1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * This is the general code for implementing KMS mode setting that
10 * doesn't clearly associate with any of the other objects (plane,
11 * crtc, HDMI encoder).
14 #include <linux/clk.h>
16 #include <drm/drm_atomic.h>
17 #include <drm/drm_atomic_helper.h>
18 #include <drm/drm_crtc.h>
19 #include <drm/drm_gem_framebuffer_helper.h>
20 #include <drm/drm_plane_helper.h>
21 #include <drm/drm_probe_helper.h>
22 #include <drm/drm_vblank.h>
27 struct vc4_ctm_state {
28 struct drm_private_state base;
29 struct drm_color_ctm *ctm;
33 static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
35 return container_of(priv, struct vc4_ctm_state, base);
38 struct vc4_load_tracker_state {
39 struct drm_private_state base;
44 static struct vc4_load_tracker_state *
45 to_vc4_load_tracker_state(struct drm_private_state *priv)
47 return container_of(priv, struct vc4_load_tracker_state, base);
50 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
51 struct drm_private_obj *manager)
53 struct drm_device *dev = state->dev;
54 struct vc4_dev *vc4 = to_vc4_dev(dev);
55 struct drm_private_state *priv_state;
58 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
62 priv_state = drm_atomic_get_private_obj_state(state, manager);
63 if (IS_ERR(priv_state))
64 return ERR_CAST(priv_state);
66 return to_vc4_ctm_state(priv_state);
69 static struct drm_private_state *
70 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
72 struct vc4_ctm_state *state;
74 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
78 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
83 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
84 struct drm_private_state *state)
86 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
91 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
92 .atomic_duplicate_state = vc4_ctm_duplicate_state,
93 .atomic_destroy_state = vc4_ctm_destroy_state,
96 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
98 struct vc4_dev *vc4 = to_vc4_dev(dev);
100 drm_atomic_private_obj_fini(&vc4->ctm_manager);
103 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
105 struct vc4_ctm_state *ctm_state;
107 drm_modeset_lock_init(&vc4->ctm_state_lock);
109 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
113 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
114 &vc4_ctm_state_funcs);
116 return drmm_add_action(&vc4->base, vc4_ctm_obj_fini, NULL);
119 /* Converts a DRM S31.32 value to the HW S0.9 format. */
120 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
125 r = in & BIT_ULL(63) ? BIT(9) : 0;
127 if ((in & GENMASK_ULL(62, 32)) > 0) {
128 /* We have zero integer bits so we can only saturate here. */
131 /* Otherwise take the 9 most important fractional bits. */
132 r |= (in >> 23) & GENMASK(8, 0);
139 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
141 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
142 struct drm_color_ctm *ctm = ctm_state->ctm;
144 if (ctm_state->fifo) {
145 HVS_WRITE(SCALER_OLEDCOEF2,
146 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
147 SCALER_OLEDCOEF2_R_TO_R) |
148 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
149 SCALER_OLEDCOEF2_R_TO_G) |
150 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
151 SCALER_OLEDCOEF2_R_TO_B));
152 HVS_WRITE(SCALER_OLEDCOEF1,
153 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
154 SCALER_OLEDCOEF1_G_TO_R) |
155 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
156 SCALER_OLEDCOEF1_G_TO_G) |
157 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
158 SCALER_OLEDCOEF1_G_TO_B));
159 HVS_WRITE(SCALER_OLEDCOEF0,
160 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
161 SCALER_OLEDCOEF0_B_TO_R) |
162 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
163 SCALER_OLEDCOEF0_B_TO_G) |
164 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
165 SCALER_OLEDCOEF0_B_TO_B));
168 HVS_WRITE(SCALER_OLEDOFFS,
169 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
172 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
173 struct drm_atomic_state *state)
175 struct drm_crtc_state *crtc_state;
176 struct drm_crtc *crtc;
179 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
180 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
184 if (!crtc_state->active)
187 if (vc4_state->assigned_channel != 2)
191 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
193 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
195 * DSP3 is connected to FIFO2 unless the transposer is
196 * enabled. In this case, FIFO 2 is directly accessed by the
197 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
200 if (vc4_state->feed_txp)
201 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
203 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
205 dispctrl = HVS_READ(SCALER_DISPCTRL) &
206 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
207 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
211 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
212 struct drm_atomic_state *state)
214 struct drm_crtc_state *crtc_state;
215 struct drm_crtc *crtc;
216 unsigned char dsp2_mux = 0;
217 unsigned char dsp3_mux = 3;
218 unsigned char dsp4_mux = 3;
219 unsigned char dsp5_mux = 3;
223 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
224 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
225 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
227 if (!crtc_state->active)
230 switch (vc4_crtc->data->hvs_output) {
232 dsp2_mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
236 dsp3_mux = vc4_state->assigned_channel;
240 dsp4_mux = vc4_state->assigned_channel;
244 dsp5_mux = vc4_state->assigned_channel;
252 reg = HVS_READ(SCALER_DISPECTRL);
253 HVS_WRITE(SCALER_DISPECTRL,
254 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
255 VC4_SET_FIELD(dsp2_mux, SCALER_DISPECTRL_DSP2_MUX));
257 reg = HVS_READ(SCALER_DISPCTRL);
258 HVS_WRITE(SCALER_DISPCTRL,
259 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
260 VC4_SET_FIELD(dsp3_mux, SCALER_DISPCTRL_DSP3_MUX));
262 reg = HVS_READ(SCALER_DISPEOLN);
263 HVS_WRITE(SCALER_DISPEOLN,
264 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
265 VC4_SET_FIELD(dsp4_mux, SCALER_DISPEOLN_DSP4_MUX));
267 reg = HVS_READ(SCALER_DISPDITHER);
268 HVS_WRITE(SCALER_DISPDITHER,
269 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
270 VC4_SET_FIELD(dsp5_mux, SCALER_DISPDITHER_DSP5_MUX));
274 vc4_atomic_complete_commit(struct drm_atomic_state *state)
276 struct drm_device *dev = state->dev;
277 struct vc4_dev *vc4 = to_vc4_dev(dev);
278 struct vc4_hvs *hvs = vc4->hvs;
279 struct drm_crtc_state *new_crtc_state;
280 struct drm_crtc *crtc;
283 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
284 struct vc4_crtc_state *vc4_crtc_state;
286 if (!new_crtc_state->commit)
289 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
290 vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
294 clk_set_min_rate(hvs->core_clk, 500000000);
296 drm_atomic_helper_wait_for_fences(dev, state, false);
298 drm_atomic_helper_wait_for_dependencies(state);
300 drm_atomic_helper_commit_modeset_disables(dev, state);
302 vc4_ctm_commit(vc4, state);
305 vc5_hvs_pv_muxing_commit(vc4, state);
307 vc4_hvs_pv_muxing_commit(vc4, state);
309 drm_atomic_helper_commit_planes(dev, state, 0);
311 drm_atomic_helper_commit_modeset_enables(dev, state);
313 drm_atomic_helper_fake_vblank(state);
315 drm_atomic_helper_commit_hw_done(state);
317 drm_atomic_helper_wait_for_flip_done(dev, state);
319 drm_atomic_helper_cleanup_planes(dev, state);
321 drm_atomic_helper_commit_cleanup_done(state);
324 clk_set_min_rate(hvs->core_clk, 0);
326 drm_atomic_state_put(state);
328 up(&vc4->async_modeset);
331 static void commit_work(struct work_struct *work)
333 struct drm_atomic_state *state = container_of(work,
334 struct drm_atomic_state,
336 vc4_atomic_complete_commit(state);
340 * vc4_atomic_commit - commit validated state object
342 * @state: the driver state object
343 * @nonblock: nonblocking commit
345 * This function commits a with drm_atomic_helper_check() pre-validated state
346 * object. This can still fail when e.g. the framebuffer reservation fails. For
347 * now this doesn't implement asynchronous commits.
350 * Zero for success or -errno.
352 static int vc4_atomic_commit(struct drm_device *dev,
353 struct drm_atomic_state *state,
356 struct vc4_dev *vc4 = to_vc4_dev(dev);
359 if (state->async_update) {
360 ret = down_interruptible(&vc4->async_modeset);
364 ret = drm_atomic_helper_prepare_planes(dev, state);
366 up(&vc4->async_modeset);
370 drm_atomic_helper_async_commit(dev, state);
372 drm_atomic_helper_cleanup_planes(dev, state);
374 up(&vc4->async_modeset);
379 /* We know for sure we don't want an async update here. Set
380 * state->legacy_cursor_update to false to prevent
381 * drm_atomic_helper_setup_commit() from auto-completing
384 state->legacy_cursor_update = false;
385 ret = drm_atomic_helper_setup_commit(state, nonblock);
389 INIT_WORK(&state->commit_work, commit_work);
391 ret = down_interruptible(&vc4->async_modeset);
395 ret = drm_atomic_helper_prepare_planes(dev, state);
397 up(&vc4->async_modeset);
402 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
404 drm_atomic_helper_cleanup_planes(dev, state);
405 up(&vc4->async_modeset);
411 * This is the point of no return - everything below never fails except
412 * when the hw goes bonghits. Which means we can commit the new state on
413 * the software side now.
416 BUG_ON(drm_atomic_helper_swap_state(state, false) < 0);
419 * Everything below can be run asynchronously without the need to grab
420 * any modeset locks at all under one condition: It must be guaranteed
421 * that the asynchronous work has either been cancelled (if the driver
422 * supports it, which at least requires that the framebuffers get
423 * cleaned up with drm_atomic_helper_cleanup_planes()) or completed
424 * before the new state gets committed on the software side with
425 * drm_atomic_helper_swap_state().
427 * This scheme allows new atomic state updates to be prepared and
428 * checked in parallel to the asynchronous completion of the previous
429 * update. Which is important since compositors need to figure out the
430 * composition of the next frame right after having submitted the
434 drm_atomic_state_get(state);
436 queue_work(system_unbound_wq, &state->commit_work);
438 vc4_atomic_complete_commit(state);
443 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
444 struct drm_file *file_priv,
445 const struct drm_mode_fb_cmd2 *mode_cmd)
447 struct drm_mode_fb_cmd2 mode_cmd_local;
449 /* If the user didn't specify a modifier, use the
450 * vc4_set_tiling_ioctl() state for the BO.
452 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
453 struct drm_gem_object *gem_obj;
456 gem_obj = drm_gem_object_lookup(file_priv,
457 mode_cmd->handles[0]);
459 DRM_DEBUG("Failed to look up GEM BO %d\n",
460 mode_cmd->handles[0]);
461 return ERR_PTR(-ENOENT);
463 bo = to_vc4_bo(gem_obj);
465 mode_cmd_local = *mode_cmd;
468 mode_cmd_local.modifier[0] =
469 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
471 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
474 drm_gem_object_put(gem_obj);
476 mode_cmd = &mode_cmd_local;
479 return drm_gem_fb_create(dev, file_priv, mode_cmd);
482 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
483 * at a time and the HW only supports S0.9 scalars. To account for the latter,
484 * we don't allow userland to set a CTM that we have no hope of approximating.
487 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
489 struct vc4_dev *vc4 = to_vc4_dev(dev);
490 struct vc4_ctm_state *ctm_state = NULL;
491 struct drm_crtc *crtc;
492 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
493 struct drm_color_ctm *ctm;
496 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
497 /* CTM is being disabled. */
498 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
499 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
500 if (IS_ERR(ctm_state))
501 return PTR_ERR(ctm_state);
506 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
507 if (new_crtc_state->ctm == old_crtc_state->ctm)
511 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
512 if (IS_ERR(ctm_state))
513 return PTR_ERR(ctm_state);
516 /* CTM is being enabled or the matrix changed. */
517 if (new_crtc_state->ctm) {
518 struct vc4_crtc_state *vc4_crtc_state =
519 to_vc4_crtc_state(new_crtc_state);
521 /* fifo is 1-based since 0 disables CTM. */
522 int fifo = vc4_crtc_state->assigned_channel + 1;
524 /* Check userland isn't trying to turn on CTM for more
525 * than one CRTC at a time.
527 if (ctm_state->fifo && ctm_state->fifo != fifo) {
528 DRM_DEBUG_DRIVER("Too many CTM configured\n");
532 /* Check we can approximate the specified CTM.
533 * We disallow scalars |c| > 1.0 since the HW has
536 ctm = new_crtc_state->ctm->data;
537 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
538 u64 val = ctm->matrix[i];
541 if (val > BIT_ULL(32))
545 ctm_state->fifo = fifo;
546 ctm_state->ctm = ctm;
553 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
555 struct drm_plane_state *old_plane_state, *new_plane_state;
556 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
557 struct vc4_load_tracker_state *load_state;
558 struct drm_private_state *priv_state;
559 struct drm_plane *plane;
562 if (!vc4->load_tracker_available)
565 priv_state = drm_atomic_get_private_obj_state(state,
567 if (IS_ERR(priv_state))
568 return PTR_ERR(priv_state);
570 load_state = to_vc4_load_tracker_state(priv_state);
571 for_each_oldnew_plane_in_state(state, plane, old_plane_state,
572 new_plane_state, i) {
573 struct vc4_plane_state *vc4_plane_state;
575 if (old_plane_state->fb && old_plane_state->crtc) {
576 vc4_plane_state = to_vc4_plane_state(old_plane_state);
577 load_state->membus_load -= vc4_plane_state->membus_load;
578 load_state->hvs_load -= vc4_plane_state->hvs_load;
581 if (new_plane_state->fb && new_plane_state->crtc) {
582 vc4_plane_state = to_vc4_plane_state(new_plane_state);
583 load_state->membus_load += vc4_plane_state->membus_load;
584 load_state->hvs_load += vc4_plane_state->hvs_load;
588 /* Don't check the load when the tracker is disabled. */
589 if (!vc4->load_tracker_enabled)
592 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
593 * the system work when other blocks are accessing the memory.
595 if (load_state->membus_load > SZ_1G + SZ_512M)
598 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
599 * consider the maximum number of cycles is 240M.
601 if (load_state->hvs_load > 240000000ULL)
607 static struct drm_private_state *
608 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
610 struct vc4_load_tracker_state *state;
612 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
616 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
621 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
622 struct drm_private_state *state)
624 struct vc4_load_tracker_state *load_state;
626 load_state = to_vc4_load_tracker_state(state);
630 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
631 .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
632 .atomic_destroy_state = vc4_load_tracker_destroy_state,
635 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
637 struct vc4_dev *vc4 = to_vc4_dev(dev);
639 if (!vc4->load_tracker_available)
642 drm_atomic_private_obj_fini(&vc4->load_tracker);
645 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
647 struct vc4_load_tracker_state *load_state;
649 if (!vc4->load_tracker_available)
652 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
656 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
658 &vc4_load_tracker_state_funcs);
660 return drmm_add_action(&vc4->base, vc4_load_tracker_obj_fini, NULL);
663 #define NUM_OUTPUTS 6
664 #define NUM_CHANNELS 3
667 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
669 unsigned long unassigned_channels = GENMASK(NUM_CHANNELS - 1, 0);
670 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
671 struct drm_crtc *crtc;
675 * Since the HVS FIFOs are shared across all the pixelvalves and
676 * the TXP (and thus all the CRTCs), we need to pull the current
677 * state of all the enabled CRTCs so that an update to a single
678 * CRTC still keeps the previous FIFOs enabled and assigned to
679 * the same CRTCs, instead of evaluating only the CRTC being
682 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
683 struct drm_crtc_state *crtc_state;
685 if (!crtc->state->enable)
688 crtc_state = drm_atomic_get_crtc_state(state, crtc);
689 if (IS_ERR(crtc_state))
690 return PTR_ERR(crtc_state);
693 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
694 struct vc4_crtc_state *new_vc4_crtc_state =
695 to_vc4_crtc_state(new_crtc_state);
696 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
697 unsigned int matching_channels;
699 if (old_crtc_state->enable && !new_crtc_state->enable)
700 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
702 if (!new_crtc_state->enable)
705 if (new_vc4_crtc_state->assigned_channel != VC4_HVS_CHANNEL_DISABLED) {
706 unassigned_channels &= ~BIT(new_vc4_crtc_state->assigned_channel);
711 * The problem we have to solve here is that we have
712 * up to 7 encoders, connected to up to 6 CRTCs.
714 * Those CRTCs, depending on the instance, can be
715 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
716 * the change the muxing between FIFOs and outputs in
717 * the HVS accordingly.
719 * It would be pretty hard to come up with an
720 * algorithm that would generically solve
721 * this. However, the current routing trees we support
722 * allow us to simplify a bit the problem.
724 * Indeed, with the current supported layouts, if we
725 * try to assign in the ascending crtc index order the
726 * FIFOs, we can't fall into the situation where an
727 * earlier CRTC that had multiple routes is assigned
728 * one that was the only option for a later CRTC.
730 * If the layout changes and doesn't give us that in
731 * the future, we will need to have something smarter,
732 * but it works so far.
734 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
735 if (matching_channels) {
736 unsigned int channel = ffs(matching_channels) - 1;
738 new_vc4_crtc_state->assigned_channel = channel;
739 unassigned_channels &= ~BIT(channel);
745 ret = vc4_ctm_atomic_check(dev, state);
749 ret = drm_atomic_helper_check(dev, state);
753 return vc4_load_tracker_atomic_check(state);
756 static const struct drm_mode_config_funcs vc4_mode_funcs = {
757 .atomic_check = vc4_atomic_check,
758 .atomic_commit = vc4_atomic_commit,
759 .fb_create = vc4_fb_create,
762 int vc4_kms_load(struct drm_device *dev)
764 struct vc4_dev *vc4 = to_vc4_dev(dev);
765 bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
770 vc4->load_tracker_available = true;
772 /* Start with the load tracker enabled. Can be
773 * disabled through the debugfs load_tracker file.
775 vc4->load_tracker_enabled = true;
778 sema_init(&vc4->async_modeset, 1);
780 /* Set support for vblank irq fast disable, before drm_vblank_init() */
781 dev->vblank_disable_immediate = true;
783 dev->irq_enabled = true;
784 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
786 dev_err(dev->dev, "failed to initialize vblank\n");
791 dev->mode_config.max_width = 7680;
792 dev->mode_config.max_height = 7680;
794 dev->mode_config.max_width = 2048;
795 dev->mode_config.max_height = 2048;
798 dev->mode_config.funcs = &vc4_mode_funcs;
799 dev->mode_config.preferred_depth = 24;
800 dev->mode_config.async_page_flip = true;
801 dev->mode_config.allow_fb_modifiers = true;
803 ret = vc4_ctm_obj_init(vc4);
807 ret = vc4_load_tracker_obj_init(vc4);
811 drm_mode_config_reset(dev);
813 drm_kms_helper_poll_init(dev);