]>
Commit | Line | Data |
---|---|---|
e761ecdb SG |
1 | /* |
2 | * Copyright (c) 2012 The Chromium OS Authors. | |
3 | * | |
076bb44b BM |
4 | * TSC calibration codes are adapted from Linux kernel |
5 | * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c | |
6 | * | |
1a459660 | 7 | * SPDX-License-Identifier: GPL-2.0+ |
e761ecdb SG |
8 | */ |
9 | ||
10 | #include <common.h> | |
4e51fc23 | 11 | #include <dm.h> |
e761ecdb | 12 | #include <malloc.h> |
4e51fc23 | 13 | #include <timer.h> |
0b992e49 | 14 | #include <asm/cpu.h> |
e761ecdb SG |
15 | #include <asm/io.h> |
16 | #include <asm/i8254.h> | |
17 | #include <asm/ibmpc.h> | |
18 | #include <asm/msr.h> | |
19 | #include <asm/u-boot-x86.h> | |
20 | ||
076bb44b BM |
21 | /* CPU reference clock frequency: in KHz */ |
22 | #define FREQ_83 83200 | |
23 | #define FREQ_100 99840 | |
24 | #define FREQ_133 133200 | |
25 | #define FREQ_166 166400 | |
26 | ||
27 | #define MAX_NUM_FREQS 8 | |
28 | ||
e761ecdb SG |
29 | DECLARE_GLOBAL_DATA_PTR; |
30 | ||
076bb44b BM |
31 | /* |
32 | * According to Intel 64 and IA-32 System Programming Guide, | |
33 | * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be | |
34 | * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40]. | |
35 | * Unfortunately some Intel Atom SoCs aren't quite compliant to this, | |
36 | * so we need manually differentiate SoC families. This is what the | |
37 | * field msr_plat does. | |
38 | */ | |
39 | struct freq_desc { | |
40 | u8 x86_family; /* CPU family */ | |
41 | u8 x86_model; /* model */ | |
5c1b685e SG |
42 | /* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */ |
43 | u8 msr_plat; | |
076bb44b BM |
44 | u32 freqs[MAX_NUM_FREQS]; |
45 | }; | |
46 | ||
47 | static struct freq_desc freq_desc_tables[] = { | |
48 | /* PNW */ | |
49 | { 6, 0x27, 0, { 0, 0, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, | |
50 | /* CLV+ */ | |
51 | { 6, 0x35, 0, { 0, FREQ_133, 0, 0, 0, FREQ_100, 0, FREQ_83 } }, | |
52 | /* TNG */ | |
53 | { 6, 0x4a, 1, { 0, FREQ_100, FREQ_133, 0, 0, 0, 0, 0 } }, | |
54 | /* VLV2 */ | |
55 | { 6, 0x37, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_166, 0, 0, 0, 0 } }, | |
5c1b685e SG |
56 | /* Ivybridge */ |
57 | { 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0 } }, | |
076bb44b BM |
58 | /* ANN */ |
59 | { 6, 0x5a, 1, { FREQ_83, FREQ_100, FREQ_133, FREQ_100, 0, 0, 0, 0 } }, | |
60 | }; | |
61 | ||
62 | static int match_cpu(u8 family, u8 model) | |
63 | { | |
64 | int i; | |
65 | ||
66 | for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) { | |
67 | if ((family == freq_desc_tables[i].x86_family) && | |
68 | (model == freq_desc_tables[i].x86_model)) | |
69 | return i; | |
70 | } | |
71 | ||
72 | return -1; | |
73 | } | |
74 | ||
75 | /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */ | |
76 | #define id_to_freq(cpu_index, freq_id) \ | |
77 | (freq_desc_tables[cpu_index].freqs[freq_id]) | |
78 | ||
79 | /* | |
80 | * Do MSR calibration only for known/supported CPUs. | |
81 | * | |
82 | * Returns the calibration value or 0 if MSR calibration failed. | |
83 | */ | |
3ba6a0f4 | 84 | static unsigned long __maybe_unused try_msr_calibrate_tsc(void) |
076bb44b BM |
85 | { |
86 | u32 lo, hi, ratio, freq_id, freq; | |
87 | unsigned long res; | |
88 | int cpu_index; | |
89 | ||
0b992e49 BM |
90 | if (gd->arch.x86_vendor != X86_VENDOR_INTEL) |
91 | return 0; | |
92 | ||
076bb44b BM |
93 | cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model); |
94 | if (cpu_index < 0) | |
95 | return 0; | |
96 | ||
97 | if (freq_desc_tables[cpu_index].msr_plat) { | |
98 | rdmsr(MSR_PLATFORM_INFO, lo, hi); | |
d92e9c8d | 99 | ratio = (lo >> 8) & 0xff; |
076bb44b BM |
100 | } else { |
101 | rdmsr(MSR_IA32_PERF_STATUS, lo, hi); | |
102 | ratio = (hi >> 8) & 0x1f; | |
103 | } | |
104 | debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio); | |
105 | ||
5c1b685e SG |
106 | if (freq_desc_tables[cpu_index].msr_plat == 2) { |
107 | /* TODO: Figure out how best to deal with this */ | |
108 | freq = FREQ_100; | |
109 | debug("Using frequency: %u KHz\n", freq); | |
110 | } else { | |
111 | /* Get FSB FREQ ID */ | |
112 | rdmsr(MSR_FSB_FREQ, lo, hi); | |
113 | freq_id = lo & 0x7; | |
114 | freq = id_to_freq(cpu_index, freq_id); | |
115 | debug("Resolved frequency ID: %u, frequency: %u KHz\n", | |
116 | freq_id, freq); | |
117 | } | |
076bb44b BM |
118 | |
119 | /* TSC frequency = maximum resolved freq * maximum resolved bus ratio */ | |
120 | res = freq * ratio / 1000; | |
121 | debug("TSC runs at %lu MHz\n", res); | |
122 | ||
123 | return res; | |
076bb44b BM |
124 | } |
125 | ||
80de0495 BM |
126 | /* |
127 | * This reads the current MSB of the PIT counter, and | |
128 | * checks if we are running on sufficiently fast and | |
129 | * non-virtualized hardware. | |
130 | * | |
131 | * Our expectations are: | |
132 | * | |
133 | * - the PIT is running at roughly 1.19MHz | |
134 | * | |
135 | * - each IO is going to take about 1us on real hardware, | |
136 | * but we allow it to be much faster (by a factor of 10) or | |
137 | * _slightly_ slower (ie we allow up to a 2us read+counter | |
138 | * update - anything else implies a unacceptably slow CPU | |
139 | * or PIT for the fast calibration to work. | |
140 | * | |
141 | * - with 256 PIT ticks to read the value, we have 214us to | |
142 | * see the same MSB (and overhead like doing a single TSC | |
143 | * read per MSB value etc). | |
144 | * | |
145 | * - We're doing 2 reads per loop (LSB, MSB), and we expect | |
146 | * them each to take about a microsecond on real hardware. | |
147 | * So we expect a count value of around 100. But we'll be | |
148 | * generous, and accept anything over 50. | |
149 | * | |
150 | * - if the PIT is stuck, and we see *many* more reads, we | |
151 | * return early (and the next caller of pit_expect_msb() | |
152 | * then consider it a failure when they don't see the | |
153 | * next expected value). | |
154 | * | |
155 | * These expectations mean that we know that we have seen the | |
156 | * transition from one expected value to another with a fairly | |
157 | * high accuracy, and we didn't miss any events. We can thus | |
158 | * use the TSC value at the transitions to calculate a pretty | |
159 | * good value for the TSC frequencty. | |
160 | */ | |
161 | static inline int pit_verify_msb(unsigned char val) | |
162 | { | |
163 | /* Ignore LSB */ | |
164 | inb(0x42); | |
165 | return inb(0x42) == val; | |
166 | } | |
167 | ||
168 | static inline int pit_expect_msb(unsigned char val, u64 *tscp, | |
169 | unsigned long *deltap) | |
170 | { | |
171 | int count; | |
172 | u64 tsc = 0, prev_tsc = 0; | |
173 | ||
174 | for (count = 0; count < 50000; count++) { | |
175 | if (!pit_verify_msb(val)) | |
176 | break; | |
177 | prev_tsc = tsc; | |
178 | tsc = rdtsc(); | |
179 | } | |
180 | *deltap = rdtsc() - prev_tsc; | |
181 | *tscp = tsc; | |
182 | ||
183 | /* | |
184 | * We require _some_ success, but the quality control | |
185 | * will be based on the error terms on the TSC values. | |
186 | */ | |
187 | return count > 5; | |
188 | } | |
189 | ||
190 | /* | |
191 | * How many MSB values do we want to see? We aim for | |
192 | * a maximum error rate of 500ppm (in practice the | |
193 | * real error is much smaller), but refuse to spend | |
194 | * more than 50ms on it. | |
195 | */ | |
196 | #define MAX_QUICK_PIT_MS 50 | |
197 | #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) | |
198 | ||
3ba6a0f4 | 199 | static unsigned long __maybe_unused quick_pit_calibrate(void) |
80de0495 BM |
200 | { |
201 | int i; | |
202 | u64 tsc, delta; | |
203 | unsigned long d1, d2; | |
204 | ||
205 | /* Set the Gate high, disable speaker */ | |
206 | outb((inb(0x61) & ~0x02) | 0x01, 0x61); | |
207 | ||
208 | /* | |
209 | * Counter 2, mode 0 (one-shot), binary count | |
210 | * | |
211 | * NOTE! Mode 2 decrements by two (and then the | |
212 | * output is flipped each time, giving the same | |
213 | * final output frequency as a decrement-by-one), | |
214 | * so mode 0 is much better when looking at the | |
215 | * individual counts. | |
216 | */ | |
217 | outb(0xb0, 0x43); | |
218 | ||
219 | /* Start at 0xffff */ | |
220 | outb(0xff, 0x42); | |
221 | outb(0xff, 0x42); | |
222 | ||
223 | /* | |
224 | * The PIT starts counting at the next edge, so we | |
225 | * need to delay for a microsecond. The easiest way | |
226 | * to do that is to just read back the 16-bit counter | |
227 | * once from the PIT. | |
228 | */ | |
229 | pit_verify_msb(0); | |
230 | ||
231 | if (pit_expect_msb(0xff, &tsc, &d1)) { | |
232 | for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { | |
233 | if (!pit_expect_msb(0xff-i, &delta, &d2)) | |
234 | break; | |
235 | ||
236 | /* | |
237 | * Iterate until the error is less than 500 ppm | |
238 | */ | |
239 | delta -= tsc; | |
240 | if (d1+d2 >= delta >> 11) | |
241 | continue; | |
242 | ||
243 | /* | |
244 | * Check the PIT one more time to verify that | |
245 | * all TSC reads were stable wrt the PIT. | |
246 | * | |
247 | * This also guarantees serialization of the | |
248 | * last cycle read ('d2') in pit_expect_msb. | |
249 | */ | |
250 | if (!pit_verify_msb(0xfe - i)) | |
251 | break; | |
252 | goto success; | |
253 | } | |
254 | } | |
255 | debug("Fast TSC calibration failed\n"); | |
256 | return 0; | |
257 | ||
258 | success: | |
259 | /* | |
260 | * Ok, if we get here, then we've seen the | |
261 | * MSB of the PIT decrement 'i' times, and the | |
262 | * error has shrunk to less than 500 ppm. | |
263 | * | |
264 | * As a result, we can depend on there not being | |
265 | * any odd delays anywhere, and the TSC reads are | |
266 | * reliable (within the error). | |
267 | * | |
268 | * kHz = ticks / time-in-seconds / 1000; | |
269 | * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 | |
270 | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) | |
271 | */ | |
272 | delta *= PIT_TICK_RATE; | |
273 | delta /= (i*256*1000); | |
274 | debug("Fast TSC calibration using PIT\n"); | |
275 | return delta / 1000; | |
276 | } | |
277 | ||
e761ecdb | 278 | /* Get the speed of the TSC timer in MHz */ |
2f80fc50 | 279 | unsigned notrace long get_tbclk_mhz(void) |
e761ecdb | 280 | { |
4e51fc23 | 281 | return get_tbclk() / 1000000; |
e761ecdb SG |
282 | } |
283 | ||
e761ecdb SG |
284 | static ulong get_ms_timer(void) |
285 | { | |
286 | return (get_ticks() * 1000) / get_tbclk(); | |
287 | } | |
288 | ||
289 | ulong get_timer(ulong base) | |
290 | { | |
291 | return get_ms_timer() - base; | |
292 | } | |
293 | ||
2f80fc50 | 294 | ulong notrace timer_get_us(void) |
e761ecdb SG |
295 | { |
296 | return get_ticks() / get_tbclk_mhz(); | |
297 | } | |
298 | ||
299 | ulong timer_get_boot_us(void) | |
300 | { | |
301 | return timer_get_us(); | |
302 | } | |
303 | ||
304 | void __udelay(unsigned long usec) | |
305 | { | |
306 | u64 now = get_ticks(); | |
307 | u64 stop; | |
308 | ||
309 | stop = now + usec * get_tbclk_mhz(); | |
310 | ||
311 | while ((int64_t)(stop - get_ticks()) > 0) | |
417576c2 MY |
312 | #if defined(CONFIG_QEMU) && defined(CONFIG_SMP) |
313 | /* | |
314 | * Add a 'pause' instruction on qemu target, | |
315 | * to give other VCPUs a chance to run. | |
316 | */ | |
317 | asm volatile("pause"); | |
318 | #else | |
e761ecdb | 319 | ; |
417576c2 | 320 | #endif |
e761ecdb SG |
321 | } |
322 | ||
4e51fc23 BM |
323 | static int tsc_timer_get_count(struct udevice *dev, u64 *count) |
324 | { | |
325 | u64 now_tick = rdtsc(); | |
326 | ||
327 | *count = now_tick - gd->arch.tsc_base; | |
328 | ||
329 | return 0; | |
330 | } | |
331 | ||
332 | static int tsc_timer_probe(struct udevice *dev) | |
333 | { | |
334 | struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev); | |
335 | ||
336 | gd->arch.tsc_base = rdtsc(); | |
337 | ||
338 | /* | |
339 | * If there is no clock frequency specified in the device tree, | |
340 | * calibrate it by ourselves. | |
341 | */ | |
342 | if (!uc_priv->clock_rate) { | |
343 | unsigned long fast_calibrate; | |
344 | ||
345 | fast_calibrate = try_msr_calibrate_tsc(); | |
346 | if (!fast_calibrate) { | |
347 | fast_calibrate = quick_pit_calibrate(); | |
348 | if (!fast_calibrate) | |
349 | panic("TSC frequency is ZERO"); | |
350 | } | |
351 | ||
352 | uc_priv->clock_rate = fast_calibrate * 1000000; | |
353 | } | |
354 | ||
355 | return 0; | |
356 | } | |
357 | ||
358 | static const struct timer_ops tsc_timer_ops = { | |
359 | .get_count = tsc_timer_get_count, | |
360 | }; | |
361 | ||
362 | static const struct udevice_id tsc_timer_ids[] = { | |
363 | { .compatible = "x86,tsc-timer", }, | |
364 | { } | |
365 | }; | |
366 | ||
367 | U_BOOT_DRIVER(tsc_timer) = { | |
368 | .name = "tsc_timer", | |
369 | .id = UCLASS_TIMER, | |
370 | .of_match = tsc_timer_ids, | |
371 | .probe = tsc_timer_probe, | |
372 | .ops = &tsc_timer_ops, | |
373 | .flags = DM_FLAG_PRE_RELOC, | |
374 | }; |