/*
+ * Common SPI Interface: Controller-specific definitions
+ *
* (C) Copyright 2001
*
- * See file CREDITS for list of people who contributed to this
- * project.
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License as
- * published by the Free Software Foundation; either version 2 of
- * the License, or (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
- * MA 02111-1307 USA
+ * SPDX-License-Identifier: GPL-2.0+
*/
#ifndef _SPI_H_
#define _SPI_H_
-/* Controller-specific definitions: */
-
/* SPI mode flags */
#define SPI_CPHA 0x01 /* clock phase */
#define SPI_CPOL 0x02 /* clock polarity */
#define SPI_PREAMBLE 0x80 /* Skip preamble bytes */
/* SPI transfer flags */
-#define SPI_XFER_BEGIN 0x01 /* Assert CS before transfer */
-#define SPI_XFER_END 0x02 /* Deassert CS after transfer */
+#define SPI_XFER_BEGIN 0x01 /* Assert CS before transfer */
+#define SPI_XFER_END 0x02 /* Deassert CS after transfer */
+#define SPI_XFER_MMAP 0x08 /* Memory Mapped start */
+#define SPI_XFER_MMAP_END 0x10 /* Memory Mapped End */
+#define SPI_XFER_ONCE (SPI_XFER_BEGIN | SPI_XFER_END)
+#define SPI_XFER_U_PAGE (1 << 5)
+
+/* SPI TX operation modes */
+#define SPI_OPM_TX_QPP (1 << 0)
+#define SPI_OPM_TX_BP (1 << 1)
+
+/* SPI RX operation modes */
+#define SPI_OPM_RX_AS (1 << 0)
+#define SPI_OPM_RX_DOUT (1 << 1)
+#define SPI_OPM_RX_DIO (1 << 2)
+#define SPI_OPM_RX_QOF (1 << 3)
+#define SPI_OPM_RX_QIOF (1 << 4)
+#define SPI_OPM_RX_EXTN (SPI_OPM_RX_AS | SPI_OPM_RX_DOUT | \
+ SPI_OPM_RX_DIO | SPI_OPM_RX_QOF | \
+ SPI_OPM_RX_QIOF)
+
+/* SPI bus connection options - see enum spi_dual_flash */
+#define SPI_CONN_DUAL_SHARED (1 << 0)
+#define SPI_CONN_DUAL_SEPARATED (1 << 1)
/* Header byte that marks the start of the message */
#define SPI_PREAMBLE_END_BYTE 0xec
-/*-----------------------------------------------------------------------
- * Representation of a SPI slave, i.e. what we're communicating with.
+#define SPI_DEFAULT_WORDLEN 8
+
+#ifdef CONFIG_DM_SPI
+struct dm_spi_bus {
+ uint max_hz;
+};
+
+/**
+ * struct dm_spi_platdata - platform data for all SPI slaves
+ *
+ * This describes a SPI slave, a child device of the SPI bus. To obtain this
+ * struct from a spi_slave, use dev_get_parent_platdata(dev) or
+ * dev_get_parent_platdata(slave->dev).
+ *
+ * This data is immuatable. Each time the device is probed, @max_hz and @mode
+ * will be copied to struct spi_slave.
+ *
+ * @cs: Chip select number (0..n-1)
+ * @max_hz: Maximum bus speed that this slave can tolerate
+ * @mode: SPI mode to use for this device (see SPI mode flags)
+ */
+struct dm_spi_slave_platdata {
+ unsigned int cs;
+ uint max_hz;
+ uint mode;
+};
+
+#endif /* CONFIG_DM_SPI */
+
+/**
+ * struct spi_slave - Representation of a SPI slave
*
- * Drivers are expected to extend this with controller-specific data.
+ * For driver model this is the per-child data used by the SPI bus. It can
+ * be accessed using dev_get_parentdata() on the slave device. The SPI uclass
+ * sets uip per_child_auto_alloc_size to sizeof(struct spi_slave), and the
+ * driver should not override it. Two platform data fields (max_hz and mode)
+ * are copied into this structure to provide an initial value. This allows
+ * them to be changed, since we should never change platform data in drivers.
*
- * bus: ID of the bus that the slave is attached to.
- * cs: ID of the chip select connected to the slave.
- * max_write_size: If non-zero, the maximum number of bytes which can
- * be written at once, excluding command bytes.
+ * If not using driver model, drivers are expected to extend this with
+ * controller-specific data.
+ *
+ * @dev: SPI slave device
+ * @max_hz: Maximum speed for this slave
+ * @mode: SPI mode to use for this slave (see SPI mode flags)
+ * @bus: ID of the bus that the slave is attached to. For
+ * driver model this is the sequence number of the SPI
+ * bus (bus->seq) so does not need to be stored
+ * @cs: ID of the chip select connected to the slave.
+ * @op_mode_rx: SPI RX operation mode.
+ * @op_mode_tx: SPI TX operation mode.
+ * @wordlen: Size of SPI word in number of bits
+ * @max_write_size: If non-zero, the maximum number of bytes which can
+ * be written at once, excluding command bytes.
+ * @memory_map: Address of read-only SPI flash access.
+ * @option: Varies SPI bus options - separate, shared bus.
+ * @flags: Indication of SPI flags.
*/
struct spi_slave {
- unsigned int bus;
- unsigned int cs;
+#ifdef CONFIG_DM_SPI
+ struct udevice *dev; /* struct spi_slave is dev->parentdata */
+ uint max_hz;
+ uint mode;
+#else
+ unsigned int bus;
+ unsigned int cs;
+#endif
+ u8 op_mode_rx;
+ u8 op_mode_tx;
+ unsigned int wordlen;
unsigned int max_write_size;
+ void *memory_map;
+ u8 option;
+ u8 flags;
};
-/*-----------------------------------------------------------------------
+/**
* Initialization, must be called once on start up.
*
* TODO: I don't think we really need this.
* Allocate and zero all fields in the spi slave, and set the bus/chip
* select. Use the helper macro spi_alloc_slave() to call this.
*
- * @offset: Offset of struct spi_slave within slave structure
- * @size: Size of slave structure
- * @bus: Bus ID of the slave chip.
- * @cs: Chip select ID of the slave chip on the specified bus.
+ * @offset: Offset of struct spi_slave within slave structure.
+ * @size: Size of slave structure.
+ * @bus: Bus ID of the slave chip.
+ * @cs: Chip select ID of the slave chip on the specified bus.
*/
void *spi_do_alloc_slave(int offset, int size, unsigned int bus,
unsigned int cs);
* Allocate and zero all fields in the spi slave, and set the bus/chip
* select.
*
- * @_struct: Name of structure to allocate (e.g. struct tegra_spi). This
- * structure must contain a member 'struct spi_slave *slave'.
- * @bus: Bus ID of the slave chip.
- * @cs: Chip select ID of the slave chip on the specified bus.
+ * @_struct: Name of structure to allocate (e.g. struct tegra_spi).
+ * This structure must contain a member 'struct spi_slave *slave'.
+ * @bus: Bus ID of the slave chip.
+ * @cs: Chip select ID of the slave chip on the specified bus.
*/
#define spi_alloc_slave(_struct, bus, cs) \
spi_do_alloc_slave(offsetof(_struct, slave), \
* Allocate and zero all fields in the spi slave, and set the bus/chip
* select.
*
- * @bus: Bus ID of the slave chip.
- * @cs: Chip select ID of the slave chip on the specified bus.
+ * @bus: Bus ID of the slave chip.
+ * @cs: Chip select ID of the slave chip on the specified bus.
*/
#define spi_alloc_slave_base(bus, cs) \
spi_do_alloc_slave(0, sizeof(struct spi_slave), bus, cs)
-/*-----------------------------------------------------------------------
+/**
* Set up communications parameters for a SPI slave.
*
* This must be called once for each slave. Note that this function
* contents of spi_slave so that the hardware can be easily
* initialized later.
*
- * bus: Bus ID of the slave chip.
- * cs: Chip select ID of the slave chip on the specified bus.
- * max_hz: Maximum SCK rate in Hz.
- * mode: Clock polarity, clock phase and other parameters.
+ * @bus: Bus ID of the slave chip.
+ * @cs: Chip select ID of the slave chip on the specified bus.
+ * @max_hz: Maximum SCK rate in Hz.
+ * @mode: Clock polarity, clock phase and other parameters.
*
* Returns: A spi_slave reference that can be used in subsequent SPI
* calls, or NULL if one or more of the parameters are not supported.
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode);
-/*-----------------------------------------------------------------------
+/**
* Free any memory associated with a SPI slave.
*
- * slave: The SPI slave
+ * @slave: The SPI slave
*/
void spi_free_slave(struct spi_slave *slave);
-/*-----------------------------------------------------------------------
+/**
* Claim the bus and prepare it for communication with a given slave.
*
* This must be called before doing any transfers with a SPI slave. It
* allowed to claim the same bus for several slaves without releasing
* the bus in between.
*
- * slave: The SPI slave
+ * @slave: The SPI slave
*
* Returns: 0 if the bus was claimed successfully, or a negative value
* if it wasn't.
*/
int spi_claim_bus(struct spi_slave *slave);
-/*-----------------------------------------------------------------------
+/**
* Release the SPI bus
*
* This must be called once for every call to spi_claim_bus() after
* all transfers have finished. It may disable any SPI hardware as
* appropriate.
*
- * slave: The SPI slave
+ * @slave: The SPI slave
*/
void spi_release_bus(struct spi_slave *slave);
-/*-----------------------------------------------------------------------
+/**
+ * Set the word length for SPI transactions
+ *
+ * Set the word length (number of bits per word) for SPI transactions.
+ *
+ * @slave: The SPI slave
+ * @wordlen: The number of bits in a word
+ *
+ * Returns: 0 on success, -1 on failure.
+ */
+int spi_set_wordlen(struct spi_slave *slave, unsigned int wordlen);
+
+/**
* SPI transfer
*
* This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
* temporary variables, this is OK).
*
* spi_xfer() interface:
- * slave: The SPI slave which will be sending/receiving the data.
- * bitlen: How many bits to write and read.
- * dout: Pointer to a string of bits to send out. The bits are
+ * @slave: The SPI slave which will be sending/receiving the data.
+ * @bitlen: How many bits to write and read.
+ * @dout: Pointer to a string of bits to send out. The bits are
* held in a byte array and are sent MSB first.
- * din: Pointer to a string of bits that will be filled in.
- * flags: A bitwise combination of SPI_XFER_* flags.
+ * @din: Pointer to a string of bits that will be filled in.
+ * @flags: A bitwise combination of SPI_XFER_* flags.
*
- * Returns: 0 on success, not 0 on failure
+ * Returns: 0 on success, not 0 on failure
*/
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags);
-/*-----------------------------------------------------------------------
+/**
* Determine if a SPI chipselect is valid.
* This function is provided by the board if the low-level SPI driver
* needs it to determine if a given chipselect is actually valid.
* Returns: 1 if bus:cs identifies a valid chip on this board, 0
* otherwise.
*/
-int spi_cs_is_valid(unsigned int bus, unsigned int cs);
+int spi_cs_is_valid(unsigned int bus, unsigned int cs);
-/*-----------------------------------------------------------------------
+#ifndef CONFIG_DM_SPI
+/**
* Activate a SPI chipselect.
* This function is provided by the board code when using a driver
* that can't control its chipselects automatically (e.g.
*/
void spi_cs_activate(struct spi_slave *slave);
-/*-----------------------------------------------------------------------
+/**
* Deactivate a SPI chipselect.
* This function is provided by the board code when using a driver
* that can't control its chipselects automatically (e.g.
*/
void spi_cs_deactivate(struct spi_slave *slave);
-/*-----------------------------------------------------------------------
+/**
* Set transfer speed.
* This sets a new speed to be applied for next spi_xfer().
- * slave: The SPI slave
- * hz: The transfer speed
+ * @slave: The SPI slave
+ * @hz: The transfer speed
*/
void spi_set_speed(struct spi_slave *slave, uint hz);
+#endif
-/*-----------------------------------------------------------------------
+/**
* Write 8 bits, then read 8 bits.
- * slave: The SPI slave we're communicating with
- * byte: Byte to be written
+ * @slave: The SPI slave we're communicating with
+ * @byte: Byte to be written
*
* Returns: The value that was read, or a negative value on error.
*
return ret < 0 ? ret : din[1];
}
+/**
+ * Set up a SPI slave for a particular device tree node
+ *
+ * This calls spi_setup_slave() with the correct bus number. Call
+ * spi_free_slave() to free it later.
+ *
+ * @param blob: Device tree blob
+ * @param slave_node: Slave node to use
+ * @param spi_node: SPI peripheral node to use
+ * @return pointer to new spi_slave structure
+ */
+struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
+ int spi_node);
+
+/**
+ * spi_base_setup_slave_fdt() - helper function to set up a SPI slace
+ *
+ * This decodes SPI properties from the slave node to determine the
+ * chip select and SPI parameters.
+ *
+ * @blob: Device tree blob
+ * @busnum: Bus number to use
+ * @node: Device tree node for the SPI bus
+ */
+struct spi_slave *spi_base_setup_slave_fdt(const void *blob, int busnum,
+ int node);
+
+#ifdef CONFIG_DM_SPI
+
+/**
+ * struct spi_cs_info - Information about a bus chip select
+ *
+ * @dev: Connected device, or NULL if none
+ */
+struct spi_cs_info {
+ struct udevice *dev;
+};
+
+/**
+ * struct struct dm_spi_ops - Driver model SPI operations
+ *
+ * The uclass interface is implemented by all SPI devices which use
+ * driver model.
+ */
+struct dm_spi_ops {
+ /**
+ * Claim the bus and prepare it for communication.
+ *
+ * The device provided is the slave device. It's parent controller
+ * will be used to provide the communication.
+ *
+ * This must be called before doing any transfers with a SPI slave. It
+ * will enable and initialize any SPI hardware as necessary, and make
+ * sure that the SCK line is in the correct idle state. It is not
+ * allowed to claim the same bus for several slaves without releasing
+ * the bus in between.
+ *
+ * @bus: The SPI slave
+ *
+ * Returns: 0 if the bus was claimed successfully, or a negative value
+ * if it wasn't.
+ */
+ int (*claim_bus)(struct udevice *bus);
+
+ /**
+ * Release the SPI bus
+ *
+ * This must be called once for every call to spi_claim_bus() after
+ * all transfers have finished. It may disable any SPI hardware as
+ * appropriate.
+ *
+ * @bus: The SPI slave
+ */
+ int (*release_bus)(struct udevice *bus);
+
+ /**
+ * Set the word length for SPI transactions
+ *
+ * Set the word length (number of bits per word) for SPI transactions.
+ *
+ * @bus: The SPI slave
+ * @wordlen: The number of bits in a word
+ *
+ * Returns: 0 on success, -ve on failure.
+ */
+ int (*set_wordlen)(struct udevice *bus, unsigned int wordlen);
+
+ /**
+ * SPI transfer
+ *
+ * This writes "bitlen" bits out the SPI MOSI port and simultaneously
+ * clocks "bitlen" bits in the SPI MISO port. That's just the way SPI
+ * works.
+ *
+ * The source of the outgoing bits is the "dout" parameter and the
+ * destination of the input bits is the "din" parameter. Note that
+ * "dout" and "din" can point to the same memory location, in which
+ * case the input data overwrites the output data (since both are
+ * buffered by temporary variables, this is OK).
+ *
+ * spi_xfer() interface:
+ * @dev: The slave device to communicate with
+ * @bitlen: How many bits to write and read.
+ * @dout: Pointer to a string of bits to send out. The bits are
+ * held in a byte array and are sent MSB first.
+ * @din: Pointer to a string of bits that will be filled in.
+ * @flags: A bitwise combination of SPI_XFER_* flags.
+ *
+ * Returns: 0 on success, not -1 on failure
+ */
+ int (*xfer)(struct udevice *dev, unsigned int bitlen, const void *dout,
+ void *din, unsigned long flags);
+
+ /**
+ * Set transfer speed.
+ * This sets a new speed to be applied for next spi_xfer().
+ * @bus: The SPI bus
+ * @hz: The transfer speed
+ * @return 0 if OK, -ve on error
+ */
+ int (*set_speed)(struct udevice *bus, uint hz);
+
+ /**
+ * Set the SPI mode/flags
+ *
+ * It is unclear if we want to set speed and mode together instead
+ * of separately.
+ *
+ * @bus: The SPI bus
+ * @mode: Requested SPI mode (SPI_... flags)
+ * @return 0 if OK, -ve on error
+ */
+ int (*set_mode)(struct udevice *bus, uint mode);
+
+ /**
+ * Get information on a chip select
+ *
+ * This is only called when the SPI uclass does not know about a
+ * chip select, i.e. it has no attached device. It gives the driver
+ * a chance to allow activity on that chip select even so.
+ *
+ * @bus: The SPI bus
+ * @cs: The chip select (0..n-1)
+ * @info: Returns information about the chip select, if valid.
+ * On entry info->dev is NULL
+ * @return 0 if OK (and @info is set up), -ENODEV if the chip select
+ * is invalid, other -ve value on error
+ */
+ int (*cs_info)(struct udevice *bus, uint cs, struct spi_cs_info *info);
+};
+
+struct dm_spi_emul_ops {
+ /**
+ * SPI transfer
+ *
+ * This writes "bitlen" bits out the SPI MOSI port and simultaneously
+ * clocks "bitlen" bits in the SPI MISO port. That's just the way SPI
+ * works. Here the device is a slave.
+ *
+ * The source of the outgoing bits is the "dout" parameter and the
+ * destination of the input bits is the "din" parameter. Note that
+ * "dout" and "din" can point to the same memory location, in which
+ * case the input data overwrites the output data (since both are
+ * buffered by temporary variables, this is OK).
+ *
+ * spi_xfer() interface:
+ * @slave: The SPI slave which will be sending/receiving the data.
+ * @bitlen: How many bits to write and read.
+ * @dout: Pointer to a string of bits sent to the device. The
+ * bits are held in a byte array and are sent MSB first.
+ * @din: Pointer to a string of bits that will be sent back to
+ * the master.
+ * @flags: A bitwise combination of SPI_XFER_* flags.
+ *
+ * Returns: 0 on success, not -1 on failure
+ */
+ int (*xfer)(struct udevice *slave, unsigned int bitlen,
+ const void *dout, void *din, unsigned long flags);
+};
+
+/**
+ * spi_find_bus_and_cs() - Find bus and slave devices by number
+ *
+ * Given a bus number and chip select, this finds the corresponding bus
+ * device and slave device. Neither device is activated by this function,
+ * although they may have been activated previously.
+ *
+ * @busnum: SPI bus number
+ * @cs: Chip select to look for
+ * @busp: Returns bus device
+ * @devp: Return slave device
+ * @return 0 if found, -ENODEV on error
+ */
+int spi_find_bus_and_cs(int busnum, int cs, struct udevice **busp,
+ struct udevice **devp);
+
+/**
+ * spi_get_bus_and_cs() - Find and activate bus and slave devices by number
+ *
+ * Given a bus number and chip select, this finds the corresponding bus
+ * device and slave device.
+ *
+ * If no such slave exists, and drv_name is not NULL, then a new slave device
+ * is automatically bound on this chip select.
+ *
+ * Ths new slave device is probed ready for use with the given speed and mode.
+ *
+ * @busnum: SPI bus number
+ * @cs: Chip select to look for
+ * @speed: SPI speed to use for this slave
+ * @mode: SPI mode to use for this slave
+ * @drv_name: Name of driver to attach to this chip select
+ * @dev_name: Name of the new device thus created
+ * @busp: Returns bus device
+ * @devp: Return slave device
+ * @return 0 if found, -ve on error
+ */
+int spi_get_bus_and_cs(int busnum, int cs, int speed, int mode,
+ const char *drv_name, const char *dev_name,
+ struct udevice **busp, struct spi_slave **devp);
+
+/**
+ * spi_chip_select() - Get the chip select for a slave
+ *
+ * @return the chip select this slave is attached to
+ */
+int spi_chip_select(struct udevice *slave);
+
+/**
+ * spi_find_chip_select() - Find the slave attached to chip select
+ *
+ * @bus: SPI bus to search
+ * @cs: Chip select to look for
+ * @devp: Returns the slave device if found
+ * @return 0 if found, -ENODEV on error
+ */
+int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp);
+
+/**
+ * spi_slave_ofdata_to_platdata() - decode standard SPI platform data
+ *
+ * This decodes the speed and mode for a slave from a device tree node
+ *
+ * @blob: Device tree blob
+ * @node: Node offset to read from
+ * @plat: Place to put the decoded information
+ */
+int spi_slave_ofdata_to_platdata(const void *blob, int node,
+ struct dm_spi_slave_platdata *plat);
+
+/**
+ * spi_cs_info() - Check information on a chip select
+ *
+ * This checks a particular chip select on a bus to see if it has a device
+ * attached, or is even valid.
+ *
+ * @bus: The SPI bus
+ * @cs: The chip select (0..n-1)
+ * @info: Returns information about the chip select, if valid
+ * @return 0 if OK (and @info is set up), -ENODEV if the chip select
+ * is invalid, other -ve value on error
+ */
+int spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info);
+
+struct sandbox_state;
+
+/**
+ * sandbox_spi_get_emul() - get an emulator for a SPI slave
+ *
+ * This provides a way to attach an emulated SPI device to a particular SPI
+ * slave, so that xfer() operations on the slave will be handled by the
+ * emulator. If a emulator already exists on that chip select it is returned.
+ * Otherwise one is created.
+ *
+ * @state: Sandbox state
+ * @bus: SPI bus requesting the emulator
+ * @slave: SPI slave device requesting the emulator
+ * @emuip: Returns pointer to emulator
+ * @return 0 if OK, -ve on error
+ */
+int sandbox_spi_get_emul(struct sandbox_state *state,
+ struct udevice *bus, struct udevice *slave,
+ struct udevice **emulp);
+
+/* Access the serial operations for a device */
+#define spi_get_ops(dev) ((struct dm_spi_ops *)(dev)->driver->ops)
+#define spi_emul_get_ops(dev) ((struct dm_spi_emul_ops *)(dev)->driver->ops)
+#endif /* CONFIG_DM_SPI */
+
#endif /* _SPI_H_ */