking commit
344  *
345  * This function commits a with drm_atomic_helper_check() pre-validated state
346  * object. This can still fail when e.g. the framebuffer reservation fails. For
347  * now this doesn't implement asynchronous commits.
348  *
349  * RETURNS
350  * Zero for success or -errno.
351  */
352 static int vc4_atomic_commit(struct drm_device *dev,
353                              struct drm_atomic_state *state,
354                              bool nonblock)
355 {
356         struct vc4_dev *vc4 = to_vc4_dev(dev);
357         int ret;
358
359         if (state->async_update) {
360                 ret = down_interruptible(&vc4->async_modeset);
361                 if (ret)
362                         return ret;
363
364                 ret = drm_atomic_helper_prepare_planes(dev, state);
365                 if (ret) {
366                         up(&vc4->async_modeset);
367                         return ret;
368                 }
369
370                 drm_atomic_helper_async_commit(dev, state);
371
372                 drm_atomic_helper_cleanup_planes(dev, state);
373
374                 up(&vc4->async_modeset);
375
376                 return 0;
377         }
378
379         /* We know for sure we don't want an async update here. Set
380          * state->legacy_cursor_update to false to prevent
381          * drm_atomic_helper_setup_commit() from auto-completing
382          * commit->flip_done.
383          */
384         state->legacy_cursor_update = false;
385         ret = drm_atomic_helper_setup_commit(state, nonblock);
386         if (ret)
387                 return ret;
388
389         INIT_WORK(&state->commit_work, commit_work);
390
391         ret = down_interruptible(&vc4->async_modeset);
392         if (ret)
393                 return ret;
394
395         ret = drm_atomic_helper_prepare_planes(dev, state);
396         if (ret) {
397                 up(&vc4->async_modeset);
398                 return ret;
399         }
400
401         if (!nonblock) {
402                 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
403                 if (ret) {
404                         drm_atomic_helper_cleanup_planes(dev, state);
405                         up(&vc4->async_modeset);
406                         return ret;
407                 }
408         }
409
410         /*
411          * This is the point of no return - everything below never fails except
412          * when the hw goes bonghits. Which means we can commit the new state on
413          * the software side now.
414          */
415
416         BUG_ON(drm_atomic_helper_swap_state(state, false) < 0);
417
418         /*
419          * Everything below can be run asynchronously without the need to grab
420          * any modeset locks at all under one condition: It must be guaranteed
421          * that the asynchronous work has either been cancelled (if the driver
422          * supports it, which at least requires that the framebuffers get
423          * cleaned up with drm_atomic_helper_cleanup_planes()) or completed
424          * before the new state gets committed on the software side with
425          * drm_atomic_helper_swap_state().
426          *
427          * This scheme allows new atomic state updates to be prepared and
428          * checked in parallel to the asynchronous completion of the previous
429          * update. Which is important since compositors need to figure out the
430          * composition of the next frame right after having submitted the
431          * current layout.
432          */
433
434         drm_atomic_state_get(state);
435         if (nonblock)
436                 queue_work(system_unbound_wq, &state->commit_work);
437         else
438                 vc4_atomic_complete_commit(state);
439
440         return 0;
441 }
442
443 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
444                                              struct drm_file *file_priv,
445                                              const struct drm_mode_fb_cmd2 *mode_cmd)
446 {
447         struct drm_mode_fb_cmd2 mode_cmd_local;
448
449         /* If the user didn't specify a modifier, use the
450          * vc4_set_tiling_ioctl() state for the BO.
451          */
452         if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
453                 struct drm_gem_object *gem_obj;
454                 struct vc4_bo *bo;
455
456                 gem_obj = drm_gem_object_lookup(file_priv,
457                                                 mode_cmd->handles[0]);
458                 if (!gem_obj) {
459                         DRM_DEBUG("Failed to look up GEM BO %d\n",
460                                   mode_cmd->handles[0]);
461                         return ERR_PTR(-ENOENT);
462                 }
463                 bo = to_vc4_bo(gem_obj);
464
465                 mode_cmd_local = *mode_cmd;
466
467                 if (bo->t_format) {
468                         mode_cmd_local.modifier[0] =
469                                 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
470                 } else {
471                         mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
472                 }
473
474                 drm_gem_object_put(gem_obj);
475
476                 mode_cmd = &mode_cmd_local;
477         }
478
479         return drm_gem_fb_create(dev, file_priv, mode_cmd);
480 }
481
482 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
483  * at a time and the HW only supports S0.9 scalars. To account for the latter,
484  * we don't allow userland to set a CTM that we have no hope of approximating.
485  */
486 static int
487 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
488 {
489         struct vc4_dev *vc4 = to_vc4_dev(dev);
490         struct vc4_ctm_state *ctm_state = NULL;
491         struct drm_crtc *crtc;
492         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
493         struct drm_color_ctm *ctm;
494         int i;
495
496         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
497                 /* CTM is being disabled. */
498                 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
499                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
500                         if (IS_ERR(ctm_state))
501                                 return PTR_ERR(ctm_state);
502                         ctm_state->fifo = 0;
503                 }
504         }
505
506         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
507                 if (new_crtc_state->ctm == old_crtc_state->ctm)
508                         continue;
509
510                 if (!ctm_state) {
511                         ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
512                         if (IS_ERR(ctm_state))
513                                 return PTR_ERR(ctm_state);
514                 }
515
516                 /* CTM is being enabled or the matrix changed. */
517                 if (new_crtc_state->ctm) {
518                         struct vc4_crtc_state *vc4_crtc_state =
519                                 to_vc4_crtc_state(new_crtc_state);
520
521                         /* fifo is 1-based since 0 disables CTM. */
522                         int fifo = vc4_crtc_state->assigned_channel + 1;
523
524                         /* Check userland isn't trying to turn on CTM for more
525                          * than one CRTC at a time.
526                          */
527                         if (ctm_state->fifo && ctm_state->fifo != fifo) {
528                                 DRM_DEBUG_DRIVER("Too many CTM configured\n");
529                                 return -EINVAL;
530                         }
531
532                         /* Check we can approximate the specified CTM.
533                          * We disallow scalars |c| > 1.0 since the HW has
534                          * no integer bits.
535                          */
536                         ctm = new_crtc_state->ctm->data;
537                         for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
538                                 u64 val = ctm->matrix[i];
539
540                                 val &= ~BIT_ULL(63);
541                                 if (val > BIT_ULL(32))
542                                         return -EINVAL;
543                         }
544
545                         ctm_state->fifo = fifo;
546                         ctm_state->ctm = ctm;
547                 }
548         }
549
550         return 0;
551 }
552
553 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
554 {
555         struct drm_plane_state *old_plane_state, *new_plane_state;
556         struct vc4_dev *vc4 = to_vc4_dev(state->dev);
557         struct vc4_load_tracker_state *load_state;
558         struct drm_private_state *priv_state;
559         struct drm_plane *plane;
560         int i;
561
562         if (!vc4->load_tracker_available)
563                 return 0;
564
565         priv_state = drm_atomic_get_private_obj_state(state,
566                                                       &vc4->load_tracker);
567         if (IS_ERR(priv_state))
568                 return PTR_ERR(priv_state);
569
570         load_state = to_vc4_load_tracker_state(priv_state);
571         for_each_oldnew_plane_in_state(state, plane, old_plane_state,
572                                        new_plane_state, i) {
573                 struct vc4_plane_state *vc4_plane_state;
574
575                 if (old_plane_state->fb && old_plane_state->crtc) {
576                         vc4_plane_state = to_vc4_plane_state(old_plane_state);
577                         load_state->membus_load -= vc4_plane_state->membus_load;
578                         load_state->hvs_load -= vc4_plane_state->hvs_load;
579                 }
580
581                 if (new_plane_state->fb && new_plane_state->crtc) {
582                         vc4_plane_state = to_vc4_plane_state(new_plane_state);
583                         load_state->membus_load += vc4_plane_state->membus_load;
584                         load_state->hvs_load += vc4_plane_state->hvs_load;
585                 }
586         }
587
588         /* Don't check the load when the tracker is disabled. */
589         if (!vc4->load_tracker_enabled)
590                 return 0;
591
592         /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
593          * the system work when other blocks are accessing the memory.
594          */
595         if (load_state->membus_load > SZ_1G + SZ_512M)
596                 return -ENOSPC;
597
598         /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
599          * consider the maximum number of cycles is 240M.
600          */
601         if (load_state->hvs_load > 240000000ULL)
602                 return -ENOSPC;
603
604         return 0;
605 }
606
607 static struct drm_private_state *
608 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
609 {
610         struct vc4_load_tracker_state *state;
611
612         state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
613         if (!state)
614                 return NULL;
615
616         __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
617
618         return &state->base;
619 }
620
621 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
622                                            struct drm_private_state *state)
623 {
624         struct vc4_load_tracker_state *load_state;
625
626         load_state = to_vc4_load_tracker_state(state);
627         kfree(load_state);
628 }
629
630 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
631         .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
632         .atomic_destroy_state = vc4_load_tracker_destroy_state,
633 };
634
635 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
636 {
637         struct vc4_dev *vc4 = to_vc4_dev(dev);
638
639         if (!vc4->load_tracker_available)
640                 return;
641
642         drm_atomic_private_obj_fini(&vc4->load_tracker);
643 }
644
645 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
646 {
647         struct vc4_load_tracker_state *load_state;
648
649         if (!vc4->load_tracker_available)
650                 return 0;
651
652         load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
653         if (!load_state)
654                 return -ENOMEM;
655
656         drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
657                                     &load_state->base,
658                                     &vc4_load_tracker_state_funcs);
659
660         return drmm_add_action(&vc4->base, vc4_load_tracker_obj_fini, NULL);
661 }
662
663 #define NUM_OUTPUTS  6
664 #define NUM_CHANNELS 3
665
666 static int
667 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
668 {
669         unsigned long unassigned_channels = GENMASK(NUM_CHANNELS - 1, 0);
670         struct drm_crtc_state *old_crtc_state, *new_crtc_state;
671         struct drm_crtc *crtc;
672         int i, ret;
673
674         /*
675          * Since the HVS FIFOs are shared across all the pixelvalves and
676          * the TXP (and thus all the CRTCs), we need to pull the current
677          * state of all the enabled CRTCs so that an update to a single
678          * CRTC still keeps the previous FIFOs enabled and assigned to
679          * the same CRTCs, instead of evaluating only the CRTC being
680          * modified.
681          */
682         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
683                 struct drm_crtc_state *crtc_state;
684
685                 if (!crtc->state->enable)
686                         continue;
687
688                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
689                 if (IS_ERR(crtc_state))
690                         return PTR_ERR(crtc_state);
691         }
692
693         for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
694                 struct vc4_crtc_state *new_vc4_crtc_state =
695                         to_vc4_crtc_state(new_crtc_state);
696                 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
697                 unsigned int matching_channels;
698
699                 if (old_crtc_state->enable && !new_crtc_state->enable)
700                         new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
701
702                 if (!new_crtc_state->enable)
703                         continue;
704
705                 if (new_vc4_crtc_state->assigned_channel != VC4_HVS_CHANNEL_DISABLED) {
706                         unassigned_channels &= ~BIT(new_vc4_crtc_state->assigned_channel);
707                         continue;
708                 }
709
710                 /*
711                  * The problem we have to solve here is that we have
712                  * up to 7 encoders, connected to up to 6 CRTCs.
713                  *
714                  * Those CRTCs, depending on the instance, can be
715                  * routed to 1, 2 or 3 HVS FIFOs, and we need to set
716                  * the change the muxing between FIFOs and outputs in
717                  * the HVS accordingly.
718                  *
719                  * It would be pretty hard to come up with an
720                  * algorithm that would generically solve
721                  * this. However, the current routing trees we support
722                  * allow us to simplify a bit the problem.
723                  *
724                  * Indeed, with the current supported layouts, if we
725                  * try to assign in the ascending crtc index order the
726                  * FIFOs, we can't fall into the situation where an
727                  * earlier CRTC that had multiple routes is assigned
728                  * one that was the only option for a later CRTC.
729                  *
730                  * If the layout changes and doesn't give us that in
731                  * the future, we will need to have something smarter,
732                  * but it works so far.
733                  */
734                 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
735                 if (matching_channels) {
736                         unsigned int channel = ffs(matching_channels) - 1;
737
738                         new_vc4_crtc_state->assigned_channel = channel;
739                         unassigned_channels &= ~BIT(channel);
740                 } else {
741                         return -EINVAL;
742                 }
743         }
744
745         ret = vc4_ctm_atomic_check(dev, state);
746         if (ret < 0)
747                 return ret;
748
749         ret = drm_atomic_helper_check(dev, state);
750         if (ret)
751                 return ret;
752
753         return vc4_load_tracker_atomic_check(state);
754 }
755
756 static const struct drm_mode_config_funcs vc4_mode_funcs = {
757         .atomic_check = vc4_atomic_check,
758         .atomic_commit = vc4_atomic_commit,
759         .fb_create = vc4_fb_create,
760 };
761
762 int vc4_kms_load(struct drm_device *dev)
763 {
764         struct vc4_dev *vc4 = to_vc4_dev(dev);
765         bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
766                                               "brcm,bcm2711-vc5");
767         int ret;
768
769         if (!is_vc5) {
770                 vc4->load_tracker_available = true;
771
772                 /* Start with the load tracker enabled. Can be
773                  * disabled through the debugfs load_tracker file.
774                  */
775                 vc4->load_tracker_enabled = true;
776         }
777
778         sema_init(&vc4->async_modeset, 1);
779
780         /* Set support for vblank irq fast disable, before drm_vblank_init() */
781         dev->vblank_disable_immediate = true;
782
783         dev->irq_enabled = true;
784         ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
785         if (ret < 0) {
786                 dev_err(dev->dev, "failed to initialize vblank\n");
787                 return ret;
788         }
789
790         if (is_vc5) {
791                 dev->mode_config.max_width = 7680;
792                 dev->mode_config.max_height = 7680;
793         } else {
794                 dev->mode_config.max_width = 2048;
795                 dev->mode_config.max_height = 2048;
796         }
797
798         dev->mode_config.funcs = &vc4_mode_funcs;
799         dev->mode_config.preferred_depth = 24;
800         dev->mode_config.async_page_flip = true;
801         dev->mode_config.allow_fb_modifiers = true;
802
803         ret = vc4_ctm_obj_init(vc4);
804         if (ret)
805                 return ret;
806
807         ret = vc4_load_tracker_obj_init(vc4);
808         if (ret)
809                 return ret;
810
811         drm_mode_config_reset(dev);
812
813         drm_kms_helper_poll_init(dev);
814
815         return 0;
816 }
This page took 0.072298 seconds and 4 git commands to generate.