]> Git Repo - u-boot.git/blame - drivers/nvme/nvme.c
blk: Switch over to using uclass IDs
[u-boot.git] / drivers / nvme / nvme.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
982388ea
ZZ
2/*
3 * Copyright (C) 2017 NXP Semiconductors
4 * Copyright (C) 2017 Bin Meng <[email protected]>
982388ea
ZZ
5 */
6
7#include <common.h>
e6f6f9e6 8#include <blk.h>
1eb69ae4 9#include <cpu_func.h>
982388ea
ZZ
10#include <dm.h>
11#include <errno.h>
f7ae49fc 12#include <log.h>
336d4615 13#include <malloc.h>
982388ea 14#include <memalign.h>
1045315d 15#include <time.h>
982388ea 16#include <dm/device-internal.h>
336d4615 17#include <linux/compat.h>
982388ea
ZZ
18#include "nvme.h"
19
982388ea
ZZ
20#define NVME_Q_DEPTH 2
21#define NVME_AQ_DEPTH 2
22#define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
23#define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
d0c04926
AP
24#define NVME_CQ_ALLOCATION ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
25 ARCH_DMA_MINALIGN)
982388ea
ZZ
26#define ADMIN_TIMEOUT 60
27#define IO_TIMEOUT 30
28#define MAX_PRP_POOL 512
29
982388ea
ZZ
30static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
31{
32 u32 bit = enabled ? NVME_CSTS_RDY : 0;
04d2a384
BM
33 int timeout;
34 ulong start;
982388ea 35
04d2a384
BM
36 /* Timeout field in the CAP register is in 500 millisecond units */
37 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
982388ea 38
04d2a384
BM
39 start = get_timer(0);
40 while (get_timer(start) < timeout) {
41 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
42 return 0;
43 }
44
45 return -ETIME;
982388ea
ZZ
46}
47
48static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
49 int total_len, u64 dma_addr)
50{
51 u32 page_size = dev->page_size;
52 int offset = dma_addr & (page_size - 1);
53 u64 *prp_pool;
54 int length = total_len;
55 int i, nprps;
859b33c9 56 u32 prps_per_page = page_size >> 3;
b21dcebf
AW
57 u32 num_pages;
58
982388ea
ZZ
59 length -= (page_size - offset);
60
61 if (length <= 0) {
62 *prp2 = 0;
63 return 0;
64 }
65
66 if (length)
67 dma_addr += (page_size - offset);
68
69 if (length <= page_size) {
70 *prp2 = dma_addr;
71 return 0;
72 }
73
74 nprps = DIV_ROUND_UP(length, page_size);
4ca8d95c 75 num_pages = DIV_ROUND_UP(nprps - 1, prps_per_page - 1);
982388ea
ZZ
76
77 if (nprps > dev->prp_entry_num) {
78 free(dev->prp_pool);
b21dcebf
AW
79 /*
80 * Always increase in increments of pages. It doesn't waste
81 * much memory and reduces the number of allocations.
82 */
83 dev->prp_pool = memalign(page_size, num_pages * page_size);
982388ea
ZZ
84 if (!dev->prp_pool) {
85 printf("Error: malloc prp_pool fail\n");
86 return -ENOMEM;
87 }
4ca8d95c 88 dev->prp_entry_num = num_pages * (prps_per_page - 1) + 1;
982388ea
ZZ
89 }
90
91 prp_pool = dev->prp_pool;
92 i = 0;
93 while (nprps) {
4ca8d95c 94 if ((i == (prps_per_page - 1)) && nprps > 1) {
982388ea
ZZ
95 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
96 page_size);
97 i = 0;
98 prp_pool += page_size;
99 }
100 *(prp_pool + i++) = cpu_to_le64(dma_addr);
101 dma_addr += page_size;
102 nprps--;
103 }
104 *prp2 = (ulong)dev->prp_pool;
105
8c403402 106 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
4ca8d95c 107 num_pages * page_size);
8c403402 108
982388ea
ZZ
109 return 0;
110}
111
112static __le16 nvme_get_cmd_id(void)
113{
114 static unsigned short cmdid;
115
116 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
117}
118
119static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
120{
d0c04926
AP
121 /*
122 * Single CQ entries are always smaller than a cache line, so we
123 * can't invalidate them individually. However CQ entries are
124 * read only by the CPU, so it's safe to always invalidate all of them,
125 * as the cache line should never become dirty.
126 */
127 ulong start = (ulong)&nvmeq->cqes[0];
128 ulong stop = start + NVME_CQ_ALLOCATION;
982388ea
ZZ
129
130 invalidate_dcache_range(start, stop);
131
b12f6237 132 return readw(&(nvmeq->cqes[index].status));
982388ea
ZZ
133}
134
135/**
136 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
137 *
138 * @nvmeq: The queue to use
139 * @cmd: The command to send
140 */
141static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
142{
19d9dad3 143 struct nvme_ops *ops;
982388ea
ZZ
144 u16 tail = nvmeq->sq_tail;
145
146 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
147 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
148 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
149
19d9dad3
MK
150 ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
151 if (ops && ops->submit_cmd) {
152 ops->submit_cmd(nvmeq, cmd);
153 return;
154 }
155
982388ea
ZZ
156 if (++tail == nvmeq->q_depth)
157 tail = 0;
158 writel(tail, nvmeq->q_db);
159 nvmeq->sq_tail = tail;
160}
161
162static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
163 struct nvme_command *cmd,
164 u32 *result, unsigned timeout)
165{
19d9dad3 166 struct nvme_ops *ops;
982388ea
ZZ
167 u16 head = nvmeq->cq_head;
168 u16 phase = nvmeq->cq_phase;
169 u16 status;
170 ulong start_time;
171 ulong timeout_us = timeout * 100000;
172
173 cmd->common.command_id = nvme_get_cmd_id();
174 nvme_submit_cmd(nvmeq, cmd);
175
176 start_time = timer_get_us();
177
178 for (;;) {
179 status = nvme_read_completion_status(nvmeq, head);
180 if ((status & 0x01) == phase)
181 break;
182 if (timeout_us > 0 && (timer_get_us() - start_time)
183 >= timeout_us)
184 return -ETIMEDOUT;
185 }
186
19d9dad3
MK
187 ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
188 if (ops && ops->complete_cmd)
189 ops->complete_cmd(nvmeq, cmd);
190
982388ea
ZZ
191 status >>= 1;
192 if (status) {
193 printf("ERROR: status = %x, phase = %d, head = %d\n",
194 status, phase, head);
195 status = 0;
196 if (++head == nvmeq->q_depth) {
197 head = 0;
198 phase = !phase;
199 }
200 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
201 nvmeq->cq_head = head;
202 nvmeq->cq_phase = phase;
203
204 return -EIO;
205 }
206
207 if (result)
b12f6237 208 *result = readl(&(nvmeq->cqes[head].result));
982388ea
ZZ
209
210 if (++head == nvmeq->q_depth) {
211 head = 0;
212 phase = !phase;
213 }
214 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
215 nvmeq->cq_head = head;
216 nvmeq->cq_phase = phase;
217
218 return status;
219}
220
221static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
222 u32 *result)
223{
722e668d
BM
224 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
225 result, ADMIN_TIMEOUT);
982388ea
ZZ
226}
227
228static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
229 int qid, int depth)
230{
19d9dad3 231 struct nvme_ops *ops;
982388ea
ZZ
232 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
233 if (!nvmeq)
234 return NULL;
235 memset(nvmeq, 0, sizeof(*nvmeq));
236
d0c04926 237 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
982388ea
ZZ
238 if (!nvmeq->cqes)
239 goto free_nvmeq;
240 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
241
242 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
243 if (!nvmeq->sq_cmds)
244 goto free_queue;
245 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
246
247 nvmeq->dev = dev;
248
249 nvmeq->cq_head = 0;
250 nvmeq->cq_phase = 1;
251 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
252 nvmeq->q_depth = depth;
253 nvmeq->qid = qid;
254 dev->queue_count++;
255 dev->queues[qid] = nvmeq;
256
19d9dad3
MK
257 ops = (struct nvme_ops *)dev->udev->driver->ops;
258 if (ops && ops->setup_queue)
259 ops->setup_queue(nvmeq);
260
982388ea
ZZ
261 return nvmeq;
262
263 free_queue:
264 free((void *)nvmeq->cqes);
265 free_nvmeq:
266 free(nvmeq);
267
268 return NULL;
269}
270
271static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
272{
273 struct nvme_command c;
274
275 memset(&c, 0, sizeof(c));
276 c.delete_queue.opcode = opcode;
277 c.delete_queue.qid = cpu_to_le16(id);
278
279 return nvme_submit_admin_cmd(dev, &c, NULL);
280}
281
282static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
283{
284 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
285}
286
287static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
288{
289 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
290}
291
292static int nvme_enable_ctrl(struct nvme_dev *dev)
293{
294 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
295 dev->ctrl_config |= NVME_CC_ENABLE;
b12f6237 296 writel(dev->ctrl_config, &dev->bar->cc);
982388ea
ZZ
297
298 return nvme_wait_ready(dev, true);
299}
300
301static int nvme_disable_ctrl(struct nvme_dev *dev)
302{
303 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
304 dev->ctrl_config &= ~NVME_CC_ENABLE;
b12f6237 305 writel(dev->ctrl_config, &dev->bar->cc);
982388ea
ZZ
306
307 return nvme_wait_ready(dev, false);
308}
309
310static void nvme_free_queue(struct nvme_queue *nvmeq)
311{
312 free((void *)nvmeq->cqes);
313 free(nvmeq->sq_cmds);
314 free(nvmeq);
315}
316
317static void nvme_free_queues(struct nvme_dev *dev, int lowest)
318{
319 int i;
320
321 for (i = dev->queue_count - 1; i >= lowest; i--) {
322 struct nvme_queue *nvmeq = dev->queues[i];
323 dev->queue_count--;
324 dev->queues[i] = NULL;
325 nvme_free_queue(nvmeq);
326 }
327}
328
329static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
330{
331 struct nvme_dev *dev = nvmeq->dev;
332
333 nvmeq->sq_tail = 0;
334 nvmeq->cq_head = 0;
335 nvmeq->cq_phase = 1;
336 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
337 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
338 flush_dcache_range((ulong)nvmeq->cqes,
d0c04926 339 (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
982388ea
ZZ
340 dev->online_queues++;
341}
342
343static int nvme_configure_admin_queue(struct nvme_dev *dev)
344{
345 int result;
346 u32 aqa;
b65c6921 347 u64 cap = dev->cap;
982388ea
ZZ
348 struct nvme_queue *nvmeq;
349 /* most architectures use 4KB as the page size */
350 unsigned page_shift = 12;
351 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
352 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
353
354 if (page_shift < dev_page_min) {
355 debug("Device minimum page size (%u) too large for host (%u)\n",
356 1 << dev_page_min, 1 << page_shift);
357 return -ENODEV;
358 }
359
360 if (page_shift > dev_page_max) {
361 debug("Device maximum page size (%u) smaller than host (%u)\n",
362 1 << dev_page_max, 1 << page_shift);
363 page_shift = dev_page_max;
364 }
365
366 result = nvme_disable_ctrl(dev);
367 if (result < 0)
368 return result;
369
722e668d 370 nvmeq = dev->queues[NVME_ADMIN_Q];
982388ea
ZZ
371 if (!nvmeq) {
372 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
373 if (!nvmeq)
374 return -ENOMEM;
375 }
376
377 aqa = nvmeq->q_depth - 1;
378 aqa |= aqa << 16;
982388ea
ZZ
379
380 dev->page_size = 1 << page_shift;
381
382 dev->ctrl_config = NVME_CC_CSS_NVM;
383 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
384 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
385 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
386
387 writel(aqa, &dev->bar->aqa);
388 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
389 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
390
391 result = nvme_enable_ctrl(dev);
392 if (result)
393 goto free_nvmeq;
394
395 nvmeq->cq_vector = 0;
396
722e668d 397 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
982388ea
ZZ
398
399 return result;
400
401 free_nvmeq:
402 nvme_free_queues(dev, 0);
403
404 return result;
405}
406
407static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
408 struct nvme_queue *nvmeq)
409{
410 struct nvme_command c;
411 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
412
413 memset(&c, 0, sizeof(c));
414 c.create_cq.opcode = nvme_admin_create_cq;
415 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
416 c.create_cq.cqid = cpu_to_le16(qid);
417 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
418 c.create_cq.cq_flags = cpu_to_le16(flags);
419 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
420
421 return nvme_submit_admin_cmd(dev, &c, NULL);
422}
423
424static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
425 struct nvme_queue *nvmeq)
426{
427 struct nvme_command c;
428 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
429
430 memset(&c, 0, sizeof(c));
431 c.create_sq.opcode = nvme_admin_create_sq;
432 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
433 c.create_sq.sqid = cpu_to_le16(qid);
434 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
435 c.create_sq.sq_flags = cpu_to_le16(flags);
436 c.create_sq.cqid = cpu_to_le16(qid);
437
438 return nvme_submit_admin_cmd(dev, &c, NULL);
439}
440
441int nvme_identify(struct nvme_dev *dev, unsigned nsid,
442 unsigned cns, dma_addr_t dma_addr)
443{
444 struct nvme_command c;
445 u32 page_size = dev->page_size;
446 int offset = dma_addr & (page_size - 1);
447 int length = sizeof(struct nvme_id_ctrl);
704e040a 448 int ret;
982388ea
ZZ
449
450 memset(&c, 0, sizeof(c));
451 c.identify.opcode = nvme_admin_identify;
452 c.identify.nsid = cpu_to_le32(nsid);
453 c.identify.prp1 = cpu_to_le64(dma_addr);
454
455 length -= (page_size - offset);
456 if (length <= 0) {
457 c.identify.prp2 = 0;
458 } else {
459 dma_addr += (page_size - offset);
3e185629 460 c.identify.prp2 = cpu_to_le64(dma_addr);
982388ea
ZZ
461 }
462
463 c.identify.cns = cpu_to_le32(cns);
464
1a027a90
JT
465 invalidate_dcache_range(dma_addr,
466 dma_addr + sizeof(struct nvme_id_ctrl));
467
704e040a
BM
468 ret = nvme_submit_admin_cmd(dev, &c, NULL);
469 if (!ret)
470 invalidate_dcache_range(dma_addr,
471 dma_addr + sizeof(struct nvme_id_ctrl));
472
473 return ret;
982388ea
ZZ
474}
475
476int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
477 dma_addr_t dma_addr, u32 *result)
478{
479 struct nvme_command c;
4c498796 480 int ret;
982388ea
ZZ
481
482 memset(&c, 0, sizeof(c));
483 c.features.opcode = nvme_admin_get_features;
484 c.features.nsid = cpu_to_le32(nsid);
485 c.features.prp1 = cpu_to_le64(dma_addr);
486 c.features.fid = cpu_to_le32(fid);
487
4c498796
AP
488 ret = nvme_submit_admin_cmd(dev, &c, result);
489
704e040a 490 /*
4c498796
AP
491 * TODO: Add some cache invalidation when a DMA buffer is involved
492 * in the request, here and before the command gets submitted. The
493 * buffer size varies by feature, also some features use a different
494 * field in the command packet to hold the buffer address.
495 * Section 5.21.1 (Set Features command) in the NVMe specification
496 * details the buffer requirements for each feature.
497 *
498 * At the moment there is no user of this function.
704e040a
BM
499 */
500
4c498796 501 return ret;
982388ea
ZZ
502}
503
504int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
505 dma_addr_t dma_addr, u32 *result)
506{
507 struct nvme_command c;
508
509 memset(&c, 0, sizeof(c));
510 c.features.opcode = nvme_admin_set_features;
511 c.features.prp1 = cpu_to_le64(dma_addr);
512 c.features.fid = cpu_to_le32(fid);
513 c.features.dword11 = cpu_to_le32(dword11);
514
704e040a 515 /*
4c498796
AP
516 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
517 * involved in the request. The buffer size varies by feature, also
518 * some features use a different field in the command packet to hold
519 * the buffer address. Section 5.21.1 (Set Features command) in the
520 * NVMe specification details the buffer requirements for each
521 * feature.
522 * At the moment the only user of this function is not using
523 * any DMA buffer at all.
704e040a
BM
524 */
525
982388ea
ZZ
526 return nvme_submit_admin_cmd(dev, &c, result);
527}
528
529static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
530{
531 struct nvme_dev *dev = nvmeq->dev;
532 int result;
533
534 nvmeq->cq_vector = qid - 1;
535 result = nvme_alloc_cq(dev, qid, nvmeq);
536 if (result < 0)
537 goto release_cq;
538
539 result = nvme_alloc_sq(dev, qid, nvmeq);
540 if (result < 0)
541 goto release_sq;
542
543 nvme_init_queue(nvmeq, qid);
544
545 return result;
546
547 release_sq:
548 nvme_delete_sq(dev, qid);
549 release_cq:
550 nvme_delete_cq(dev, qid);
551
552 return result;
553}
554
555static int nvme_set_queue_count(struct nvme_dev *dev, int count)
556{
557 int status;
558 u32 result;
559 u32 q_count = (count - 1) | ((count - 1) << 16);
560
561 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
562 q_count, 0, &result);
563
564 if (status < 0)
565 return status;
566 if (status > 1)
567 return 0;
568
569 return min(result & 0xffff, result >> 16) + 1;
570}
571
572static void nvme_create_io_queues(struct nvme_dev *dev)
573{
574 unsigned int i;
575
576 for (i = dev->queue_count; i <= dev->max_qid; i++)
577 if (!nvme_alloc_queue(dev, i, dev->q_depth))
578 break;
579
580 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
581 if (nvme_create_queue(dev->queues[i], i))
582 break;
583}
584
585static int nvme_setup_io_queues(struct nvme_dev *dev)
586{
587 int nr_io_queues;
588 int result;
589
590 nr_io_queues = 1;
591 result = nvme_set_queue_count(dev, nr_io_queues);
592 if (result <= 0)
593 return result;
594
982388ea
ZZ
595 dev->max_qid = nr_io_queues;
596
597 /* Free previously allocated queues */
598 nvme_free_queues(dev, nr_io_queues + 1);
599 nvme_create_io_queues(dev);
600
601 return 0;
602}
603
604static int nvme_get_info_from_identify(struct nvme_dev *dev)
605{
2f83481d 606 struct nvme_id_ctrl *ctrl;
982388ea 607 int ret;
b65c6921 608 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
982388ea 609
2f83481d
PW
610 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
611 if (!ctrl)
612 return -ENOMEM;
613
5b2a20e9 614 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
2f83481d
PW
615 if (ret) {
616 free(ctrl);
982388ea 617 return -EIO;
2f83481d 618 }
982388ea
ZZ
619
620 dev->nn = le32_to_cpu(ctrl->nn);
621 dev->vwc = ctrl->vwc;
622 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
623 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
624 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
625 if (ctrl->mdts)
626 dev->max_transfer_shift = (ctrl->mdts + shift);
beb5f521
BM
627 else {
628 /*
629 * Maximum Data Transfer Size (MDTS) field indicates the maximum
630 * data transfer size between the host and the controller. The
631 * host should not submit a command that exceeds this transfer
632 * size. The value is in units of the minimum memory page size
633 * and is reported as a power of two (2^n).
634 *
635 * The spec also says: a value of 0h indicates no restrictions
636 * on transfer size. But in nvme_blk_read/write() below we have
637 * the following algorithm for maximum number of logic blocks
638 * per transfer:
639 *
640 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
641 *
642 * In order for lbas not to overflow, the maximum number is 15
643 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
644 * Let's use 20 which provides 1MB size.
645 */
646 dev->max_transfer_shift = 20;
647 }
982388ea 648
2f83481d 649 free(ctrl);
982388ea
ZZ
650 return 0;
651}
652
c50b2883
PW
653int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
654{
655 struct nvme_ns *ns = dev_get_priv(udev);
656
657 if (ns_id)
658 *ns_id = ns->ns_id;
659 if (eui64)
660 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
661
662 return 0;
663}
664
982388ea
ZZ
665int nvme_scan_namespace(void)
666{
667 struct uclass *uc;
668 struct udevice *dev;
669 int ret;
670
671 ret = uclass_get(UCLASS_NVME, &uc);
672 if (ret)
673 return ret;
674
675 uclass_foreach_dev(dev, uc) {
676 ret = device_probe(dev);
677 if (ret)
678 return ret;
679 }
680
681 return 0;
682}
683
684static int nvme_blk_probe(struct udevice *udev)
685{
686 struct nvme_dev *ndev = dev_get_priv(udev->parent);
caa4daa2 687 struct blk_desc *desc = dev_get_uclass_plat(udev);
982388ea
ZZ
688 struct nvme_ns *ns = dev_get_priv(udev);
689 u8 flbas;
2f83481d
PW
690 struct nvme_id_ns *id;
691
692 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
693 if (!id)
694 return -ENOMEM;
982388ea 695
982388ea 696 ns->dev = ndev;
18aa5a41 697 /* extract the namespace id from the block device name */
8c60d40d 698 ns->ns_id = trailing_strtol(udev->name);
2f83481d
PW
699 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
700 free(id);
982388ea 701 return -EIO;
2f83481d 702 }
982388ea 703
c50b2883 704 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
982388ea
ZZ
705 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
706 ns->flbas = flbas;
707 ns->lba_shift = id->lbaf[flbas].ds;
982388ea
ZZ
708 list_add(&ns->list, &ndev->namespaces);
709
757cc4b1 710 desc->lba = le64_to_cpu(id->nsze);
982388ea
ZZ
711 desc->log2blksz = ns->lba_shift;
712 desc->blksz = 1 << ns->lba_shift;
713 desc->bdev = udev;
045474be 714 memcpy(desc->vendor, ndev->vendor, sizeof(ndev->vendor));
982388ea
ZZ
715 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
716 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
982388ea 717
2f83481d 718 free(id);
982388ea
ZZ
719 return 0;
720}
721
625a483c
BM
722static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
723 lbaint_t blkcnt, void *buffer, bool read)
982388ea
ZZ
724{
725 struct nvme_ns *ns = dev_get_priv(udev);
726 struct nvme_dev *dev = ns->dev;
727 struct nvme_command c;
caa4daa2 728 struct blk_desc *desc = dev_get_uclass_plat(udev);
982388ea
ZZ
729 int status;
730 u64 prp2;
731 u64 total_len = blkcnt << desc->log2blksz;
732 u64 temp_len = total_len;
30ac0b49 733 uintptr_t temp_buffer = (uintptr_t)buffer;
982388ea
ZZ
734
735 u64 slba = blknr;
736 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
737 u64 total_lbas = blkcnt;
738
8c403402
PW
739 flush_dcache_range((unsigned long)buffer,
740 (unsigned long)buffer + total_len);
704e040a 741
625a483c 742 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
982388ea
ZZ
743 c.rw.flags = 0;
744 c.rw.nsid = cpu_to_le32(ns->ns_id);
745 c.rw.control = 0;
746 c.rw.dsmgmt = 0;
747 c.rw.reftag = 0;
748 c.rw.apptag = 0;
749 c.rw.appmask = 0;
750 c.rw.metadata = 0;
751
752 while (total_lbas) {
753 if (total_lbas < lbas) {
754 lbas = (u16)total_lbas;
755 total_lbas = 0;
756 } else {
757 total_lbas -= lbas;
758 }
759
625a483c 760 if (nvme_setup_prps(dev, &prp2,
30ac0b49 761 lbas << ns->lba_shift, temp_buffer))
982388ea
ZZ
762 return -EIO;
763 c.rw.slba = cpu_to_le64(slba);
764 slba += lbas;
765 c.rw.length = cpu_to_le16(lbas - 1);
30ac0b49 766 c.rw.prp1 = cpu_to_le64(temp_buffer);
982388ea 767 c.rw.prp2 = cpu_to_le64(prp2);
722e668d 768 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
982388ea
ZZ
769 &c, NULL, IO_TIMEOUT);
770 if (status)
771 break;
52a5690e 772 temp_len -= (u32)lbas << ns->lba_shift;
30ac0b49 773 temp_buffer += lbas << ns->lba_shift;
982388ea
ZZ
774 }
775
704e040a
BM
776 if (read)
777 invalidate_dcache_range((unsigned long)buffer,
778 (unsigned long)buffer + total_len);
779
982388ea
ZZ
780 return (total_len - temp_len) >> desc->log2blksz;
781}
782
625a483c
BM
783static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
784 lbaint_t blkcnt, void *buffer)
785{
786 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
787}
788
982388ea
ZZ
789static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
790 lbaint_t blkcnt, const void *buffer)
791{
625a483c 792 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
982388ea
ZZ
793}
794
795static const struct blk_ops nvme_blk_ops = {
796 .read = nvme_blk_read,
797 .write = nvme_blk_write,
798};
799
800U_BOOT_DRIVER(nvme_blk) = {
801 .name = "nvme-blk",
802 .id = UCLASS_BLK,
803 .probe = nvme_blk_probe,
804 .ops = &nvme_blk_ops,
41575d8e 805 .priv_auto = sizeof(struct nvme_ns),
982388ea
ZZ
806};
807
045474be 808int nvme_init(struct udevice *udev)
982388ea 809{
982388ea 810 struct nvme_dev *ndev = dev_get_priv(udev);
478f7fc6 811 struct nvme_id_ns *id;
045474be 812 int ret;
982388ea 813
19d9dad3 814 ndev->udev = udev;
982388ea 815 INIT_LIST_HEAD(&ndev->namespaces);
982388ea
ZZ
816 if (readl(&ndev->bar->csts) == -1) {
817 ret = -ENODEV;
818 printf("Error: %s: Out of memory!\n", udev->name);
819 goto free_nvme;
820 }
821
722e668d 822 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
982388ea
ZZ
823 if (!ndev->queues) {
824 ret = -ENOMEM;
825 printf("Error: %s: Out of memory!\n", udev->name);
826 goto free_nvme;
827 }
37d46870 828 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
982388ea 829
b65c6921
BM
830 ndev->cap = nvme_readq(&ndev->bar->cap);
831 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
832 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
982388ea
ZZ
833 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
834
835 ret = nvme_configure_admin_queue(ndev);
836 if (ret)
837 goto free_queue;
838
b21dcebf
AW
839 /* Allocate after the page size is known */
840 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
841 if (!ndev->prp_pool) {
842 ret = -ENOMEM;
843 printf("Error: %s: Out of memory!\n", udev->name);
844 goto free_nvme;
845 }
846 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
847
982388ea
ZZ
848 ret = nvme_setup_io_queues(ndev);
849 if (ret)
850 goto free_queue;
851
852 nvme_get_info_from_identify(ndev);
982388ea 853
84344258 854 /* Create a blk device for each namespace */
478f7fc6
BM
855
856 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
857 if (!id) {
858 ret = -ENOMEM;
859 goto free_queue;
860 }
861
8c60d40d 862 for (int i = 1; i <= ndev->nn; i++) {
84344258
BM
863 struct udevice *ns_udev;
864 char name[20];
865
478f7fc6 866 memset(id, 0, sizeof(*id));
8c60d40d 867 if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
478f7fc6
BM
868 ret = -EIO;
869 goto free_id;
870 }
871
872 /* skip inactive namespace */
873 if (!id->nsze)
874 continue;
875
84344258
BM
876 /*
877 * Encode the namespace id to the device name so that
878 * we can extract it when doing the probe.
879 */
880 sprintf(name, "blk#%d", i);
881
882 /* The real blksz and size will be set by nvme_blk_probe() */
e33a5c6b 883 ret = blk_create_devicef(udev, "nvme-blk", name, UCLASS_NVME,
84344258
BM
884 -1, 512, 0, &ns_udev);
885 if (ret)
478f7fc6 886 goto free_id;
df1ed8b2
AT
887
888 ret = blk_probe_or_unbind(ns_udev);
889 if (ret)
890 goto free_id;
84344258
BM
891 }
892
478f7fc6 893 free(id);
982388ea
ZZ
894 return 0;
895
478f7fc6
BM
896free_id:
897 free(id);
982388ea
ZZ
898free_queue:
899 free((void *)ndev->queues);
900free_nvme:
901 return ret;
902}
ca99a17e
MK
903
904int nvme_shutdown(struct udevice *udev)
905{
906 struct nvme_dev *ndev = dev_get_priv(udev);
907
908 return nvme_disable_ctrl(ndev);
909}
This page took 0.300209 seconds and 4 git commands to generate.