]>
Commit | Line | Data |
---|---|---|
7b64fef3 WD |
1 | /* |
2 | * Copyright (C) 2003 Bernardo Innocenti <[email protected]> | |
3 | * | |
4 | * Based on former do_div() implementation from asm-parisc/div64.h: | |
5 | * Copyright (C) 1999 Hewlett-Packard Co | |
6 | * Copyright (C) 1999 David Mosberger-Tang <[email protected]> | |
7 | * | |
8 | * | |
9 | * Generic C version of 64bit/32bit division and modulo, with | |
10 | * 64bit result and 32bit remainder. | |
11 | * | |
12 | * The fast case for (n>>32 == 0) is handled inline by do_div(). | |
13 | * | |
14 | * Code generated for this function might be very inefficient | |
15 | * for some CPUs. __div64_32() can be overridden by linking arch-specific | |
0342e335 PF |
16 | * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S |
17 | * or by defining a preprocessor macro in arch/include/asm/div64.h. | |
7b64fef3 WD |
18 | */ |
19 | ||
cd93d625 | 20 | #include <linux/bitops.h> |
0342e335 PF |
21 | #include <linux/compat.h> |
22 | #include <linux/kernel.h> | |
23 | #include <linux/math64.h> | |
7b64fef3 | 24 | |
0342e335 PF |
25 | /* Not needed on 64bit architectures */ |
26 | #if BITS_PER_LONG == 32 | |
27 | ||
28 | #ifndef __div64_32 | |
f611a46e SG |
29 | /* |
30 | * Don't instrument this function as it may be called from tracing code, since | |
31 | * it needs to read the timer and this often requires calling do_div(), which | |
32 | * calls this function. | |
33 | */ | |
34 | uint32_t __attribute__((weak, no_instrument_function)) __div64_32(u64 *n, | |
35 | u32 base) | |
7b64fef3 | 36 | { |
ca49b2c6 SG |
37 | u64 rem = *n; |
38 | u64 b = base; | |
39 | u64 res, d = 1; | |
40 | u32 high = rem >> 32; | |
7b64fef3 WD |
41 | |
42 | /* Reduce the thing a bit first */ | |
43 | res = 0; | |
44 | if (high >= base) { | |
45 | high /= base; | |
ca49b2c6 SG |
46 | res = (u64)high << 32; |
47 | rem -= (u64)(high * base) << 32; | |
7b64fef3 WD |
48 | } |
49 | ||
50 | while ((int64_t)b > 0 && b < rem) { | |
51 | b = b+b; | |
52 | d = d+d; | |
53 | } | |
54 | ||
55 | do { | |
56 | if (rem >= b) { | |
57 | rem -= b; | |
58 | res += d; | |
59 | } | |
60 | b >>= 1; | |
61 | d >>= 1; | |
62 | } while (d); | |
63 | ||
64 | *n = res; | |
65 | return rem; | |
66 | } | |
0342e335 PF |
67 | EXPORT_SYMBOL(__div64_32); |
68 | #endif | |
69 | ||
70 | #ifndef div_s64_rem | |
71 | s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder) | |
72 | { | |
73 | u64 quotient; | |
74 | ||
75 | if (dividend < 0) { | |
76 | quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); | |
77 | *remainder = -*remainder; | |
78 | if (divisor > 0) | |
79 | quotient = -quotient; | |
80 | } else { | |
81 | quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); | |
82 | if (divisor < 0) | |
83 | quotient = -quotient; | |
84 | } | |
85 | return quotient; | |
86 | } | |
87 | EXPORT_SYMBOL(div_s64_rem); | |
88 | #endif | |
89 | ||
90 | /** | |
91 | * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder | |
92 | * @dividend: 64bit dividend | |
93 | * @divisor: 64bit divisor | |
94 | * @remainder: 64bit remainder | |
95 | * | |
96 | * This implementation is a comparable to algorithm used by div64_u64. | |
97 | * But this operation, which includes math for calculating the remainder, | |
98 | * is kept distinct to avoid slowing down the div64_u64 operation on 32bit | |
99 | * systems. | |
100 | */ | |
101 | #ifndef div64_u64_rem | |
102 | u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder) | |
103 | { | |
104 | u32 high = divisor >> 32; | |
105 | u64 quot; | |
106 | ||
107 | if (high == 0) { | |
108 | u32 rem32; | |
109 | quot = div_u64_rem(dividend, divisor, &rem32); | |
110 | *remainder = rem32; | |
111 | } else { | |
112 | int n = 1 + fls(high); | |
113 | quot = div_u64(dividend >> n, divisor >> n); | |
114 | ||
115 | if (quot != 0) | |
116 | quot--; | |
117 | ||
118 | *remainder = dividend - quot * divisor; | |
119 | if (*remainder >= divisor) { | |
120 | quot++; | |
121 | *remainder -= divisor; | |
122 | } | |
123 | } | |
124 | ||
125 | return quot; | |
126 | } | |
127 | EXPORT_SYMBOL(div64_u64_rem); | |
128 | #endif | |
129 | ||
130 | /** | |
131 | * div64_u64 - unsigned 64bit divide with 64bit divisor | |
132 | * @dividend: 64bit dividend | |
133 | * @divisor: 64bit divisor | |
134 | * | |
135 | * This implementation is a modified version of the algorithm proposed | |
136 | * by the book 'Hacker's Delight'. The original source and full proof | |
137 | * can be found here and is available for use without restriction. | |
138 | * | |
139 | * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt' | |
140 | */ | |
141 | #ifndef div64_u64 | |
142 | u64 div64_u64(u64 dividend, u64 divisor) | |
143 | { | |
144 | u32 high = divisor >> 32; | |
145 | u64 quot; | |
146 | ||
147 | if (high == 0) { | |
148 | quot = div_u64(dividend, divisor); | |
149 | } else { | |
150 | int n = 1 + fls(high); | |
151 | quot = div_u64(dividend >> n, divisor >> n); | |
152 | ||
153 | if (quot != 0) | |
154 | quot--; | |
155 | if ((dividend - quot * divisor) >= divisor) | |
156 | quot++; | |
157 | } | |
158 | ||
159 | return quot; | |
160 | } | |
161 | EXPORT_SYMBOL(div64_u64); | |
162 | #endif | |
163 | ||
164 | /** | |
165 | * div64_s64 - signed 64bit divide with 64bit divisor | |
166 | * @dividend: 64bit dividend | |
167 | * @divisor: 64bit divisor | |
168 | */ | |
169 | #ifndef div64_s64 | |
170 | s64 div64_s64(s64 dividend, s64 divisor) | |
171 | { | |
172 | s64 quot, t; | |
173 | ||
174 | quot = div64_u64(abs(dividend), abs(divisor)); | |
175 | t = (dividend ^ divisor) >> 63; | |
176 | ||
177 | return (quot ^ t) - t; | |
178 | } | |
179 | EXPORT_SYMBOL(div64_s64); | |
180 | #endif | |
181 | ||
182 | #endif /* BITS_PER_LONG == 32 */ | |
183 | ||
184 | /* | |
185 | * Iterative div/mod for use when dividend is not expected to be much | |
186 | * bigger than divisor. | |
187 | */ | |
188 | u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder) | |
189 | { | |
190 | return __iter_div_u64_rem(dividend, divisor, remainder); | |
191 | } | |
192 | EXPORT_SYMBOL(iter_div_u64_rem); |