]>
Commit | Line | Data |
---|---|---|
c8d8b6d3 BRF |
1 | /* Adapted for log2 by Ulrich Drepper <[email protected]>. */ |
2 | /* | |
3 | * ==================================================== | |
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 | * | |
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | |
7 | * Permission to use, copy, modify, and distribute this | |
8 | * software is freely granted, provided that this notice | |
9 | * is preserved. | |
10 | * ==================================================== | |
11 | */ | |
12 | ||
13 | /* __ieee754_log2(x) | |
14 | * Return the logarithm to base 2 of x | |
15 | * | |
16 | * Method : | |
17 | * 1. Argument Reduction: find k and f such that | |
18 | * x = 2^k * (1+f), | |
19 | * where sqrt(2)/2 < 1+f < sqrt(2) . | |
20 | * | |
21 | * 2. Approximation of log(1+f). | |
22 | * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) | |
23 | * = 2s + 2/3 s**3 + 2/5 s**5 + ....., | |
24 | * = 2s + s*R | |
25 | * We use a special Reme algorithm on [0,0.1716] to generate | |
26 | * a polynomial of degree 14 to approximate R The maximum error | |
27 | * of this polynomial approximation is bounded by 2**-58.45. In | |
28 | * other words, | |
29 | * 2 4 6 8 10 12 14 | |
30 | * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s | |
31 | * (the values of Lg1 to Lg7 are listed in the program) | |
32 | * and | |
33 | * | 2 14 | -58.45 | |
34 | * | Lg1*s +...+Lg7*s - R(z) | <= 2 | |
35 | * | | | |
36 | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. | |
37 | * In order to guarantee error in log below 1ulp, we compute log | |
38 | * by | |
39 | * log(1+f) = f - s*(f - R) (if f is not too large) | |
40 | * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) | |
41 | * | |
42 | * 3. Finally, log(x) = k + log(1+f). | |
43 | * = k+(f-(hfsq-(s*(hfsq+R)))) | |
44 | * | |
45 | * Special cases: | |
46 | * log2(x) is NaN with signal if x < 0 (including -INF) ; | |
47 | * log2(+INF) is +INF; log(0) is -INF with signal; | |
48 | * log2(NaN) is that NaN with no signal. | |
49 | * | |
50 | * Constants: | |
51 | * The hexadecimal values are the intended ones for the following | |
52 | * constants. The decimal values may be used, provided that the | |
53 | * compiler will convert from decimal to binary accurately enough | |
54 | * to produce the hexadecimal values shown. | |
55 | */ | |
56 | ||
57 | #include "math.h" | |
58 | #include "math_private.h" | |
59 | ||
c8d8b6d3 | 60 | static const double |
c8d8b6d3 BRF |
61 | ln2 = 0.69314718055994530942, |
62 | two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ | |
63 | Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ | |
64 | Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ | |
65 | Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ | |
66 | Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ | |
67 | Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ | |
68 | Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ | |
69 | Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ | |
70 | ||
c8d8b6d3 | 71 | static const double zero = 0.0; |
c8d8b6d3 | 72 | |
38b7304e | 73 | double __ieee754_log2(double x) |
c8d8b6d3 BRF |
74 | { |
75 | double hfsq,f,s,z,R,w,t1,t2,dk; | |
76 | int32_t k,hx,i,j; | |
77 | u_int32_t lx; | |
78 | ||
79 | EXTRACT_WORDS(hx,lx,x); | |
80 | ||
81 | k=0; | |
82 | if (hx < 0x00100000) { /* x < 2**-1022 */ | |
83 | if (((hx&0x7fffffff)|lx)==0) | |
84 | return -two54/(x-x); /* log(+-0)=-inf */ | |
85 | if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */ | |
86 | k -= 54; x *= two54; /* subnormal number, scale up x */ | |
87 | GET_HIGH_WORD(hx,x); | |
88 | } | |
89 | if (hx >= 0x7ff00000) return x+x; | |
90 | k += (hx>>20)-1023; | |
91 | hx &= 0x000fffff; | |
92 | i = (hx+0x95f64)&0x100000; | |
93 | SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ | |
94 | k += (i>>20); | |
95 | dk = (double) k; | |
96 | f = x-1.0; | |
97 | if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ | |
98 | if(f==zero) return dk; | |
99 | R = f*f*(0.5-0.33333333333333333*f); | |
100 | return dk-(R-f)/ln2; | |
101 | } | |
102 | s = f/(2.0+f); | |
103 | z = s*s; | |
104 | i = hx-0x6147a; | |
105 | w = z*z; | |
106 | j = 0x6b851-hx; | |
107 | t1= w*(Lg2+w*(Lg4+w*Lg6)); | |
108 | t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); | |
109 | i |= j; | |
110 | R = t2+t1; | |
111 | if(i>0) { | |
112 | hfsq=0.5*f*f; | |
113 | return dk-((hfsq-(s*(hfsq+R)))-f)/ln2; | |
114 | } else { | |
115 | return dk-((s*(f-R))-f)/ln2; | |
116 | } | |
117 | } | |
30bd4a6c | 118 | strong_alias(__ieee754_log2,log2) |