]> Git Repo - J-linux.git/blob - drivers/nvmem/core.c
sysctl: delete unused define SYSCTL_PERM_EMPTY_DIR
[J-linux.git] / drivers / nvmem / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <[email protected]>
6  * Copyright (C) 2013 Maxime Ripard <[email protected]>
7  */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23         struct module           *owner;
24         struct device           dev;
25         int                     stride;
26         int                     word_size;
27         int                     id;
28         struct kref             refcnt;
29         size_t                  size;
30         bool                    read_only;
31         bool                    root_only;
32         int                     flags;
33         enum nvmem_type         type;
34         struct bin_attribute    eeprom;
35         struct device           *base_dev;
36         struct list_head        cells;
37         const struct nvmem_keepout *keepout;
38         unsigned int            nkeepout;
39         nvmem_reg_read_t        reg_read;
40         nvmem_reg_write_t       reg_write;
41         struct gpio_desc        *wp_gpio;
42         struct nvmem_layout     *layout;
43         void *priv;
44 };
45
46 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
47
48 #define FLAG_COMPAT             BIT(0)
49 struct nvmem_cell_entry {
50         const char              *name;
51         int                     offset;
52         size_t                  raw_len;
53         int                     bytes;
54         int                     bit_offset;
55         int                     nbits;
56         nvmem_cell_post_process_t read_post_process;
57         void                    *priv;
58         struct device_node      *np;
59         struct nvmem_device     *nvmem;
60         struct list_head        node;
61 };
62
63 struct nvmem_cell {
64         struct nvmem_cell_entry *entry;
65         const char              *id;
66         int                     index;
67 };
68
69 static DEFINE_MUTEX(nvmem_mutex);
70 static DEFINE_IDA(nvmem_ida);
71
72 static DEFINE_MUTEX(nvmem_cell_mutex);
73 static LIST_HEAD(nvmem_cell_tables);
74
75 static DEFINE_MUTEX(nvmem_lookup_mutex);
76 static LIST_HEAD(nvmem_lookup_list);
77
78 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
79
80 static DEFINE_SPINLOCK(nvmem_layout_lock);
81 static LIST_HEAD(nvmem_layouts);
82
83 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
84                             void *val, size_t bytes)
85 {
86         if (nvmem->reg_read)
87                 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
88
89         return -EINVAL;
90 }
91
92 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
93                              void *val, size_t bytes)
94 {
95         int ret;
96
97         if (nvmem->reg_write) {
98                 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
99                 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
100                 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
101                 return ret;
102         }
103
104         return -EINVAL;
105 }
106
107 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
108                                       unsigned int offset, void *val,
109                                       size_t bytes, int write)
110 {
111
112         unsigned int end = offset + bytes;
113         unsigned int kend, ksize;
114         const struct nvmem_keepout *keepout = nvmem->keepout;
115         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
116         int rc;
117
118         /*
119          * Skip all keepouts before the range being accessed.
120          * Keepouts are sorted.
121          */
122         while ((keepout < keepoutend) && (keepout->end <= offset))
123                 keepout++;
124
125         while ((offset < end) && (keepout < keepoutend)) {
126                 /* Access the valid portion before the keepout. */
127                 if (offset < keepout->start) {
128                         kend = min(end, keepout->start);
129                         ksize = kend - offset;
130                         if (write)
131                                 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
132                         else
133                                 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
134
135                         if (rc)
136                                 return rc;
137
138                         offset += ksize;
139                         val += ksize;
140                 }
141
142                 /*
143                  * Now we're aligned to the start of this keepout zone. Go
144                  * through it.
145                  */
146                 kend = min(end, keepout->end);
147                 ksize = kend - offset;
148                 if (!write)
149                         memset(val, keepout->value, ksize);
150
151                 val += ksize;
152                 offset += ksize;
153                 keepout++;
154         }
155
156         /*
157          * If we ran out of keepouts but there's still stuff to do, send it
158          * down directly
159          */
160         if (offset < end) {
161                 ksize = end - offset;
162                 if (write)
163                         return __nvmem_reg_write(nvmem, offset, val, ksize);
164                 else
165                         return __nvmem_reg_read(nvmem, offset, val, ksize);
166         }
167
168         return 0;
169 }
170
171 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
172                           void *val, size_t bytes)
173 {
174         if (!nvmem->nkeepout)
175                 return __nvmem_reg_read(nvmem, offset, val, bytes);
176
177         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
178 }
179
180 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
181                            void *val, size_t bytes)
182 {
183         if (!nvmem->nkeepout)
184                 return __nvmem_reg_write(nvmem, offset, val, bytes);
185
186         return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
187 }
188
189 #ifdef CONFIG_NVMEM_SYSFS
190 static const char * const nvmem_type_str[] = {
191         [NVMEM_TYPE_UNKNOWN] = "Unknown",
192         [NVMEM_TYPE_EEPROM] = "EEPROM",
193         [NVMEM_TYPE_OTP] = "OTP",
194         [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
195         [NVMEM_TYPE_FRAM] = "FRAM",
196 };
197
198 #ifdef CONFIG_DEBUG_LOCK_ALLOC
199 static struct lock_class_key eeprom_lock_key;
200 #endif
201
202 static ssize_t type_show(struct device *dev,
203                          struct device_attribute *attr, char *buf)
204 {
205         struct nvmem_device *nvmem = to_nvmem_device(dev);
206
207         return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
208 }
209
210 static DEVICE_ATTR_RO(type);
211
212 static struct attribute *nvmem_attrs[] = {
213         &dev_attr_type.attr,
214         NULL,
215 };
216
217 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
218                                    struct bin_attribute *attr, char *buf,
219                                    loff_t pos, size_t count)
220 {
221         struct device *dev;
222         struct nvmem_device *nvmem;
223         int rc;
224
225         if (attr->private)
226                 dev = attr->private;
227         else
228                 dev = kobj_to_dev(kobj);
229         nvmem = to_nvmem_device(dev);
230
231         /* Stop the user from reading */
232         if (pos >= nvmem->size)
233                 return 0;
234
235         if (!IS_ALIGNED(pos, nvmem->stride))
236                 return -EINVAL;
237
238         if (count < nvmem->word_size)
239                 return -EINVAL;
240
241         if (pos + count > nvmem->size)
242                 count = nvmem->size - pos;
243
244         count = round_down(count, nvmem->word_size);
245
246         if (!nvmem->reg_read)
247                 return -EPERM;
248
249         rc = nvmem_reg_read(nvmem, pos, buf, count);
250
251         if (rc)
252                 return rc;
253
254         return count;
255 }
256
257 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
258                                     struct bin_attribute *attr, char *buf,
259                                     loff_t pos, size_t count)
260 {
261         struct device *dev;
262         struct nvmem_device *nvmem;
263         int rc;
264
265         if (attr->private)
266                 dev = attr->private;
267         else
268                 dev = kobj_to_dev(kobj);
269         nvmem = to_nvmem_device(dev);
270
271         /* Stop the user from writing */
272         if (pos >= nvmem->size)
273                 return -EFBIG;
274
275         if (!IS_ALIGNED(pos, nvmem->stride))
276                 return -EINVAL;
277
278         if (count < nvmem->word_size)
279                 return -EINVAL;
280
281         if (pos + count > nvmem->size)
282                 count = nvmem->size - pos;
283
284         count = round_down(count, nvmem->word_size);
285
286         if (!nvmem->reg_write)
287                 return -EPERM;
288
289         rc = nvmem_reg_write(nvmem, pos, buf, count);
290
291         if (rc)
292                 return rc;
293
294         return count;
295 }
296
297 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
298 {
299         umode_t mode = 0400;
300
301         if (!nvmem->root_only)
302                 mode |= 0044;
303
304         if (!nvmem->read_only)
305                 mode |= 0200;
306
307         if (!nvmem->reg_write)
308                 mode &= ~0200;
309
310         if (!nvmem->reg_read)
311                 mode &= ~0444;
312
313         return mode;
314 }
315
316 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
317                                          struct bin_attribute *attr, int i)
318 {
319         struct device *dev = kobj_to_dev(kobj);
320         struct nvmem_device *nvmem = to_nvmem_device(dev);
321
322         attr->size = nvmem->size;
323
324         return nvmem_bin_attr_get_umode(nvmem);
325 }
326
327 /* default read/write permissions */
328 static struct bin_attribute bin_attr_rw_nvmem = {
329         .attr   = {
330                 .name   = "nvmem",
331                 .mode   = 0644,
332         },
333         .read   = bin_attr_nvmem_read,
334         .write  = bin_attr_nvmem_write,
335 };
336
337 static struct bin_attribute *nvmem_bin_attributes[] = {
338         &bin_attr_rw_nvmem,
339         NULL,
340 };
341
342 static const struct attribute_group nvmem_bin_group = {
343         .bin_attrs      = nvmem_bin_attributes,
344         .attrs          = nvmem_attrs,
345         .is_bin_visible = nvmem_bin_attr_is_visible,
346 };
347
348 static const struct attribute_group *nvmem_dev_groups[] = {
349         &nvmem_bin_group,
350         NULL,
351 };
352
353 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
354         .attr   = {
355                 .name   = "eeprom",
356         },
357         .read   = bin_attr_nvmem_read,
358         .write  = bin_attr_nvmem_write,
359 };
360
361 /*
362  * nvmem_setup_compat() - Create an additional binary entry in
363  * drivers sys directory, to be backwards compatible with the older
364  * drivers/misc/eeprom drivers.
365  */
366 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
367                                     const struct nvmem_config *config)
368 {
369         int rval;
370
371         if (!config->compat)
372                 return 0;
373
374         if (!config->base_dev)
375                 return -EINVAL;
376
377         if (config->type == NVMEM_TYPE_FRAM)
378                 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
379
380         nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
381         nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
382         nvmem->eeprom.size = nvmem->size;
383 #ifdef CONFIG_DEBUG_LOCK_ALLOC
384         nvmem->eeprom.attr.key = &eeprom_lock_key;
385 #endif
386         nvmem->eeprom.private = &nvmem->dev;
387         nvmem->base_dev = config->base_dev;
388
389         rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
390         if (rval) {
391                 dev_err(&nvmem->dev,
392                         "Failed to create eeprom binary file %d\n", rval);
393                 return rval;
394         }
395
396         nvmem->flags |= FLAG_COMPAT;
397
398         return 0;
399 }
400
401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402                               const struct nvmem_config *config)
403 {
404         if (config->compat)
405                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
406 }
407
408 #else /* CONFIG_NVMEM_SYSFS */
409
410 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
411                                     const struct nvmem_config *config)
412 {
413         return -ENOSYS;
414 }
415 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
416                                       const struct nvmem_config *config)
417 {
418 }
419
420 #endif /* CONFIG_NVMEM_SYSFS */
421
422 static void nvmem_release(struct device *dev)
423 {
424         struct nvmem_device *nvmem = to_nvmem_device(dev);
425
426         ida_free(&nvmem_ida, nvmem->id);
427         gpiod_put(nvmem->wp_gpio);
428         kfree(nvmem);
429 }
430
431 static const struct device_type nvmem_provider_type = {
432         .release        = nvmem_release,
433 };
434
435 static struct bus_type nvmem_bus_type = {
436         .name           = "nvmem",
437 };
438
439 static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
440 {
441         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
442         mutex_lock(&nvmem_mutex);
443         list_del(&cell->node);
444         mutex_unlock(&nvmem_mutex);
445         of_node_put(cell->np);
446         kfree_const(cell->name);
447         kfree(cell);
448 }
449
450 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
451 {
452         struct nvmem_cell_entry *cell, *p;
453
454         list_for_each_entry_safe(cell, p, &nvmem->cells, node)
455                 nvmem_cell_entry_drop(cell);
456 }
457
458 static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
459 {
460         mutex_lock(&nvmem_mutex);
461         list_add_tail(&cell->node, &cell->nvmem->cells);
462         mutex_unlock(&nvmem_mutex);
463         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
464 }
465
466 static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
467                                                      const struct nvmem_cell_info *info,
468                                                      struct nvmem_cell_entry *cell)
469 {
470         cell->nvmem = nvmem;
471         cell->offset = info->offset;
472         cell->raw_len = info->raw_len ?: info->bytes;
473         cell->bytes = info->bytes;
474         cell->name = info->name;
475         cell->read_post_process = info->read_post_process;
476         cell->priv = info->priv;
477
478         cell->bit_offset = info->bit_offset;
479         cell->nbits = info->nbits;
480         cell->np = info->np;
481
482         if (cell->nbits)
483                 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
484                                            BITS_PER_BYTE);
485
486         if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
487                 dev_err(&nvmem->dev,
488                         "cell %s unaligned to nvmem stride %d\n",
489                         cell->name ?: "<unknown>", nvmem->stride);
490                 return -EINVAL;
491         }
492
493         return 0;
494 }
495
496 static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
497                                                const struct nvmem_cell_info *info,
498                                                struct nvmem_cell_entry *cell)
499 {
500         int err;
501
502         err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
503         if (err)
504                 return err;
505
506         cell->name = kstrdup_const(info->name, GFP_KERNEL);
507         if (!cell->name)
508                 return -ENOMEM;
509
510         return 0;
511 }
512
513 /**
514  * nvmem_add_one_cell() - Add one cell information to an nvmem device
515  *
516  * @nvmem: nvmem device to add cells to.
517  * @info: nvmem cell info to add to the device
518  *
519  * Return: 0 or negative error code on failure.
520  */
521 int nvmem_add_one_cell(struct nvmem_device *nvmem,
522                        const struct nvmem_cell_info *info)
523 {
524         struct nvmem_cell_entry *cell;
525         int rval;
526
527         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
528         if (!cell)
529                 return -ENOMEM;
530
531         rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
532         if (rval) {
533                 kfree(cell);
534                 return rval;
535         }
536
537         nvmem_cell_entry_add(cell);
538
539         return 0;
540 }
541 EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
542
543 /**
544  * nvmem_add_cells() - Add cell information to an nvmem device
545  *
546  * @nvmem: nvmem device to add cells to.
547  * @info: nvmem cell info to add to the device
548  * @ncells: number of cells in info
549  *
550  * Return: 0 or negative error code on failure.
551  */
552 static int nvmem_add_cells(struct nvmem_device *nvmem,
553                     const struct nvmem_cell_info *info,
554                     int ncells)
555 {
556         int i, rval;
557
558         for (i = 0; i < ncells; i++) {
559                 rval = nvmem_add_one_cell(nvmem, &info[i]);
560                 if (rval)
561                         return rval;
562         }
563
564         return 0;
565 }
566
567 /**
568  * nvmem_register_notifier() - Register a notifier block for nvmem events.
569  *
570  * @nb: notifier block to be called on nvmem events.
571  *
572  * Return: 0 on success, negative error number on failure.
573  */
574 int nvmem_register_notifier(struct notifier_block *nb)
575 {
576         return blocking_notifier_chain_register(&nvmem_notifier, nb);
577 }
578 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
579
580 /**
581  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
582  *
583  * @nb: notifier block to be unregistered.
584  *
585  * Return: 0 on success, negative error number on failure.
586  */
587 int nvmem_unregister_notifier(struct notifier_block *nb)
588 {
589         return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
590 }
591 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
592
593 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
594 {
595         const struct nvmem_cell_info *info;
596         struct nvmem_cell_table *table;
597         struct nvmem_cell_entry *cell;
598         int rval = 0, i;
599
600         mutex_lock(&nvmem_cell_mutex);
601         list_for_each_entry(table, &nvmem_cell_tables, node) {
602                 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
603                         for (i = 0; i < table->ncells; i++) {
604                                 info = &table->cells[i];
605
606                                 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
607                                 if (!cell) {
608                                         rval = -ENOMEM;
609                                         goto out;
610                                 }
611
612                                 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
613                                 if (rval) {
614                                         kfree(cell);
615                                         goto out;
616                                 }
617
618                                 nvmem_cell_entry_add(cell);
619                         }
620                 }
621         }
622
623 out:
624         mutex_unlock(&nvmem_cell_mutex);
625         return rval;
626 }
627
628 static struct nvmem_cell_entry *
629 nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
630 {
631         struct nvmem_cell_entry *iter, *cell = NULL;
632
633         mutex_lock(&nvmem_mutex);
634         list_for_each_entry(iter, &nvmem->cells, node) {
635                 if (strcmp(cell_id, iter->name) == 0) {
636                         cell = iter;
637                         break;
638                 }
639         }
640         mutex_unlock(&nvmem_mutex);
641
642         return cell;
643 }
644
645 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
646 {
647         unsigned int cur = 0;
648         const struct nvmem_keepout *keepout = nvmem->keepout;
649         const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
650
651         while (keepout < keepoutend) {
652                 /* Ensure keepouts are sorted and don't overlap. */
653                 if (keepout->start < cur) {
654                         dev_err(&nvmem->dev,
655                                 "Keepout regions aren't sorted or overlap.\n");
656
657                         return -ERANGE;
658                 }
659
660                 if (keepout->end < keepout->start) {
661                         dev_err(&nvmem->dev,
662                                 "Invalid keepout region.\n");
663
664                         return -EINVAL;
665                 }
666
667                 /*
668                  * Validate keepouts (and holes between) don't violate
669                  * word_size constraints.
670                  */
671                 if ((keepout->end - keepout->start < nvmem->word_size) ||
672                     ((keepout->start != cur) &&
673                      (keepout->start - cur < nvmem->word_size))) {
674
675                         dev_err(&nvmem->dev,
676                                 "Keepout regions violate word_size constraints.\n");
677
678                         return -ERANGE;
679                 }
680
681                 /* Validate keepouts don't violate stride (alignment). */
682                 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
683                     !IS_ALIGNED(keepout->end, nvmem->stride)) {
684
685                         dev_err(&nvmem->dev,
686                                 "Keepout regions violate stride.\n");
687
688                         return -EINVAL;
689                 }
690
691                 cur = keepout->end;
692                 keepout++;
693         }
694
695         return 0;
696 }
697
698 static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
699 {
700         struct nvmem_layout *layout = nvmem->layout;
701         struct device *dev = &nvmem->dev;
702         struct device_node *child;
703         const __be32 *addr;
704         int len, ret;
705
706         for_each_child_of_node(np, child) {
707                 struct nvmem_cell_info info = {0};
708
709                 addr = of_get_property(child, "reg", &len);
710                 if (!addr)
711                         continue;
712                 if (len < 2 * sizeof(u32)) {
713                         dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
714                         of_node_put(child);
715                         return -EINVAL;
716                 }
717
718                 info.offset = be32_to_cpup(addr++);
719                 info.bytes = be32_to_cpup(addr);
720                 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
721
722                 addr = of_get_property(child, "bits", &len);
723                 if (addr && len == (2 * sizeof(u32))) {
724                         info.bit_offset = be32_to_cpup(addr++);
725                         info.nbits = be32_to_cpup(addr);
726                 }
727
728                 info.np = of_node_get(child);
729
730                 if (layout && layout->fixup_cell_info)
731                         layout->fixup_cell_info(nvmem, layout, &info);
732
733                 ret = nvmem_add_one_cell(nvmem, &info);
734                 kfree(info.name);
735                 if (ret) {
736                         of_node_put(child);
737                         return ret;
738                 }
739         }
740
741         return 0;
742 }
743
744 static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
745 {
746         return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
747 }
748
749 static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
750 {
751         struct device_node *layout_np;
752         int err = 0;
753
754         layout_np = of_nvmem_layout_get_container(nvmem);
755         if (!layout_np)
756                 return 0;
757
758         if (of_device_is_compatible(layout_np, "fixed-layout"))
759                 err = nvmem_add_cells_from_dt(nvmem, layout_np);
760
761         of_node_put(layout_np);
762
763         return err;
764 }
765
766 int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
767 {
768         layout->owner = owner;
769
770         spin_lock(&nvmem_layout_lock);
771         list_add(&layout->node, &nvmem_layouts);
772         spin_unlock(&nvmem_layout_lock);
773
774         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_ADD, layout);
775
776         return 0;
777 }
778 EXPORT_SYMBOL_GPL(__nvmem_layout_register);
779
780 void nvmem_layout_unregister(struct nvmem_layout *layout)
781 {
782         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_LAYOUT_REMOVE, layout);
783
784         spin_lock(&nvmem_layout_lock);
785         list_del(&layout->node);
786         spin_unlock(&nvmem_layout_lock);
787 }
788 EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
789
790 static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
791 {
792         struct device_node *layout_np;
793         struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
794
795         layout_np = of_nvmem_layout_get_container(nvmem);
796         if (!layout_np)
797                 return NULL;
798
799         /* Fixed layouts don't have a matching driver */
800         if (of_device_is_compatible(layout_np, "fixed-layout")) {
801                 of_node_put(layout_np);
802                 return NULL;
803         }
804
805         /*
806          * In case the nvmem device was built-in while the layout was built as a
807          * module, we shall manually request the layout driver loading otherwise
808          * we'll never have any match.
809          */
810         of_request_module(layout_np);
811
812         spin_lock(&nvmem_layout_lock);
813
814         list_for_each_entry(l, &nvmem_layouts, node) {
815                 if (of_match_node(l->of_match_table, layout_np)) {
816                         if (try_module_get(l->owner))
817                                 layout = l;
818
819                         break;
820                 }
821         }
822
823         spin_unlock(&nvmem_layout_lock);
824         of_node_put(layout_np);
825
826         return layout;
827 }
828
829 static void nvmem_layout_put(struct nvmem_layout *layout)
830 {
831         if (layout)
832                 module_put(layout->owner);
833 }
834
835 static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
836 {
837         struct nvmem_layout *layout = nvmem->layout;
838         int ret;
839
840         if (layout && layout->add_cells) {
841                 ret = layout->add_cells(&nvmem->dev, nvmem, layout);
842                 if (ret)
843                         return ret;
844         }
845
846         return 0;
847 }
848
849 #if IS_ENABLED(CONFIG_OF)
850 /**
851  * of_nvmem_layout_get_container() - Get OF node to layout container.
852  *
853  * @nvmem: nvmem device.
854  *
855  * Return: a node pointer with refcount incremented or NULL if no
856  * container exists. Use of_node_put() on it when done.
857  */
858 struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
859 {
860         return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
861 }
862 EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
863 #endif
864
865 const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
866                                         struct nvmem_layout *layout)
867 {
868         struct device_node __maybe_unused *layout_np;
869         const struct of_device_id *match;
870
871         layout_np = of_nvmem_layout_get_container(nvmem);
872         match = of_match_node(layout->of_match_table, layout_np);
873
874         return match ? match->data : NULL;
875 }
876 EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
877
878 /**
879  * nvmem_register() - Register a nvmem device for given nvmem_config.
880  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
881  *
882  * @config: nvmem device configuration with which nvmem device is created.
883  *
884  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
885  * on success.
886  */
887
888 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
889 {
890         struct nvmem_device *nvmem;
891         int rval;
892
893         if (!config->dev)
894                 return ERR_PTR(-EINVAL);
895
896         if (!config->reg_read && !config->reg_write)
897                 return ERR_PTR(-EINVAL);
898
899         nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
900         if (!nvmem)
901                 return ERR_PTR(-ENOMEM);
902
903         rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
904         if (rval < 0) {
905                 kfree(nvmem);
906                 return ERR_PTR(rval);
907         }
908
909         nvmem->id = rval;
910
911         nvmem->dev.type = &nvmem_provider_type;
912         nvmem->dev.bus = &nvmem_bus_type;
913         nvmem->dev.parent = config->dev;
914
915         device_initialize(&nvmem->dev);
916
917         if (!config->ignore_wp)
918                 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
919                                                     GPIOD_OUT_HIGH);
920         if (IS_ERR(nvmem->wp_gpio)) {
921                 rval = PTR_ERR(nvmem->wp_gpio);
922                 nvmem->wp_gpio = NULL;
923                 goto err_put_device;
924         }
925
926         kref_init(&nvmem->refcnt);
927         INIT_LIST_HEAD(&nvmem->cells);
928
929         nvmem->owner = config->owner;
930         if (!nvmem->owner && config->dev->driver)
931                 nvmem->owner = config->dev->driver->owner;
932         nvmem->stride = config->stride ?: 1;
933         nvmem->word_size = config->word_size ?: 1;
934         nvmem->size = config->size;
935         nvmem->root_only = config->root_only;
936         nvmem->priv = config->priv;
937         nvmem->type = config->type;
938         nvmem->reg_read = config->reg_read;
939         nvmem->reg_write = config->reg_write;
940         nvmem->keepout = config->keepout;
941         nvmem->nkeepout = config->nkeepout;
942         if (config->of_node)
943                 nvmem->dev.of_node = config->of_node;
944         else
945                 nvmem->dev.of_node = config->dev->of_node;
946
947         switch (config->id) {
948         case NVMEM_DEVID_NONE:
949                 rval = dev_set_name(&nvmem->dev, "%s", config->name);
950                 break;
951         case NVMEM_DEVID_AUTO:
952                 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
953                 break;
954         default:
955                 rval = dev_set_name(&nvmem->dev, "%s%d",
956                              config->name ? : "nvmem",
957                              config->name ? config->id : nvmem->id);
958                 break;
959         }
960
961         if (rval)
962                 goto err_put_device;
963
964         nvmem->read_only = device_property_present(config->dev, "read-only") ||
965                            config->read_only || !nvmem->reg_write;
966
967 #ifdef CONFIG_NVMEM_SYSFS
968         nvmem->dev.groups = nvmem_dev_groups;
969 #endif
970
971         if (nvmem->nkeepout) {
972                 rval = nvmem_validate_keepouts(nvmem);
973                 if (rval)
974                         goto err_put_device;
975         }
976
977         if (config->compat) {
978                 rval = nvmem_sysfs_setup_compat(nvmem, config);
979                 if (rval)
980                         goto err_put_device;
981         }
982
983         /*
984          * If the driver supplied a layout by config->layout, the module
985          * pointer will be NULL and nvmem_layout_put() will be a noop.
986          */
987         nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
988         if (IS_ERR(nvmem->layout)) {
989                 rval = PTR_ERR(nvmem->layout);
990                 nvmem->layout = NULL;
991
992                 if (rval == -EPROBE_DEFER)
993                         goto err_teardown_compat;
994         }
995
996         if (config->cells) {
997                 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
998                 if (rval)
999                         goto err_remove_cells;
1000         }
1001
1002         rval = nvmem_add_cells_from_table(nvmem);
1003         if (rval)
1004                 goto err_remove_cells;
1005
1006         if (config->add_legacy_fixed_of_cells) {
1007                 rval = nvmem_add_cells_from_legacy_of(nvmem);
1008                 if (rval)
1009                         goto err_remove_cells;
1010         }
1011
1012         rval = nvmem_add_cells_from_fixed_layout(nvmem);
1013         if (rval)
1014                 goto err_remove_cells;
1015
1016         rval = nvmem_add_cells_from_layout(nvmem);
1017         if (rval)
1018                 goto err_remove_cells;
1019
1020         dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1021
1022         rval = device_add(&nvmem->dev);
1023         if (rval)
1024                 goto err_remove_cells;
1025
1026         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1027
1028         return nvmem;
1029
1030 err_remove_cells:
1031         nvmem_device_remove_all_cells(nvmem);
1032         nvmem_layout_put(nvmem->layout);
1033 err_teardown_compat:
1034         if (config->compat)
1035                 nvmem_sysfs_remove_compat(nvmem, config);
1036 err_put_device:
1037         put_device(&nvmem->dev);
1038
1039         return ERR_PTR(rval);
1040 }
1041 EXPORT_SYMBOL_GPL(nvmem_register);
1042
1043 static void nvmem_device_release(struct kref *kref)
1044 {
1045         struct nvmem_device *nvmem;
1046
1047         nvmem = container_of(kref, struct nvmem_device, refcnt);
1048
1049         blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1050
1051         if (nvmem->flags & FLAG_COMPAT)
1052                 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1053
1054         nvmem_device_remove_all_cells(nvmem);
1055         nvmem_layout_put(nvmem->layout);
1056         device_unregister(&nvmem->dev);
1057 }
1058
1059 /**
1060  * nvmem_unregister() - Unregister previously registered nvmem device
1061  *
1062  * @nvmem: Pointer to previously registered nvmem device.
1063  */
1064 void nvmem_unregister(struct nvmem_device *nvmem)
1065 {
1066         if (nvmem)
1067                 kref_put(&nvmem->refcnt, nvmem_device_release);
1068 }
1069 EXPORT_SYMBOL_GPL(nvmem_unregister);
1070
1071 static void devm_nvmem_unregister(void *nvmem)
1072 {
1073         nvmem_unregister(nvmem);
1074 }
1075
1076 /**
1077  * devm_nvmem_register() - Register a managed nvmem device for given
1078  * nvmem_config.
1079  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1080  *
1081  * @dev: Device that uses the nvmem device.
1082  * @config: nvmem device configuration with which nvmem device is created.
1083  *
1084  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1085  * on success.
1086  */
1087 struct nvmem_device *devm_nvmem_register(struct device *dev,
1088                                          const struct nvmem_config *config)
1089 {
1090         struct nvmem_device *nvmem;
1091         int ret;
1092
1093         nvmem = nvmem_register(config);
1094         if (IS_ERR(nvmem))
1095                 return nvmem;
1096
1097         ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1098         if (ret)
1099                 return ERR_PTR(ret);
1100
1101         return nvmem;
1102 }
1103 EXPORT_SYMBOL_GPL(devm_nvmem_register);
1104
1105 static struct nvmem_device *__nvmem_device_get(void *data,
1106                         int (*match)(struct device *dev, const void *data))
1107 {
1108         struct nvmem_device *nvmem = NULL;
1109         struct device *dev;
1110
1111         mutex_lock(&nvmem_mutex);
1112         dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1113         if (dev)
1114                 nvmem = to_nvmem_device(dev);
1115         mutex_unlock(&nvmem_mutex);
1116         if (!nvmem)
1117                 return ERR_PTR(-EPROBE_DEFER);
1118
1119         if (!try_module_get(nvmem->owner)) {
1120                 dev_err(&nvmem->dev,
1121                         "could not increase module refcount for cell %s\n",
1122                         nvmem_dev_name(nvmem));
1123
1124                 put_device(&nvmem->dev);
1125                 return ERR_PTR(-EINVAL);
1126         }
1127
1128         kref_get(&nvmem->refcnt);
1129
1130         return nvmem;
1131 }
1132
1133 static void __nvmem_device_put(struct nvmem_device *nvmem)
1134 {
1135         put_device(&nvmem->dev);
1136         module_put(nvmem->owner);
1137         kref_put(&nvmem->refcnt, nvmem_device_release);
1138 }
1139
1140 #if IS_ENABLED(CONFIG_OF)
1141 /**
1142  * of_nvmem_device_get() - Get nvmem device from a given id
1143  *
1144  * @np: Device tree node that uses the nvmem device.
1145  * @id: nvmem name from nvmem-names property.
1146  *
1147  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1148  * on success.
1149  */
1150 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1151 {
1152
1153         struct device_node *nvmem_np;
1154         struct nvmem_device *nvmem;
1155         int index = 0;
1156
1157         if (id)
1158                 index = of_property_match_string(np, "nvmem-names", id);
1159
1160         nvmem_np = of_parse_phandle(np, "nvmem", index);
1161         if (!nvmem_np)
1162                 return ERR_PTR(-ENOENT);
1163
1164         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1165         of_node_put(nvmem_np);
1166         return nvmem;
1167 }
1168 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1169 #endif
1170
1171 /**
1172  * nvmem_device_get() - Get nvmem device from a given id
1173  *
1174  * @dev: Device that uses the nvmem device.
1175  * @dev_name: name of the requested nvmem device.
1176  *
1177  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1178  * on success.
1179  */
1180 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1181 {
1182         if (dev->of_node) { /* try dt first */
1183                 struct nvmem_device *nvmem;
1184
1185                 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1186
1187                 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1188                         return nvmem;
1189
1190         }
1191
1192         return __nvmem_device_get((void *)dev_name, device_match_name);
1193 }
1194 EXPORT_SYMBOL_GPL(nvmem_device_get);
1195
1196 /**
1197  * nvmem_device_find() - Find nvmem device with matching function
1198  *
1199  * @data: Data to pass to match function
1200  * @match: Callback function to check device
1201  *
1202  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1203  * on success.
1204  */
1205 struct nvmem_device *nvmem_device_find(void *data,
1206                         int (*match)(struct device *dev, const void *data))
1207 {
1208         return __nvmem_device_get(data, match);
1209 }
1210 EXPORT_SYMBOL_GPL(nvmem_device_find);
1211
1212 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1213 {
1214         struct nvmem_device **nvmem = res;
1215
1216         if (WARN_ON(!nvmem || !*nvmem))
1217                 return 0;
1218
1219         return *nvmem == data;
1220 }
1221
1222 static void devm_nvmem_device_release(struct device *dev, void *res)
1223 {
1224         nvmem_device_put(*(struct nvmem_device **)res);
1225 }
1226
1227 /**
1228  * devm_nvmem_device_put() - put alredy got nvmem device
1229  *
1230  * @dev: Device that uses the nvmem device.
1231  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1232  * that needs to be released.
1233  */
1234 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1235 {
1236         int ret;
1237
1238         ret = devres_release(dev, devm_nvmem_device_release,
1239                              devm_nvmem_device_match, nvmem);
1240
1241         WARN_ON(ret);
1242 }
1243 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1244
1245 /**
1246  * nvmem_device_put() - put alredy got nvmem device
1247  *
1248  * @nvmem: pointer to nvmem device that needs to be released.
1249  */
1250 void nvmem_device_put(struct nvmem_device *nvmem)
1251 {
1252         __nvmem_device_put(nvmem);
1253 }
1254 EXPORT_SYMBOL_GPL(nvmem_device_put);
1255
1256 /**
1257  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1258  *
1259  * @dev: Device that requests the nvmem device.
1260  * @id: name id for the requested nvmem device.
1261  *
1262  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1263  * on success.  The nvmem_cell will be freed by the automatically once the
1264  * device is freed.
1265  */
1266 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1267 {
1268         struct nvmem_device **ptr, *nvmem;
1269
1270         ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1271         if (!ptr)
1272                 return ERR_PTR(-ENOMEM);
1273
1274         nvmem = nvmem_device_get(dev, id);
1275         if (!IS_ERR(nvmem)) {
1276                 *ptr = nvmem;
1277                 devres_add(dev, ptr);
1278         } else {
1279                 devres_free(ptr);
1280         }
1281
1282         return nvmem;
1283 }
1284 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1285
1286 static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1287                                             const char *id, int index)
1288 {
1289         struct nvmem_cell *cell;
1290         const char *name = NULL;
1291
1292         cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1293         if (!cell)
1294                 return ERR_PTR(-ENOMEM);
1295
1296         if (id) {
1297                 name = kstrdup_const(id, GFP_KERNEL);
1298                 if (!name) {
1299                         kfree(cell);
1300                         return ERR_PTR(-ENOMEM);
1301                 }
1302         }
1303
1304         cell->id = name;
1305         cell->entry = entry;
1306         cell->index = index;
1307
1308         return cell;
1309 }
1310
1311 static struct nvmem_cell *
1312 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1313 {
1314         struct nvmem_cell_entry *cell_entry;
1315         struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1316         struct nvmem_cell_lookup *lookup;
1317         struct nvmem_device *nvmem;
1318         const char *dev_id;
1319
1320         if (!dev)
1321                 return ERR_PTR(-EINVAL);
1322
1323         dev_id = dev_name(dev);
1324
1325         mutex_lock(&nvmem_lookup_mutex);
1326
1327         list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1328                 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1329                     (strcmp(lookup->con_id, con_id) == 0)) {
1330                         /* This is the right entry. */
1331                         nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1332                                                    device_match_name);
1333                         if (IS_ERR(nvmem)) {
1334                                 /* Provider may not be registered yet. */
1335                                 cell = ERR_CAST(nvmem);
1336                                 break;
1337                         }
1338
1339                         cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1340                                                                    lookup->cell_name);
1341                         if (!cell_entry) {
1342                                 __nvmem_device_put(nvmem);
1343                                 cell = ERR_PTR(-ENOENT);
1344                         } else {
1345                                 cell = nvmem_create_cell(cell_entry, con_id, 0);
1346                                 if (IS_ERR(cell))
1347                                         __nvmem_device_put(nvmem);
1348                         }
1349                         break;
1350                 }
1351         }
1352
1353         mutex_unlock(&nvmem_lookup_mutex);
1354         return cell;
1355 }
1356
1357 #if IS_ENABLED(CONFIG_OF)
1358 static struct nvmem_cell_entry *
1359 nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1360 {
1361         struct nvmem_cell_entry *iter, *cell = NULL;
1362
1363         mutex_lock(&nvmem_mutex);
1364         list_for_each_entry(iter, &nvmem->cells, node) {
1365                 if (np == iter->np) {
1366                         cell = iter;
1367                         break;
1368                 }
1369         }
1370         mutex_unlock(&nvmem_mutex);
1371
1372         return cell;
1373 }
1374
1375 /**
1376  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1377  *
1378  * @np: Device tree node that uses the nvmem cell.
1379  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1380  *      for the cell at index 0 (the lone cell with no accompanying
1381  *      nvmem-cell-names property).
1382  *
1383  * Return: Will be an ERR_PTR() on error or a valid pointer
1384  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1385  * nvmem_cell_put().
1386  */
1387 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1388 {
1389         struct device_node *cell_np, *nvmem_np;
1390         struct nvmem_device *nvmem;
1391         struct nvmem_cell_entry *cell_entry;
1392         struct nvmem_cell *cell;
1393         struct of_phandle_args cell_spec;
1394         int index = 0;
1395         int cell_index = 0;
1396         int ret;
1397
1398         /* if cell name exists, find index to the name */
1399         if (id)
1400                 index = of_property_match_string(np, "nvmem-cell-names", id);
1401
1402         ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1403                                                   "#nvmem-cell-cells",
1404                                                   index, &cell_spec);
1405         if (ret)
1406                 return ERR_PTR(-ENOENT);
1407
1408         if (cell_spec.args_count > 1)
1409                 return ERR_PTR(-EINVAL);
1410
1411         cell_np = cell_spec.np;
1412         if (cell_spec.args_count)
1413                 cell_index = cell_spec.args[0];
1414
1415         nvmem_np = of_get_parent(cell_np);
1416         if (!nvmem_np) {
1417                 of_node_put(cell_np);
1418                 return ERR_PTR(-EINVAL);
1419         }
1420
1421         /* nvmem layouts produce cells within the nvmem-layout container */
1422         if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1423                 nvmem_np = of_get_next_parent(nvmem_np);
1424                 if (!nvmem_np) {
1425                         of_node_put(cell_np);
1426                         return ERR_PTR(-EINVAL);
1427                 }
1428         }
1429
1430         nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1431         of_node_put(nvmem_np);
1432         if (IS_ERR(nvmem)) {
1433                 of_node_put(cell_np);
1434                 return ERR_CAST(nvmem);
1435         }
1436
1437         cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1438         of_node_put(cell_np);
1439         if (!cell_entry) {
1440                 __nvmem_device_put(nvmem);
1441                 return ERR_PTR(-ENOENT);
1442         }
1443
1444         cell = nvmem_create_cell(cell_entry, id, cell_index);
1445         if (IS_ERR(cell))
1446                 __nvmem_device_put(nvmem);
1447
1448         return cell;
1449 }
1450 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1451 #endif
1452
1453 /**
1454  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1455  *
1456  * @dev: Device that requests the nvmem cell.
1457  * @id: nvmem cell name to get (this corresponds with the name from the
1458  *      nvmem-cell-names property for DT systems and with the con_id from
1459  *      the lookup entry for non-DT systems).
1460  *
1461  * Return: Will be an ERR_PTR() on error or a valid pointer
1462  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1463  * nvmem_cell_put().
1464  */
1465 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1466 {
1467         struct nvmem_cell *cell;
1468
1469         if (dev->of_node) { /* try dt first */
1470                 cell = of_nvmem_cell_get(dev->of_node, id);
1471                 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1472                         return cell;
1473         }
1474
1475         /* NULL cell id only allowed for device tree; invalid otherwise */
1476         if (!id)
1477                 return ERR_PTR(-EINVAL);
1478
1479         return nvmem_cell_get_from_lookup(dev, id);
1480 }
1481 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1482
1483 static void devm_nvmem_cell_release(struct device *dev, void *res)
1484 {
1485         nvmem_cell_put(*(struct nvmem_cell **)res);
1486 }
1487
1488 /**
1489  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1490  *
1491  * @dev: Device that requests the nvmem cell.
1492  * @id: nvmem cell name id to get.
1493  *
1494  * Return: Will be an ERR_PTR() on error or a valid pointer
1495  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1496  * automatically once the device is freed.
1497  */
1498 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1499 {
1500         struct nvmem_cell **ptr, *cell;
1501
1502         ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1503         if (!ptr)
1504                 return ERR_PTR(-ENOMEM);
1505
1506         cell = nvmem_cell_get(dev, id);
1507         if (!IS_ERR(cell)) {
1508                 *ptr = cell;
1509                 devres_add(dev, ptr);
1510         } else {
1511                 devres_free(ptr);
1512         }
1513
1514         return cell;
1515 }
1516 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1517
1518 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1519 {
1520         struct nvmem_cell **c = res;
1521
1522         if (WARN_ON(!c || !*c))
1523                 return 0;
1524
1525         return *c == data;
1526 }
1527
1528 /**
1529  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1530  * from devm_nvmem_cell_get.
1531  *
1532  * @dev: Device that requests the nvmem cell.
1533  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1534  */
1535 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1536 {
1537         int ret;
1538
1539         ret = devres_release(dev, devm_nvmem_cell_release,
1540                                 devm_nvmem_cell_match, cell);
1541
1542         WARN_ON(ret);
1543 }
1544 EXPORT_SYMBOL(devm_nvmem_cell_put);
1545
1546 /**
1547  * nvmem_cell_put() - Release previously allocated nvmem cell.
1548  *
1549  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1550  */
1551 void nvmem_cell_put(struct nvmem_cell *cell)
1552 {
1553         struct nvmem_device *nvmem = cell->entry->nvmem;
1554
1555         if (cell->id)
1556                 kfree_const(cell->id);
1557
1558         kfree(cell);
1559         __nvmem_device_put(nvmem);
1560 }
1561 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1562
1563 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1564 {
1565         u8 *p, *b;
1566         int i, extra, bit_offset = cell->bit_offset;
1567
1568         p = b = buf;
1569         if (bit_offset) {
1570                 /* First shift */
1571                 *b++ >>= bit_offset;
1572
1573                 /* setup rest of the bytes if any */
1574                 for (i = 1; i < cell->bytes; i++) {
1575                         /* Get bits from next byte and shift them towards msb */
1576                         *p |= *b << (BITS_PER_BYTE - bit_offset);
1577
1578                         p = b;
1579                         *b++ >>= bit_offset;
1580                 }
1581         } else {
1582                 /* point to the msb */
1583                 p += cell->bytes - 1;
1584         }
1585
1586         /* result fits in less bytes */
1587         extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1588         while (--extra >= 0)
1589                 *p-- = 0;
1590
1591         /* clear msb bits if any leftover in the last byte */
1592         if (cell->nbits % BITS_PER_BYTE)
1593                 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1594 }
1595
1596 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1597                              struct nvmem_cell_entry *cell,
1598                              void *buf, size_t *len, const char *id, int index)
1599 {
1600         int rc;
1601
1602         rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1603
1604         if (rc)
1605                 return rc;
1606
1607         /* shift bits in-place */
1608         if (cell->bit_offset || cell->nbits)
1609                 nvmem_shift_read_buffer_in_place(cell, buf);
1610
1611         if (cell->read_post_process) {
1612                 rc = cell->read_post_process(cell->priv, id, index,
1613                                              cell->offset, buf, cell->raw_len);
1614                 if (rc)
1615                         return rc;
1616         }
1617
1618         if (len)
1619                 *len = cell->bytes;
1620
1621         return 0;
1622 }
1623
1624 /**
1625  * nvmem_cell_read() - Read a given nvmem cell
1626  *
1627  * @cell: nvmem cell to be read.
1628  * @len: pointer to length of cell which will be populated on successful read;
1629  *       can be NULL.
1630  *
1631  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1632  * buffer should be freed by the consumer with a kfree().
1633  */
1634 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1635 {
1636         struct nvmem_cell_entry *entry = cell->entry;
1637         struct nvmem_device *nvmem = entry->nvmem;
1638         u8 *buf;
1639         int rc;
1640
1641         if (!nvmem)
1642                 return ERR_PTR(-EINVAL);
1643
1644         buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1645         if (!buf)
1646                 return ERR_PTR(-ENOMEM);
1647
1648         rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1649         if (rc) {
1650                 kfree(buf);
1651                 return ERR_PTR(rc);
1652         }
1653
1654         return buf;
1655 }
1656 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1657
1658 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1659                                              u8 *_buf, int len)
1660 {
1661         struct nvmem_device *nvmem = cell->nvmem;
1662         int i, rc, nbits, bit_offset = cell->bit_offset;
1663         u8 v, *p, *buf, *b, pbyte, pbits;
1664
1665         nbits = cell->nbits;
1666         buf = kzalloc(cell->bytes, GFP_KERNEL);
1667         if (!buf)
1668                 return ERR_PTR(-ENOMEM);
1669
1670         memcpy(buf, _buf, len);
1671         p = b = buf;
1672
1673         if (bit_offset) {
1674                 pbyte = *b;
1675                 *b <<= bit_offset;
1676
1677                 /* setup the first byte with lsb bits from nvmem */
1678                 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1679                 if (rc)
1680                         goto err;
1681                 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1682
1683                 /* setup rest of the byte if any */
1684                 for (i = 1; i < cell->bytes; i++) {
1685                         /* Get last byte bits and shift them towards lsb */
1686                         pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1687                         pbyte = *b;
1688                         p = b;
1689                         *b <<= bit_offset;
1690                         *b++ |= pbits;
1691                 }
1692         }
1693
1694         /* if it's not end on byte boundary */
1695         if ((nbits + bit_offset) % BITS_PER_BYTE) {
1696                 /* setup the last byte with msb bits from nvmem */
1697                 rc = nvmem_reg_read(nvmem,
1698                                     cell->offset + cell->bytes - 1, &v, 1);
1699                 if (rc)
1700                         goto err;
1701                 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1702
1703         }
1704
1705         return buf;
1706 err:
1707         kfree(buf);
1708         return ERR_PTR(rc);
1709 }
1710
1711 static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1712 {
1713         struct nvmem_device *nvmem = cell->nvmem;
1714         int rc;
1715
1716         if (!nvmem || nvmem->read_only ||
1717             (cell->bit_offset == 0 && len != cell->bytes))
1718                 return -EINVAL;
1719
1720         /*
1721          * Any cells which have a read_post_process hook are read-only because
1722          * we cannot reverse the operation and it might affect other cells,
1723          * too.
1724          */
1725         if (cell->read_post_process)
1726                 return -EINVAL;
1727
1728         if (cell->bit_offset || cell->nbits) {
1729                 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1730                 if (IS_ERR(buf))
1731                         return PTR_ERR(buf);
1732         }
1733
1734         rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1735
1736         /* free the tmp buffer */
1737         if (cell->bit_offset || cell->nbits)
1738                 kfree(buf);
1739
1740         if (rc)
1741                 return rc;
1742
1743         return len;
1744 }
1745
1746 /**
1747  * nvmem_cell_write() - Write to a given nvmem cell
1748  *
1749  * @cell: nvmem cell to be written.
1750  * @buf: Buffer to be written.
1751  * @len: length of buffer to be written to nvmem cell.
1752  *
1753  * Return: length of bytes written or negative on failure.
1754  */
1755 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1756 {
1757         return __nvmem_cell_entry_write(cell->entry, buf, len);
1758 }
1759
1760 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1761
1762 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1763                                   void *val, size_t count)
1764 {
1765         struct nvmem_cell *cell;
1766         void *buf;
1767         size_t len;
1768
1769         cell = nvmem_cell_get(dev, cell_id);
1770         if (IS_ERR(cell))
1771                 return PTR_ERR(cell);
1772
1773         buf = nvmem_cell_read(cell, &len);
1774         if (IS_ERR(buf)) {
1775                 nvmem_cell_put(cell);
1776                 return PTR_ERR(buf);
1777         }
1778         if (len != count) {
1779                 kfree(buf);
1780                 nvmem_cell_put(cell);
1781                 return -EINVAL;
1782         }
1783         memcpy(val, buf, count);
1784         kfree(buf);
1785         nvmem_cell_put(cell);
1786
1787         return 0;
1788 }
1789
1790 /**
1791  * nvmem_cell_read_u8() - Read a cell value as a u8
1792  *
1793  * @dev: Device that requests the nvmem cell.
1794  * @cell_id: Name of nvmem cell to read.
1795  * @val: pointer to output value.
1796  *
1797  * Return: 0 on success or negative errno.
1798  */
1799 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1800 {
1801         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1802 }
1803 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1804
1805 /**
1806  * nvmem_cell_read_u16() - Read a cell value as a u16
1807  *
1808  * @dev: Device that requests the nvmem cell.
1809  * @cell_id: Name of nvmem cell to read.
1810  * @val: pointer to output value.
1811  *
1812  * Return: 0 on success or negative errno.
1813  */
1814 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1815 {
1816         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1817 }
1818 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1819
1820 /**
1821  * nvmem_cell_read_u32() - Read a cell value as a u32
1822  *
1823  * @dev: Device that requests the nvmem cell.
1824  * @cell_id: Name of nvmem cell to read.
1825  * @val: pointer to output value.
1826  *
1827  * Return: 0 on success or negative errno.
1828  */
1829 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1830 {
1831         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1832 }
1833 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1834
1835 /**
1836  * nvmem_cell_read_u64() - Read a cell value as a u64
1837  *
1838  * @dev: Device that requests the nvmem cell.
1839  * @cell_id: Name of nvmem cell to read.
1840  * @val: pointer to output value.
1841  *
1842  * Return: 0 on success or negative errno.
1843  */
1844 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1845 {
1846         return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1847 }
1848 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1849
1850 static const void *nvmem_cell_read_variable_common(struct device *dev,
1851                                                    const char *cell_id,
1852                                                    size_t max_len, size_t *len)
1853 {
1854         struct nvmem_cell *cell;
1855         int nbits;
1856         void *buf;
1857
1858         cell = nvmem_cell_get(dev, cell_id);
1859         if (IS_ERR(cell))
1860                 return cell;
1861
1862         nbits = cell->entry->nbits;
1863         buf = nvmem_cell_read(cell, len);
1864         nvmem_cell_put(cell);
1865         if (IS_ERR(buf))
1866                 return buf;
1867
1868         /*
1869          * If nbits is set then nvmem_cell_read() can significantly exaggerate
1870          * the length of the real data. Throw away the extra junk.
1871          */
1872         if (nbits)
1873                 *len = DIV_ROUND_UP(nbits, 8);
1874
1875         if (*len > max_len) {
1876                 kfree(buf);
1877                 return ERR_PTR(-ERANGE);
1878         }
1879
1880         return buf;
1881 }
1882
1883 /**
1884  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1885  *
1886  * @dev: Device that requests the nvmem cell.
1887  * @cell_id: Name of nvmem cell to read.
1888  * @val: pointer to output value.
1889  *
1890  * Return: 0 on success or negative errno.
1891  */
1892 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1893                                     u32 *val)
1894 {
1895         size_t len;
1896         const u8 *buf;
1897         int i;
1898
1899         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1900         if (IS_ERR(buf))
1901                 return PTR_ERR(buf);
1902
1903         /* Copy w/ implicit endian conversion */
1904         *val = 0;
1905         for (i = 0; i < len; i++)
1906                 *val |= buf[i] << (8 * i);
1907
1908         kfree(buf);
1909
1910         return 0;
1911 }
1912 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1913
1914 /**
1915  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1916  *
1917  * @dev: Device that requests the nvmem cell.
1918  * @cell_id: Name of nvmem cell to read.
1919  * @val: pointer to output value.
1920  *
1921  * Return: 0 on success or negative errno.
1922  */
1923 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1924                                     u64 *val)
1925 {
1926         size_t len;
1927         const u8 *buf;
1928         int i;
1929
1930         buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1931         if (IS_ERR(buf))
1932                 return PTR_ERR(buf);
1933
1934         /* Copy w/ implicit endian conversion */
1935         *val = 0;
1936         for (i = 0; i < len; i++)
1937                 *val |= (uint64_t)buf[i] << (8 * i);
1938
1939         kfree(buf);
1940
1941         return 0;
1942 }
1943 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1944
1945 /**
1946  * nvmem_device_cell_read() - Read a given nvmem device and cell
1947  *
1948  * @nvmem: nvmem device to read from.
1949  * @info: nvmem cell info to be read.
1950  * @buf: buffer pointer which will be populated on successful read.
1951  *
1952  * Return: length of successful bytes read on success and negative
1953  * error code on error.
1954  */
1955 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1956                            struct nvmem_cell_info *info, void *buf)
1957 {
1958         struct nvmem_cell_entry cell;
1959         int rc;
1960         ssize_t len;
1961
1962         if (!nvmem)
1963                 return -EINVAL;
1964
1965         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1966         if (rc)
1967                 return rc;
1968
1969         rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1970         if (rc)
1971                 return rc;
1972
1973         return len;
1974 }
1975 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1976
1977 /**
1978  * nvmem_device_cell_write() - Write cell to a given nvmem device
1979  *
1980  * @nvmem: nvmem device to be written to.
1981  * @info: nvmem cell info to be written.
1982  * @buf: buffer to be written to cell.
1983  *
1984  * Return: length of bytes written or negative error code on failure.
1985  */
1986 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1987                             struct nvmem_cell_info *info, void *buf)
1988 {
1989         struct nvmem_cell_entry cell;
1990         int rc;
1991
1992         if (!nvmem)
1993                 return -EINVAL;
1994
1995         rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1996         if (rc)
1997                 return rc;
1998
1999         return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
2000 }
2001 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
2002
2003 /**
2004  * nvmem_device_read() - Read from a given nvmem device
2005  *
2006  * @nvmem: nvmem device to read from.
2007  * @offset: offset in nvmem device.
2008  * @bytes: number of bytes to read.
2009  * @buf: buffer pointer which will be populated on successful read.
2010  *
2011  * Return: length of successful bytes read on success and negative
2012  * error code on error.
2013  */
2014 int nvmem_device_read(struct nvmem_device *nvmem,
2015                       unsigned int offset,
2016                       size_t bytes, void *buf)
2017 {
2018         int rc;
2019
2020         if (!nvmem)
2021                 return -EINVAL;
2022
2023         rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2024
2025         if (rc)
2026                 return rc;
2027
2028         return bytes;
2029 }
2030 EXPORT_SYMBOL_GPL(nvmem_device_read);
2031
2032 /**
2033  * nvmem_device_write() - Write cell to a given nvmem device
2034  *
2035  * @nvmem: nvmem device to be written to.
2036  * @offset: offset in nvmem device.
2037  * @bytes: number of bytes to write.
2038  * @buf: buffer to be written.
2039  *
2040  * Return: length of bytes written or negative error code on failure.
2041  */
2042 int nvmem_device_write(struct nvmem_device *nvmem,
2043                        unsigned int offset,
2044                        size_t bytes, void *buf)
2045 {
2046         int rc;
2047
2048         if (!nvmem)
2049                 return -EINVAL;
2050
2051         rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2052
2053         if (rc)
2054                 return rc;
2055
2056
2057         return bytes;
2058 }
2059 EXPORT_SYMBOL_GPL(nvmem_device_write);
2060
2061 /**
2062  * nvmem_add_cell_table() - register a table of cell info entries
2063  *
2064  * @table: table of cell info entries
2065  */
2066 void nvmem_add_cell_table(struct nvmem_cell_table *table)
2067 {
2068         mutex_lock(&nvmem_cell_mutex);
2069         list_add_tail(&table->node, &nvmem_cell_tables);
2070         mutex_unlock(&nvmem_cell_mutex);
2071 }
2072 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2073
2074 /**
2075  * nvmem_del_cell_table() - remove a previously registered cell info table
2076  *
2077  * @table: table of cell info entries
2078  */
2079 void nvmem_del_cell_table(struct nvmem_cell_table *table)
2080 {
2081         mutex_lock(&nvmem_cell_mutex);
2082         list_del(&table->node);
2083         mutex_unlock(&nvmem_cell_mutex);
2084 }
2085 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2086
2087 /**
2088  * nvmem_add_cell_lookups() - register a list of cell lookup entries
2089  *
2090  * @entries: array of cell lookup entries
2091  * @nentries: number of cell lookup entries in the array
2092  */
2093 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2094 {
2095         int i;
2096
2097         mutex_lock(&nvmem_lookup_mutex);
2098         for (i = 0; i < nentries; i++)
2099                 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2100         mutex_unlock(&nvmem_lookup_mutex);
2101 }
2102 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2103
2104 /**
2105  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2106  *                            entries
2107  *
2108  * @entries: array of cell lookup entries
2109  * @nentries: number of cell lookup entries in the array
2110  */
2111 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2112 {
2113         int i;
2114
2115         mutex_lock(&nvmem_lookup_mutex);
2116         for (i = 0; i < nentries; i++)
2117                 list_del(&entries[i].node);
2118         mutex_unlock(&nvmem_lookup_mutex);
2119 }
2120 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2121
2122 /**
2123  * nvmem_dev_name() - Get the name of a given nvmem device.
2124  *
2125  * @nvmem: nvmem device.
2126  *
2127  * Return: name of the nvmem device.
2128  */
2129 const char *nvmem_dev_name(struct nvmem_device *nvmem)
2130 {
2131         return dev_name(&nvmem->dev);
2132 }
2133 EXPORT_SYMBOL_GPL(nvmem_dev_name);
2134
2135 static int __init nvmem_init(void)
2136 {
2137         return bus_register(&nvmem_bus_type);
2138 }
2139
2140 static void __exit nvmem_exit(void)
2141 {
2142         bus_unregister(&nvmem_bus_type);
2143 }
2144
2145 subsys_initcall(nvmem_init);
2146 module_exit(nvmem_exit);
2147
2148 MODULE_AUTHOR("Srinivas Kandagatla <[email protected]");
2149 MODULE_AUTHOR("Maxime Ripard <[email protected]");
2150 MODULE_DESCRIPTION("nvmem Driver Core");
This page took 0.149866 seconds and 4 git commands to generate.