]>
Commit | Line | Data |
---|---|---|
c609719b WD |
1 | /*****************************************************************************/ |
2 | /* I2C Bus interface initialisation and I2C Commands */ | |
3 | /* for PPC405GP */ | |
4 | /* Author : AS HARNOIS */ | |
5 | /* Date : 13.Dec.00 */ | |
6 | /*****************************************************************************/ | |
7 | ||
8 | #include <common.h> | |
9 | #include <ppc4xx.h> | |
10 | #if defined(CONFIG_440) | |
11 | # include <440_i2c.h> | |
12 | #else | |
13 | # include <405gp_i2c.h> | |
14 | #endif | |
15 | #include <i2c.h> | |
16 | ||
17 | #ifdef CONFIG_HARD_I2C | |
18 | ||
19 | #define IIC_OK 0 | |
20 | #define IIC_NOK 1 | |
21 | #define IIC_NOK_LA 2 /* Lost arbitration */ | |
22 | #define IIC_NOK_ICT 3 /* Incomplete transfer */ | |
23 | #define IIC_NOK_XFRA 4 /* Transfer aborted */ | |
24 | #define IIC_NOK_DATA 5 /* No data in buffer */ | |
25 | #define IIC_NOK_TOUT 6 /* Transfer timeout */ | |
26 | ||
27 | #define IIC_TIMEOUT 1 /* 1 seconde */ | |
28 | ||
29 | ||
30 | static void _i2c_bus_reset (void) | |
31 | { | |
32 | int i, status; | |
33 | ||
34 | /* Reset status register */ | |
35 | /* write 1 in SCMP and IRQA to clear these fields */ | |
36 | out8 (IIC_STS, 0x0A); | |
37 | ||
38 | /* write 1 in IRQP IRQD LA ICT XFRA to clear these fields */ | |
39 | out8 (IIC_EXTSTS, 0x8F); | |
40 | __asm__ volatile ("eieio"); | |
41 | ||
42 | /* | |
43 | * Get current state, reset bus | |
44 | * only if no transfers are pending. | |
45 | */ | |
46 | i = 10; | |
47 | do { | |
48 | /* Get status */ | |
49 | status = in8 (IIC_STS); | |
50 | udelay (500); /* 500us */ | |
51 | i--; | |
52 | } while ((status & IIC_STS_PT) && (i > 0)); | |
53 | /* Soft reset controller */ | |
54 | status = in8 (IIC_XTCNTLSS); | |
55 | out8 (IIC_XTCNTLSS, (status | IIC_XTCNTLSS_SRST)); | |
56 | __asm__ volatile ("eieio"); | |
57 | ||
58 | /* make sure where in initial state, data hi, clock hi */ | |
59 | out8 (IIC_DIRECTCNTL, 0xC); | |
60 | for (i = 0; i < 10; i++) { | |
61 | if ((in8 (IIC_DIRECTCNTL) & 0x3) != 0x3) { | |
62 | /* clock until we get to known state */ | |
63 | out8 (IIC_DIRECTCNTL, 0x8); /* clock lo */ | |
64 | udelay (100); /* 100us */ | |
65 | out8 (IIC_DIRECTCNTL, 0xC); /* clock hi */ | |
66 | udelay (100); /* 100us */ | |
67 | } else { | |
68 | break; | |
69 | } | |
70 | } | |
71 | /* send start condition */ | |
72 | out8 (IIC_DIRECTCNTL, 0x4); | |
73 | udelay (1000); /* 1ms */ | |
74 | /* send stop condition */ | |
75 | out8 (IIC_DIRECTCNTL, 0xC); | |
76 | udelay (1000); /* 1ms */ | |
77 | /* Unreset controller */ | |
78 | out8 (IIC_XTCNTLSS, (status & ~IIC_XTCNTLSS_SRST)); | |
79 | udelay (1000); /* 1ms */ | |
80 | } | |
81 | ||
82 | void i2c_init (int speed, int slaveadd) | |
83 | { | |
84 | sys_info_t sysInfo; | |
85 | unsigned long freqOPB; | |
86 | int val, divisor; | |
87 | ||
88 | /* Handle possible failed I2C state */ | |
89 | _i2c_bus_reset (); | |
90 | ||
91 | /* clear lo master address */ | |
92 | out8 (IIC_LMADR, 0); | |
93 | ||
94 | /* clear hi master address */ | |
95 | out8 (IIC_HMADR, 0); | |
96 | ||
97 | /* clear lo slave address */ | |
98 | out8 (IIC_LSADR, 0); | |
99 | ||
100 | /* clear hi slave address */ | |
101 | out8 (IIC_HSADR, 0); | |
102 | ||
103 | /* Clock divide Register */ | |
104 | /* get OPB frequency */ | |
105 | get_sys_info (&sysInfo); | |
106 | freqOPB = sysInfo.freqPLB / sysInfo.pllOpbDiv; | |
107 | /* set divisor according to freqOPB */ | |
108 | divisor = (freqOPB - 1) / 10000000; | |
109 | if (divisor == 0) | |
110 | divisor = 1; | |
111 | out8 (IIC_CLKDIV, divisor); | |
112 | ||
113 | /* no interrupts */ | |
114 | out8 (IIC_INTRMSK, 0); | |
115 | ||
116 | /* clear transfer count */ | |
117 | out8 (IIC_XFRCNT, 0); | |
118 | ||
119 | /* clear extended control & stat */ | |
120 | /* write 1 in SRC SRS SWC SWS to clear these fields */ | |
121 | out8 (IIC_XTCNTLSS, 0xF0); | |
122 | ||
123 | /* Mode Control Register | |
124 | Flush Slave/Master data buffer */ | |
125 | out8 (IIC_MDCNTL, IIC_MDCNTL_FSDB | IIC_MDCNTL_FMDB); | |
126 | __asm__ volatile ("eieio"); | |
127 | ||
128 | ||
129 | val = in8(IIC_MDCNTL); | |
130 | __asm__ volatile ("eieio"); | |
131 | ||
132 | /* Ignore General Call, slave transfers are ignored, | |
133 | disable interrupts, exit unknown bus state, enable hold | |
134 | SCL | |
135 | 100kHz normaly or FastMode for 400kHz and above | |
136 | */ | |
137 | ||
138 | val |= IIC_MDCNTL_EUBS|IIC_MDCNTL_HSCL; | |
139 | if( speed >= 400000 ){ | |
140 | val |= IIC_MDCNTL_FSM; | |
141 | } | |
142 | out8 (IIC_MDCNTL, val); | |
143 | ||
144 | /* clear control reg */ | |
145 | out8 (IIC_CNTL, 0x00); | |
146 | __asm__ volatile ("eieio"); | |
147 | ||
148 | } | |
149 | ||
150 | /* | |
151 | This code tries to use the features of the 405GP i2c | |
152 | controller. It will transfer up to 4 bytes in one pass | |
153 | on the loop. It only does out8(lbz) to the buffer when it | |
154 | is possible to do out16(lhz) transfers. | |
155 | ||
156 | cmd_type is 0 for write 1 for read. | |
157 | ||
158 | addr_len can take any value from 0-255, it is only limited | |
159 | by the char, we could make it larger if needed. If it is | |
160 | 0 we skip the address write cycle. | |
161 | ||
162 | Typical case is a Write of an addr followd by a Read. The | |
163 | IBM FAQ does not cover this. On the last byte of the write | |
164 | we don't set the creg CHT bit, and on the first bytes of the | |
165 | read we set the RPST bit. | |
166 | ||
167 | It does not support address only transfers, there must be | |
168 | a data part. If you want to write the address yourself, put | |
169 | it in the data pointer. | |
170 | ||
171 | It does not support transfer to/from address 0. | |
172 | ||
173 | It does not check XFRCNT. | |
174 | */ | |
175 | static | |
176 | int i2c_transfer(unsigned char cmd_type, | |
177 | unsigned char chip, | |
178 | unsigned char addr[], | |
179 | unsigned char addr_len, | |
180 | unsigned char data[], | |
181 | unsigned short data_len ) | |
182 | { | |
183 | unsigned char* ptr; | |
184 | int reading; | |
185 | int tran,cnt; | |
186 | int result; | |
187 | int status; | |
188 | int i; | |
189 | uchar creg; | |
190 | ||
191 | if( data == 0 || data_len == 0 ){ | |
192 | /*Don't support data transfer of no length or to address 0*/ | |
193 | printf( "i2c_transfer: bad call\n" ); | |
194 | return IIC_NOK; | |
195 | } | |
196 | if( addr && addr_len ){ | |
197 | ptr = addr; | |
198 | cnt = addr_len; | |
199 | reading = 0; | |
200 | }else{ | |
201 | ptr = data; | |
202 | cnt = data_len; | |
203 | reading = cmd_type; | |
204 | } | |
205 | ||
206 | /*Clear Stop Complete Bit*/ | |
207 | out8(IIC_STS,IIC_STS_SCMP); | |
208 | /* Check init */ | |
209 | i=10; | |
210 | do { | |
211 | /* Get status */ | |
212 | status = in8(IIC_STS); | |
213 | __asm__ volatile("eieio"); | |
214 | i--; | |
215 | } while ((status & IIC_STS_PT) && (i>0)); | |
216 | ||
217 | if (status & IIC_STS_PT) { | |
218 | result = IIC_NOK_TOUT; | |
219 | return(result); | |
220 | } | |
221 | /*flush the Master/Slave Databuffers*/ | |
222 | out8(IIC_MDCNTL, ((in8(IIC_MDCNTL))|IIC_MDCNTL_FMDB|IIC_MDCNTL_FSDB)); | |
223 | /*need to wait 4 OPB clocks? code below should take that long*/ | |
224 | ||
225 | /* 7-bit adressing */ | |
226 | out8(IIC_HMADR,0); | |
227 | out8(IIC_LMADR, chip); | |
228 | __asm__ volatile("eieio"); | |
229 | ||
230 | tran = 0; | |
231 | result = IIC_OK; | |
232 | creg = 0; | |
233 | ||
234 | while ( tran != cnt && (result == IIC_OK)) { | |
235 | int bc,j; | |
236 | ||
237 | /* Control register = | |
238 | Normal transfer, 7-bits adressing, Transfer up to bc bytes, Normal start, | |
239 | Transfer is a sequence of transfers | |
240 | */ | |
241 | creg |= IIC_CNTL_PT; | |
242 | ||
243 | bc = (cnt - tran) > 4 ? 4 : | |
244 | cnt - tran; | |
245 | creg |= (bc-1)<<4; | |
246 | /* if the real cmd type is write continue trans*/ | |
247 | if ( (!cmd_type && (ptr == addr)) || ((tran+bc) != cnt) ) | |
248 | creg |= IIC_CNTL_CHT; | |
249 | ||
250 | if (reading) | |
251 | creg |= IIC_CNTL_READ; | |
252 | else { | |
253 | for(j=0; j<bc; j++) { | |
254 | /* Set buffer */ | |
255 | out8(IIC_MDBUF,ptr[tran+j]); | |
256 | __asm__ volatile("eieio"); | |
257 | } | |
258 | } | |
259 | out8(IIC_CNTL, creg ); | |
260 | __asm__ volatile("eieio"); | |
261 | ||
262 | /* Transfer is in progress | |
263 | we have to wait for upto 5 bytes of data | |
264 | 1 byte chip address+r/w bit then bc bytes | |
265 | of data. | |
266 | udelay(10) is 1 bit time at 100khz | |
267 | Doubled for slop. 20 is too small. | |
268 | */ | |
269 | i=2*5*8; | |
270 | do { | |
271 | /* Get status */ | |
272 | status = in8(IIC_STS); | |
273 | __asm__ volatile("eieio"); | |
274 | udelay (10); | |
275 | i--; | |
276 | } while ((status & IIC_STS_PT) && !(status & IIC_STS_ERR) | |
277 | && (i>0)); | |
278 | ||
279 | if (status & IIC_STS_ERR) { | |
280 | result = IIC_NOK; | |
281 | status = in8 (IIC_EXTSTS); | |
282 | /* Lost arbitration? */ | |
283 | if (status & IIC_EXTSTS_LA) | |
284 | result = IIC_NOK_LA; | |
285 | /* Incomplete transfer? */ | |
286 | if (status & IIC_EXTSTS_ICT) | |
287 | result = IIC_NOK_ICT; | |
288 | /* Transfer aborted? */ | |
289 | if (status & IIC_EXTSTS_XFRA) | |
290 | result = IIC_NOK_XFRA; | |
291 | } else if ( status & IIC_STS_PT) { | |
292 | result = IIC_NOK_TOUT; | |
293 | } | |
294 | /* Command is reading => get buffer */ | |
295 | if ((reading) && (result == IIC_OK)) { | |
296 | /* Are there data in buffer */ | |
297 | if (status & IIC_STS_MDBS) { | |
298 | /* | |
299 | even if we have data we have to wait 4OPB clocks | |
300 | for it to hit the front of the FIFO, after that | |
301 | we can just read. We should check XFCNT here and | |
302 | if the FIFO is full there is no need to wait. | |
303 | */ | |
304 | udelay (1); | |
305 | for(j=0;j<bc;j++) { | |
306 | ptr[tran+j] = in8(IIC_MDBUF); | |
307 | __asm__ volatile("eieio"); | |
308 | } | |
309 | } else | |
310 | result = IIC_NOK_DATA; | |
311 | } | |
312 | creg = 0; | |
313 | tran+=bc; | |
314 | if( ptr == addr && tran == cnt ) { | |
315 | ptr = data; | |
316 | cnt = data_len; | |
317 | tran = 0; | |
318 | reading = cmd_type; | |
319 | if( reading ) | |
320 | creg = IIC_CNTL_RPST; | |
321 | } | |
322 | } | |
323 | return (result); | |
324 | } | |
325 | ||
326 | int i2c_probe (uchar chip) | |
327 | { | |
328 | uchar buf[1]; | |
329 | ||
330 | buf[0] = 0; | |
331 | ||
332 | /* | |
333 | * What is needed is to send the chip address and verify that the | |
334 | * address was <ACK>ed (i.e. there was a chip at that address which | |
335 | * drove the data line low). | |
336 | */ | |
337 | return(i2c_transfer (1, chip << 1, 0,0, buf, 1) != 0); | |
338 | } | |
339 | ||
340 | ||
341 | ||
342 | int i2c_read (uchar chip, uint addr, int alen, uchar * buffer, int len) | |
343 | { | |
344 | uchar xaddr[4]; | |
345 | int ret; | |
346 | ||
347 | if ( alen > 4 ) { | |
348 | printf ("I2C read: addr len %d not supported\n", alen); | |
349 | return 1; | |
350 | } | |
351 | ||
352 | if ( alen > 0 ) { | |
353 | xaddr[0] = (addr >> 24) & 0xFF; | |
354 | xaddr[1] = (addr >> 16) & 0xFF; | |
355 | xaddr[2] = (addr >> 8) & 0xFF; | |
356 | xaddr[3] = addr & 0xFF; | |
357 | } | |
358 | ||
359 | ||
360 | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW | |
361 | /* | |
362 | * EEPROM chips that implement "address overflow" are ones | |
363 | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of | |
364 | * address and the extra bits end up in the "chip address" | |
365 | * bit slots. This makes a 24WC08 (1Kbyte) chip look like | |
366 | * four 256 byte chips. | |
367 | * | |
368 | * Note that we consider the length of the address field to | |
369 | * still be one byte because the extra address bits are | |
370 | * hidden in the chip address. | |
371 | */ | |
372 | if( alen > 0 ) | |
373 | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); | |
374 | #endif | |
375 | if( (ret = i2c_transfer( 1, chip<<1, &xaddr[4-alen], alen, buffer, len )) != 0) { | |
376 | printf( "I2c read: failed %d\n", ret); | |
377 | return 1; | |
378 | } | |
379 | return 0; | |
380 | } | |
381 | ||
382 | int i2c_write (uchar chip, uint addr, int alen, uchar * buffer, int len) | |
383 | { | |
384 | uchar xaddr[4]; | |
385 | ||
386 | if ( alen > 4 ) { | |
387 | printf ("I2C write: addr len %d not supported\n", alen); | |
388 | return 1; | |
389 | ||
390 | } | |
391 | if ( alen > 0 ) { | |
392 | xaddr[0] = (addr >> 24) & 0xFF; | |
393 | xaddr[1] = (addr >> 16) & 0xFF; | |
394 | xaddr[2] = (addr >> 8) & 0xFF; | |
395 | xaddr[3] = addr & 0xFF; | |
396 | } | |
397 | ||
398 | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW | |
399 | /* | |
400 | * EEPROM chips that implement "address overflow" are ones | |
401 | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of | |
402 | * address and the extra bits end up in the "chip address" | |
403 | * bit slots. This makes a 24WC08 (1Kbyte) chip look like | |
404 | * four 256 byte chips. | |
405 | * | |
406 | * Note that we consider the length of the address field to | |
407 | * still be one byte because the extra address bits are | |
408 | * hidden in the chip address. | |
409 | */ | |
410 | if( alen > 0 ) | |
411 | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); | |
412 | #endif | |
413 | ||
414 | return (i2c_transfer( 0, chip<<1, &xaddr[4-alen], alen, buffer, len ) != 0); | |
415 | } | |
416 | ||
417 | #endif /* CONFIG_HARD_I2C */ |