]>
Commit | Line | Data |
---|---|---|
08012e24 | 1 | /* |
cf0a78c8 | 2 | * FreeSec: libcrypt for NetBSD |
08012e24 | 3 | * |
3e87ecb2 EA |
4 | * Copyright (c) 1994 David Burren |
5 | * All rights reserved. | |
08012e24 | 6 | * |
cf0a78c8 EA |
7 | * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet |
8 | * this file should now *only* export crypt(), in order to make | |
9 | * binaries of libcrypt exportable from the USA | |
10 | * | |
11 | * Adapted for FreeBSD-4.0 by Mark R V Murray | |
12 | * this file should now *only* export crypt_des(), in order to make | |
13 | * a module that can be optionally included in libcrypt. | |
14 | * | |
3e87ecb2 EA |
15 | * Redistribution and use in source and binary forms, with or without |
16 | * modification, are permitted provided that the following conditions | |
17 | * are met: | |
18 | * 1. Redistributions of source code must retain the above copyright | |
19 | * notice, this list of conditions and the following disclaimer. | |
20 | * 2. Redistributions in binary form must reproduce the above copyright | |
21 | * notice, this list of conditions and the following disclaimer in the | |
22 | * documentation and/or other materials provided with the distribution. | |
cf0a78c8 | 23 | * 3. Neither the name of the author nor the names of other contributors |
3e87ecb2 EA |
24 | * may be used to endorse or promote products derived from this software |
25 | * without specific prior written permission. | |
08012e24 | 26 | * |
3e87ecb2 EA |
27 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
28 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
29 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
30 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | |
31 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
32 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
33 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
34 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
35 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
36 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
37 | * SUCH DAMAGE. | |
08012e24 | 38 | * |
3e87ecb2 EA |
39 | * This is an original implementation of the DES and the crypt(3) interfaces |
40 | * by David Burren <[email protected]>. | |
08012e24 | 41 | * |
3e87ecb2 EA |
42 | * An excellent reference on the underlying algorithm (and related |
43 | * algorithms) is: | |
44 | * | |
45 | * B. Schneier, Applied Cryptography: protocols, algorithms, | |
46 | * and source code in C, John Wiley & Sons, 1994. | |
aa4ceea1 | 47 | * |
3e87ecb2 EA |
48 | * Note that in that book's description of DES the lookups for the initial, |
49 | * pbox, and final permutations are inverted (this has been brought to the | |
50 | * attention of the author). A list of errata for this book has been | |
51 | * posted to the sci.crypt newsgroup by the author and is available for FTP. | |
aa4ceea1 | 52 | * |
cf0a78c8 EA |
53 | * ARCHITECTURE ASSUMPTIONS: |
54 | * It is assumed that the 8-byte arrays passed by reference can be | |
55 | * addressed as arrays of u_int32_t's (ie. the CPU is not picky about | |
56 | * alignment). | |
aa4ceea1 EA |
57 | */ |
58 | ||
3e87ecb2 EA |
59 | #include <sys/cdefs.h> |
60 | #include <sys/types.h> | |
61 | #include <sys/param.h> | |
62 | #include <netinet/in.h> | |
63 | #include <pwd.h> | |
2f98c425 | 64 | #include <string.h> |
08012e24 | 65 | #include <crypt.h> |
8d9ff89b | 66 | #include "libcrypt.h" |
08012e24 | 67 | |
212bd82f BS |
68 | /* Re-entrantify me -- all this junk needs to be in |
69 | * struct crypt_data to make this really reentrant... */ | |
70 | static u_char inv_key_perm[64]; | |
71 | static u_char inv_comp_perm[56]; | |
72 | static u_char un_pbox[32]; | |
73 | static u_int32_t en_keysl[16], en_keysr[16]; | |
74 | static u_int32_t de_keysl[16], de_keysr[16]; | |
75 | static u_int32_t ip_maskl[8][256], ip_maskr[8][256]; | |
76 | static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; | |
77 | static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; | |
78 | static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; | |
79 | static u_int32_t saltbits; | |
80 | static u_int32_t old_salt; | |
81 | static u_int32_t old_rawkey0, old_rawkey1; | |
82 | ||
3a4b78aa | 83 | |
1f020b17 BRF |
84 | /* Static stuff that stays resident and doesn't change after |
85 | * being initialized, and therefore doesn't need to be made | |
3a4b78aa | 86 | * reentrant. */ |
212bd82f BS |
87 | static u_char init_perm[64], final_perm[64]; |
88 | static u_char m_sbox[4][4096]; | |
89 | static u_int32_t psbox[4][256]; | |
90 | ||
91 | ||
3a4b78aa | 92 | |
3e87ecb2 | 93 | |
3a4b78aa EA |
94 | /* A pile of data */ |
95 | static const u_char ascii64[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; | |
96 | ||
97 | static const u_char IP[64] = { | |
3e87ecb2 EA |
98 | 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, |
99 | 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, | |
100 | 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, | |
101 | 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 | |
08012e24 EA |
102 | }; |
103 | ||
3a4b78aa | 104 | static const u_char key_perm[56] = { |
3e87ecb2 EA |
105 | 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, |
106 | 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, | |
107 | 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, | |
108 | 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 | |
08012e24 EA |
109 | }; |
110 | ||
3a4b78aa | 111 | static const u_char key_shifts[16] = { |
3e87ecb2 EA |
112 | 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 |
113 | }; | |
114 | ||
3a4b78aa | 115 | static const u_char comp_perm[48] = { |
3e87ecb2 EA |
116 | 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, |
117 | 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, | |
118 | 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, | |
119 | 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 | |
120 | }; | |
08012e24 | 121 | |
3e87ecb2 EA |
122 | /* |
123 | * No E box is used, as it's replaced by some ANDs, shifts, and ORs. | |
124 | */ | |
08012e24 | 125 | |
3a4b78aa | 126 | static const u_char sbox[8][64] = { |
3e87ecb2 EA |
127 | { |
128 | 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, | |
129 | 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, | |
130 | 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, | |
131 | 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 | |
132 | }, | |
133 | { | |
134 | 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, | |
135 | 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, | |
136 | 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, | |
137 | 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 | |
138 | }, | |
139 | { | |
140 | 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, | |
141 | 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, | |
142 | 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, | |
143 | 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 | |
144 | }, | |
145 | { | |
146 | 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, | |
147 | 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, | |
148 | 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, | |
149 | 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 | |
150 | }, | |
151 | { | |
152 | 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, | |
153 | 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, | |
154 | 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, | |
155 | 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 | |
156 | }, | |
157 | { | |
158 | 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, | |
159 | 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, | |
160 | 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, | |
161 | 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 | |
162 | }, | |
163 | { | |
164 | 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, | |
165 | 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, | |
166 | 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, | |
167 | 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 | |
168 | }, | |
169 | { | |
170 | 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, | |
171 | 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, | |
172 | 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, | |
173 | 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 | |
aa4ceea1 | 174 | } |
3e87ecb2 EA |
175 | }; |
176 | ||
3a4b78aa | 177 | static const u_char pbox[32] = { |
3e87ecb2 EA |
178 | 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, |
179 | 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 | |
180 | }; | |
08012e24 | 181 | |
3a4b78aa | 182 | static const u_int32_t bits32[32] = |
aa4ceea1 | 183 | { |
3e87ecb2 EA |
184 | 0x80000000, 0x40000000, 0x20000000, 0x10000000, |
185 | 0x08000000, 0x04000000, 0x02000000, 0x01000000, | |
186 | 0x00800000, 0x00400000, 0x00200000, 0x00100000, | |
187 | 0x00080000, 0x00040000, 0x00020000, 0x00010000, | |
188 | 0x00008000, 0x00004000, 0x00002000, 0x00001000, | |
189 | 0x00000800, 0x00000400, 0x00000200, 0x00000100, | |
190 | 0x00000080, 0x00000040, 0x00000020, 0x00000010, | |
191 | 0x00000008, 0x00000004, 0x00000002, 0x00000001 | |
192 | }; | |
08012e24 | 193 | |
3a4b78aa | 194 | static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }; |
3a4b78aa | 195 | |
3e87ecb2 | 196 | |
1f020b17 | 197 | static int |
cf0a78c8 | 198 | ascii_to_bin(char ch) |
3e87ecb2 EA |
199 | { |
200 | if (ch > 'z') | |
201 | return(0); | |
202 | if (ch >= 'a') | |
203 | return(ch - 'a' + 38); | |
204 | if (ch > 'Z') | |
205 | return(0); | |
206 | if (ch >= 'A') | |
207 | return(ch - 'A' + 12); | |
208 | if (ch > '9') | |
209 | return(0); | |
210 | if (ch >= '.') | |
211 | return(ch - '.'); | |
212 | return(0); | |
aa4ceea1 | 213 | } |
08012e24 | 214 | |
cf0a78c8 EA |
215 | static void |
216 | des_init(void) | |
08012e24 | 217 | { |
212bd82f BS |
218 | static int des_initialised = 0; |
219 | ||
3e87ecb2 EA |
220 | int i, j, b, k, inbit, obit; |
221 | u_int32_t *p, *il, *ir, *fl, *fr; | |
373fe15a DV |
222 | const u_int32_t *bits28, *bits24; |
223 | u_char u_sbox[8][64]; | |
3a4b78aa | 224 | |
212bd82f | 225 | if (des_initialised==1) |
373fe15a | 226 | return; |
3e87ecb2 | 227 | |
cf0a78c8 EA |
228 | old_rawkey0 = old_rawkey1 = 0L; |
229 | saltbits = 0L; | |
230 | old_salt = 0L; | |
3e87ecb2 EA |
231 | bits24 = (bits28 = bits32 + 4) + 4; |
232 | ||
233 | /* | |
234 | * Invert the S-boxes, reordering the input bits. | |
235 | */ | |
236 | for (i = 0; i < 8; i++) | |
237 | for (j = 0; j < 64; j++) { | |
238 | b = (j & 0x20) | ((j & 1) << 4) | ((j >> 1) & 0xf); | |
239 | u_sbox[i][j] = sbox[i][b]; | |
240 | } | |
241 | ||
242 | /* | |
243 | * Convert the inverted S-boxes into 4 arrays of 8 bits. | |
244 | * Each will handle 12 bits of the S-box input. | |
245 | */ | |
246 | for (b = 0; b < 4; b++) | |
247 | for (i = 0; i < 64; i++) | |
248 | for (j = 0; j < 64; j++) | |
249 | m_sbox[b][(i << 6) | j] = | |
cf0a78c8 EA |
250 | (u_char)((u_sbox[(b << 1)][i] << 4) | |
251 | u_sbox[(b << 1) + 1][j]); | |
3e87ecb2 EA |
252 | |
253 | /* | |
254 | * Set up the initial & final permutations into a useful form, and | |
255 | * initialise the inverted key permutation. | |
256 | */ | |
257 | for (i = 0; i < 64; i++) { | |
cf0a78c8 | 258 | init_perm[final_perm[i] = IP[i] - 1] = (u_char)i; |
3e87ecb2 | 259 | inv_key_perm[i] = 255; |
aa4ceea1 | 260 | } |
aa4ceea1 | 261 | |
3e87ecb2 EA |
262 | /* |
263 | * Invert the key permutation and initialise the inverted key | |
264 | * compression permutation. | |
265 | */ | |
266 | for (i = 0; i < 56; i++) { | |
cf0a78c8 | 267 | inv_key_perm[key_perm[i] - 1] = (u_char)i; |
3e87ecb2 EA |
268 | inv_comp_perm[i] = 255; |
269 | } | |
aa4ceea1 | 270 | |
3e87ecb2 EA |
271 | /* |
272 | * Invert the key compression permutation. | |
273 | */ | |
274 | for (i = 0; i < 48; i++) { | |
cf0a78c8 | 275 | inv_comp_perm[comp_perm[i] - 1] = (u_char)i; |
3e87ecb2 | 276 | } |
aa4ceea1 | 277 | |
3e87ecb2 EA |
278 | /* |
279 | * Set up the OR-mask arrays for the initial and final permutations, | |
280 | * and for the key initial and compression permutations. | |
281 | */ | |
282 | for (k = 0; k < 8; k++) { | |
283 | for (i = 0; i < 256; i++) { | |
cf0a78c8 EA |
284 | *(il = &ip_maskl[k][i]) = 0L; |
285 | *(ir = &ip_maskr[k][i]) = 0L; | |
286 | *(fl = &fp_maskl[k][i]) = 0L; | |
287 | *(fr = &fp_maskr[k][i]) = 0L; | |
3e87ecb2 EA |
288 | for (j = 0; j < 8; j++) { |
289 | inbit = 8 * k + j; | |
290 | if (i & bits8[j]) { | |
291 | if ((obit = init_perm[inbit]) < 32) | |
292 | *il |= bits32[obit]; | |
293 | else | |
294 | *ir |= bits32[obit-32]; | |
295 | if ((obit = final_perm[inbit]) < 32) | |
296 | *fl |= bits32[obit]; | |
297 | else | |
298 | *fr |= bits32[obit - 32]; | |
299 | } | |
300 | } | |
301 | } | |
302 | for (i = 0; i < 128; i++) { | |
cf0a78c8 EA |
303 | *(il = &key_perm_maskl[k][i]) = 0L; |
304 | *(ir = &key_perm_maskr[k][i]) = 0L; | |
3e87ecb2 EA |
305 | for (j = 0; j < 7; j++) { |
306 | inbit = 8 * k + j; | |
307 | if (i & bits8[j + 1]) { | |
308 | if ((obit = inv_key_perm[inbit]) == 255) | |
309 | continue; | |
310 | if (obit < 28) | |
311 | *il |= bits28[obit]; | |
312 | else | |
313 | *ir |= bits28[obit - 28]; | |
314 | } | |
315 | } | |
cf0a78c8 EA |
316 | *(il = &comp_maskl[k][i]) = 0L; |
317 | *(ir = &comp_maskr[k][i]) = 0L; | |
3e87ecb2 EA |
318 | for (j = 0; j < 7; j++) { |
319 | inbit = 7 * k + j; | |
320 | if (i & bits8[j + 1]) { | |
321 | if ((obit=inv_comp_perm[inbit]) == 255) | |
322 | continue; | |
323 | if (obit < 24) | |
324 | *il |= bits24[obit]; | |
325 | else | |
326 | *ir |= bits24[obit - 24]; | |
327 | } | |
328 | } | |
329 | } | |
aa4ceea1 | 330 | } |
3e87ecb2 EA |
331 | |
332 | /* | |
333 | * Invert the P-box permutation, and convert into OR-masks for | |
334 | * handling the output of the S-box arrays setup above. | |
335 | */ | |
336 | for (i = 0; i < 32; i++) | |
cf0a78c8 | 337 | un_pbox[pbox[i] - 1] = (u_char)i; |
3e87ecb2 EA |
338 | |
339 | for (b = 0; b < 4; b++) | |
340 | for (i = 0; i < 256; i++) { | |
cf0a78c8 | 341 | *(p = &psbox[b][i]) = 0L; |
3e87ecb2 EA |
342 | for (j = 0; j < 8; j++) { |
343 | if (i & bits8[j]) | |
344 | *p |= bits32[un_pbox[8 * b + j]]; | |
345 | } | |
346 | } | |
347 | ||
348 | des_initialised = 1; | |
08012e24 EA |
349 | } |
350 | ||
cf0a78c8 EA |
351 | |
352 | static void | |
73d592f6 | 353 | setup_salt(u_int32_t salt) |
aa4ceea1 | 354 | { |
3e87ecb2 EA |
355 | u_int32_t obit, saltbit; |
356 | int i; | |
357 | ||
358 | if (salt == old_salt) | |
359 | return; | |
360 | old_salt = salt; | |
361 | ||
cf0a78c8 | 362 | saltbits = 0L; |
3e87ecb2 EA |
363 | saltbit = 1; |
364 | obit = 0x800000; | |
365 | for (i = 0; i < 24; i++) { | |
366 | if (salt & saltbit) | |
367 | saltbits |= obit; | |
368 | saltbit <<= 1; | |
369 | obit >>= 1; | |
370 | } | |
aa4ceea1 | 371 | } |
08012e24 | 372 | |
cf0a78c8 | 373 | |
ee6e93f1 | 374 | static void |
cf0a78c8 EA |
375 | des_setkey(const char *key) |
376 | { | |
377 | u_int32_t k0, k1, rawkey0, rawkey1; | |
378 | int shifts, round; | |
379 | ||
380 | des_init(); | |
381 | ||
382 | rawkey0 = ntohl(*(const u_int32_t *) key); | |
383 | rawkey1 = ntohl(*(const u_int32_t *) (key + 4)); | |
384 | ||
385 | if ((rawkey0 | rawkey1) | |
386 | && rawkey0 == old_rawkey0 | |
387 | && rawkey1 == old_rawkey1) { | |
388 | /* | |
389 | * Already setup for this key. | |
390 | * This optimisation fails on a zero key (which is weak and | |
391 | * has bad parity anyway) in order to simplify the starting | |
392 | * conditions. | |
393 | */ | |
ee6e93f1 | 394 | return; |
cf0a78c8 EA |
395 | } |
396 | old_rawkey0 = rawkey0; | |
397 | old_rawkey1 = rawkey1; | |
398 | ||
399 | /* | |
400 | * Do key permutation and split into two 28-bit subkeys. | |
401 | */ | |
402 | k0 = key_perm_maskl[0][rawkey0 >> 25] | |
403 | | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] | |
404 | | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] | |
405 | | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] | |
406 | | key_perm_maskl[4][rawkey1 >> 25] | |
407 | | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] | |
408 | | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] | |
409 | | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; | |
410 | k1 = key_perm_maskr[0][rawkey0 >> 25] | |
411 | | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] | |
412 | | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] | |
413 | | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] | |
414 | | key_perm_maskr[4][rawkey1 >> 25] | |
415 | | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] | |
416 | | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] | |
417 | | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; | |
418 | /* | |
419 | * Rotate subkeys and do compression permutation. | |
420 | */ | |
421 | shifts = 0; | |
422 | for (round = 0; round < 16; round++) { | |
423 | u_int32_t t0, t1; | |
424 | ||
425 | shifts += key_shifts[round]; | |
426 | ||
427 | t0 = (k0 << shifts) | (k0 >> (28 - shifts)); | |
428 | t1 = (k1 << shifts) | (k1 >> (28 - shifts)); | |
429 | ||
430 | de_keysl[15 - round] = | |
431 | en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] | |
432 | | comp_maskl[1][(t0 >> 14) & 0x7f] | |
433 | | comp_maskl[2][(t0 >> 7) & 0x7f] | |
434 | | comp_maskl[3][t0 & 0x7f] | |
435 | | comp_maskl[4][(t1 >> 21) & 0x7f] | |
436 | | comp_maskl[5][(t1 >> 14) & 0x7f] | |
437 | | comp_maskl[6][(t1 >> 7) & 0x7f] | |
438 | | comp_maskl[7][t1 & 0x7f]; | |
439 | ||
440 | de_keysr[15 - round] = | |
441 | en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] | |
442 | | comp_maskr[1][(t0 >> 14) & 0x7f] | |
443 | | comp_maskr[2][(t0 >> 7) & 0x7f] | |
444 | | comp_maskr[3][t0 & 0x7f] | |
445 | | comp_maskr[4][(t1 >> 21) & 0x7f] | |
446 | | comp_maskr[5][(t1 >> 14) & 0x7f] | |
447 | | comp_maskr[6][(t1 >> 7) & 0x7f] | |
448 | | comp_maskr[7][t1 & 0x7f]; | |
449 | } | |
cf0a78c8 EA |
450 | } |
451 | ||
452 | ||
453 | static int | |
454 | do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count) | |
08012e24 | 455 | { |
1a21daad | 456 | /* l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ |
3e87ecb2 | 457 | u_int32_t l, r, *kl, *kr, *kl1, *kr1; |
212bd82f | 458 | u_int32_t f, r48l, r48r; |
cf0a78c8 | 459 | int round; |
3e87ecb2 EA |
460 | |
461 | if (count == 0) { | |
1a21daad DV |
462 | return 1; |
463 | } | |
464 | if (count > 0) { | |
465 | /* Encrypting */ | |
3e87ecb2 EA |
466 | kl1 = en_keysl; |
467 | kr1 = en_keysr; | |
468 | } else { | |
1a21daad | 469 | /* Decrypting */ |
3e87ecb2 EA |
470 | count = -count; |
471 | kl1 = de_keysl; | |
472 | kr1 = de_keysr; | |
473 | } | |
474 | ||
1a21daad | 475 | /* Do initial permutation (IP). */ |
3e87ecb2 EA |
476 | l = ip_maskl[0][l_in >> 24] |
477 | | ip_maskl[1][(l_in >> 16) & 0xff] | |
478 | | ip_maskl[2][(l_in >> 8) & 0xff] | |
479 | | ip_maskl[3][l_in & 0xff] | |
480 | | ip_maskl[4][r_in >> 24] | |
481 | | ip_maskl[5][(r_in >> 16) & 0xff] | |
482 | | ip_maskl[6][(r_in >> 8) & 0xff] | |
483 | | ip_maskl[7][r_in & 0xff]; | |
484 | r = ip_maskr[0][l_in >> 24] | |
485 | | ip_maskr[1][(l_in >> 16) & 0xff] | |
486 | | ip_maskr[2][(l_in >> 8) & 0xff] | |
487 | | ip_maskr[3][l_in & 0xff] | |
488 | | ip_maskr[4][r_in >> 24] | |
489 | | ip_maskr[5][(r_in >> 16) & 0xff] | |
490 | | ip_maskr[6][(r_in >> 8) & 0xff] | |
491 | | ip_maskr[7][r_in & 0xff]; | |
492 | ||
493 | while (count--) { | |
1a21daad | 494 | /* Do each round. */ |
3e87ecb2 EA |
495 | kl = kl1; |
496 | kr = kr1; | |
497 | round = 16; | |
1a21daad DV |
498 | do { |
499 | /* Expand R to 48 bits (simulate the E-box). */ | |
3e87ecb2 EA |
500 | r48l = ((r & 0x00000001) << 23) |
501 | | ((r & 0xf8000000) >> 9) | |
502 | | ((r & 0x1f800000) >> 11) | |
503 | | ((r & 0x01f80000) >> 13) | |
504 | | ((r & 0x001f8000) >> 15); | |
3e87ecb2 EA |
505 | r48r = ((r & 0x0001f800) << 7) |
506 | | ((r & 0x00001f80) << 5) | |
507 | | ((r & 0x000001f8) << 3) | |
508 | | ((r & 0x0000001f) << 1) | |
509 | | ((r & 0x80000000) >> 31); | |
510 | /* | |
511 | * Do salting for crypt() and friends, and | |
512 | * XOR with the permuted key. | |
513 | */ | |
514 | f = (r48l ^ r48r) & saltbits; | |
515 | r48l ^= f ^ *kl++; | |
516 | r48r ^= f ^ *kr++; | |
517 | /* | |
518 | * Do sbox lookups (which shrink it back to 32 bits) | |
519 | * and do the pbox permutation at the same time. | |
520 | */ | |
521 | f = psbox[0][m_sbox[0][r48l >> 12]] | |
522 | | psbox[1][m_sbox[1][r48l & 0xfff]] | |
523 | | psbox[2][m_sbox[2][r48r >> 12]] | |
524 | | psbox[3][m_sbox[3][r48r & 0xfff]]; | |
1a21daad | 525 | /* Now that we've permuted things, complete f(). */ |
3e87ecb2 EA |
526 | f ^= l; |
527 | l = r; | |
528 | r = f; | |
1a21daad | 529 | } while (--round); |
3e87ecb2 EA |
530 | r = l; |
531 | l = f; | |
aa4ceea1 | 532 | } |
1a21daad | 533 | /* Do final permutation (inverse of IP). */ |
3e87ecb2 EA |
534 | *l_out = fp_maskl[0][l >> 24] |
535 | | fp_maskl[1][(l >> 16) & 0xff] | |
536 | | fp_maskl[2][(l >> 8) & 0xff] | |
537 | | fp_maskl[3][l & 0xff] | |
538 | | fp_maskl[4][r >> 24] | |
539 | | fp_maskl[5][(r >> 16) & 0xff] | |
540 | | fp_maskl[6][(r >> 8) & 0xff] | |
541 | | fp_maskl[7][r & 0xff]; | |
542 | *r_out = fp_maskr[0][l >> 24] | |
543 | | fp_maskr[1][(l >> 16) & 0xff] | |
544 | | fp_maskr[2][(l >> 8) & 0xff] | |
545 | | fp_maskr[3][l & 0xff] | |
546 | | fp_maskr[4][r >> 24] | |
547 | | fp_maskr[5][(r >> 16) & 0xff] | |
548 | | fp_maskr[6][(r >> 8) & 0xff] | |
549 | | fp_maskr[7][r & 0xff]; | |
550 | return(0); | |
08012e24 EA |
551 | } |
552 | ||
3a4b78aa | 553 | |
3e87ecb2 | 554 | #if 0 |
cf0a78c8 EA |
555 | static int |
556 | des_cipher(const char *in, char *out, u_int32_t salt, int count) | |
557 | { | |
558 | u_int32_t l_out, r_out, rawl, rawr; | |
559 | int retval; | |
560 | union { | |
561 | u_int32_t *ui32; | |
562 | const char *c; | |
563 | } trans; | |
3e87ecb2 | 564 | |
3a4b78aa | 565 | des_init(); |
3e87ecb2 | 566 | |
cf0a78c8 | 567 | setup_salt(salt); |
3e87ecb2 | 568 | |
cf0a78c8 EA |
569 | trans.c = in; |
570 | rawl = ntohl(*trans.ui32++); | |
571 | rawr = ntohl(*trans.ui32); | |
3e87ecb2 | 572 | |
cf0a78c8 | 573 | retval = do_des(rawl, rawr, &l_out, &r_out, count); |
3e87ecb2 | 574 | |
cf0a78c8 EA |
575 | trans.c = out; |
576 | *trans.ui32++ = htonl(l_out); | |
577 | *trans.ui32 = htonl(r_out); | |
578 | return(retval); | |
3e87ecb2 | 579 | } |
cf0a78c8 EA |
580 | #endif |
581 | ||
aa4ceea1 | 582 | |
cf0a78c8 EA |
583 | void |
584 | setkey(const char *key) | |
3e87ecb2 EA |
585 | { |
586 | int i, j; | |
cf0a78c8 | 587 | u_int32_t packed_keys[2]; |
3e87ecb2 | 588 | u_char *p; |
aa4ceea1 | 589 | |
3e87ecb2 | 590 | p = (u_char *) packed_keys; |
aa4ceea1 | 591 | |
3e87ecb2 EA |
592 | for (i = 0; i < 8; i++) { |
593 | p[i] = 0; | |
594 | for (j = 0; j < 8; j++) | |
595 | if (*key++ & 1) | |
596 | p[i] |= bits8[j]; | |
aa4ceea1 | 597 | } |
4fd42edd | 598 | des_setkey((char *)p); |
3e87ecb2 | 599 | } |
aa4ceea1 | 600 | |
cf0a78c8 EA |
601 | |
602 | void | |
603 | encrypt(char *block, int flag) | |
3e87ecb2 | 604 | { |
cf0a78c8 | 605 | u_int32_t io[2]; |
3e87ecb2 | 606 | u_char *p; |
cf0a78c8 | 607 | int i, j; |
aa4ceea1 | 608 | |
3a4b78aa | 609 | des_init(); |
aa4ceea1 | 610 | |
cf0a78c8 | 611 | setup_salt(0L); |
4fd42edd | 612 | p = (u_char*)block; |
3e87ecb2 EA |
613 | for (i = 0; i < 2; i++) { |
614 | io[i] = 0L; | |
615 | for (j = 0; j < 32; j++) | |
616 | if (*p++ & 1) | |
617 | io[i] |= bits32[j]; | |
aa4ceea1 | 618 | } |
cf0a78c8 | 619 | do_des(io[0], io[1], io, io + 1, flag ? -1 : 1); |
3e87ecb2 EA |
620 | for (i = 0; i < 2; i++) |
621 | for (j = 0; j < 32; j++) | |
622 | block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0; | |
08012e24 EA |
623 | } |
624 | ||
8d9ff89b | 625 | char *__des_crypt(const unsigned char *key, const unsigned char *setting) |
3e87ecb2 EA |
626 | { |
627 | u_int32_t count, salt, l, r0, r1, keybuf[2]; | |
628 | u_char *p, *q; | |
212bd82f | 629 | static char output[21]; |
3e87ecb2 | 630 | |
3a4b78aa | 631 | des_init(); |
3e87ecb2 EA |
632 | |
633 | /* | |
634 | * Copy the key, shifting each character up by one bit | |
635 | * and padding with zeros. | |
636 | */ | |
637 | q = (u_char *)keybuf; | |
638 | while (q - (u_char *)keybuf - 8) { | |
639 | *q++ = *key << 1; | |
640 | if (*(q - 1)) | |
641 | key++; | |
642 | } | |
ee6e93f1 | 643 | des_setkey((char *)keybuf); |
3e87ecb2 EA |
644 | |
645 | #if 0 | |
646 | if (*setting == _PASSWORD_EFMT1) { | |
cf0a78c8 | 647 | int i; |
3e87ecb2 EA |
648 | /* |
649 | * "new"-style: | |
650 | * setting - underscore, 4 bytes of count, 4 bytes of salt | |
651 | * key - unlimited characters | |
652 | */ | |
653 | for (i = 1, count = 0L; i < 5; i++) | |
654 | count |= ascii_to_bin(setting[i]) << ((i - 1) * 6); | |
655 | ||
656 | for (i = 5, salt = 0L; i < 9; i++) | |
657 | salt |= ascii_to_bin(setting[i]) << ((i - 5) * 6); | |
658 | ||
659 | while (*key) { | |
660 | /* | |
661 | * Encrypt the key with itself. | |
662 | */ | |
cf0a78c8 | 663 | if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) |
3e87ecb2 EA |
664 | return(NULL); |
665 | /* | |
666 | * And XOR with the next 8 characters of the key. | |
667 | */ | |
668 | q = (u_char *)keybuf; | |
669 | while (q - (u_char *)keybuf - 8 && *key) | |
670 | *q++ ^= *key++ << 1; | |
671 | ||
ee6e93f1 | 672 | des_setkey((char *)keybuf); |
3e87ecb2 EA |
673 | } |
674 | strncpy(output, setting, 9); | |
675 | ||
676 | /* | |
677 | * Double check that we weren't given a short setting. | |
678 | * If we were, the above code will probably have created | |
679 | * wierd values for count and salt, but we don't really care. | |
680 | * Just make sure the output string doesn't have an extra | |
681 | * NUL in it. | |
682 | */ | |
683 | output[9] = '\0'; | |
684 | p = (u_char *)output + strlen(output); | |
1f020b17 | 685 | } else |
3e87ecb2 EA |
686 | #endif |
687 | { | |
688 | /* | |
689 | * "old"-style: | |
690 | * setting - 2 bytes of salt | |
691 | * key - up to 8 characters | |
692 | */ | |
693 | count = 25; | |
694 | ||
695 | salt = (ascii_to_bin(setting[1]) << 6) | |
696 | | ascii_to_bin(setting[0]); | |
697 | ||
698 | output[0] = setting[0]; | |
699 | /* | |
700 | * If the encrypted password that the salt was extracted from | |
701 | * is only 1 character long, the salt will be corrupted. We | |
702 | * need to ensure that the output string doesn't have an extra | |
703 | * NUL in it! | |
704 | */ | |
705 | output[1] = setting[1] ? setting[1] : output[0]; | |
706 | ||
707 | p = (u_char *)output + 2; | |
708 | } | |
709 | setup_salt(salt); | |
710 | /* | |
711 | * Do it. | |
712 | */ | |
cf0a78c8 | 713 | if (do_des(0L, 0L, &r0, &r1, (int)count)) |
3e87ecb2 EA |
714 | return(NULL); |
715 | /* | |
716 | * Now encode the result... | |
717 | */ | |
718 | l = (r0 >> 8); | |
719 | *p++ = ascii64[(l >> 18) & 0x3f]; | |
720 | *p++ = ascii64[(l >> 12) & 0x3f]; | |
721 | *p++ = ascii64[(l >> 6) & 0x3f]; | |
722 | *p++ = ascii64[l & 0x3f]; | |
723 | ||
724 | l = (r0 << 16) | ((r1 >> 16) & 0xffff); | |
725 | *p++ = ascii64[(l >> 18) & 0x3f]; | |
726 | *p++ = ascii64[(l >> 12) & 0x3f]; | |
727 | *p++ = ascii64[(l >> 6) & 0x3f]; | |
728 | *p++ = ascii64[l & 0x3f]; | |
729 | ||
730 | l = r1 << 2; | |
731 | *p++ = ascii64[(l >> 12) & 0x3f]; | |
732 | *p++ = ascii64[(l >> 6) & 0x3f]; | |
733 | *p++ = ascii64[l & 0x3f]; | |
734 | *p = 0; | |
735 | ||
cf0a78c8 | 736 | return(output); |
3e87ecb2 | 737 | } |
41cb95ae | 738 |