]>
Commit | Line | Data |
---|---|---|
36f2e8e0 ŁM |
1 | # |
2 | # Copyright (C) 2012 Samsung Electronics | |
3 | # | |
4 | # Lukasz Majewski <[email protected]> | |
5 | # | |
6 | # | |
1a459660 | 7 | # SPDX-License-Identifier: GPL-2.0+ |
36f2e8e0 ŁM |
8 | |
9 | ||
10 | Glossary: | |
11 | ======== | |
12 | - UUID -(Universally Unique Identifier) | |
13 | - GUID - (Globally Unique ID) | |
14 | - EFI - (Extensible Firmware Interface) | |
15 | - UEFI - (Unified EFI) - EFI evolution | |
16 | - GPT (GUID Partition Table) - it is the EFI standard part | |
17 | - partitions - lists of available partitions (defined at u-boot): | |
18 | ./include/configs/{target}.h | |
19 | ||
20 | Introduction: | |
21 | ============= | |
22 | This document describes the GPT partition table format and usage of | |
23 | the gpt command in u-boot. | |
24 | ||
25 | ||
26 | UUID introduction: | |
27 | ==================== | |
28 | ||
29 | GPT for marking disks/partitions is using the UUID. It is supposed to be a | |
30 | globally unique value. A UUID is a 16-byte (128-bit) number. The number of | |
31 | theoretically possible UUIDs is therefore about 3 x 10^38. | |
32 | More often UUID is displayed as 32 hexadecimal digits, in 5 groups, | |
33 | separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters | |
34 | (32 digits and 4 hyphens) | |
35 | ||
36 | For instance, GUID of Linux data partition: EBD0A0A2-B9E5-4433-87C0-68B6B72699C7 | |
37 | ||
38 | Historically there are 5 methods to generate this number. The oldest one is | |
39 | combining machine's MAC address and timer (epoch) value. | |
40 | ||
41 | Successive versions are using MD5 hash, random numbers and SHA-1 hash. All major | |
42 | OSes and programming languages are providing libraries to compute UUID (e.g. | |
43 | uuid command line tool). | |
44 | ||
45 | GPT brief explanation: | |
46 | ====================== | |
47 | ||
48 | Layout: | |
49 | ------- | |
50 | ||
51 | -------------------------------------------------- | |
52 | LBA 0 |Protective MBR | | |
53 | ---------------------------------------------------------- | |
54 | LBA 1 |Primary GPT Header | Primary | |
55 | -------------------------------------------------- GPT | |
56 | LBA 2 |Entry 1|Entry 2| Entry 3| Entry 4| | |
57 | -------------------------------------------------- | |
58 | LBA 3 |Entries 5 - 128 | | |
59 | | | | |
60 | | | | |
61 | ---------------------------------------------------------- | |
62 | LBA 34 |Partition 1 | | |
63 | | | | |
64 | ----------------------------------- | |
65 | |Partition 2 | | |
66 | | | | |
67 | ----------------------------------- | |
68 | |Partition n | | |
69 | | | | |
70 | ---------------------------------------------------------- | |
71 | LBA -34 |Entry 1|Entry 2| Entry 3| Entry 4| Secondary | |
72 | -------------------------------------------------- (bkp) | |
73 | LBA -33 |Entries 5 - 128 | GPT | |
74 | | | | |
75 | | | | |
76 | LBA -2 | | | |
77 | -------------------------------------------------- | |
78 | LBA -1 |Secondary GPT Header | | |
79 | ---------------------------------------------------------- | |
80 | ||
81 | ||
82 | For a legacy reasons, GPT's LBA 0 sector has a MBR structure. It is called | |
83 | "protective MBR". | |
84 | Its first partition entry ID has 0xEE value, and disk software, which is not | |
85 | handling the GPT sees it as a storage device without free space. | |
86 | ||
87 | It is possible to define 128 linearly placed partition entries. | |
88 | ||
89 | "LBA -1" means the last addressable block (in the mmc subsystem: | |
90 | "dev_desc->lba - 1") | |
91 | ||
92 | Primary/Secondary GPT header: | |
93 | ---------------------------- | |
94 | Offset Size Description | |
95 | ||
96 | 0 8 B Signature ("EFI PART", 45 46 49 20 50 41 52 54) | |
97 | 8 4 B Revision (For version 1.0, the value is 00 00 01 00) | |
98 | 12 4 B Header size (in bytes, usually 5C 00 00 00 meaning 92 bytes) | |
99 | 16 4 B CRC32 of header (0 to header size), with this field zeroed | |
100 | during calculation | |
101 | 20 4 B Reserved (ZERO); | |
102 | 24 8 B Current LBA (location of this header copy) | |
103 | 32 8 B Backup LBA (location of the other header copy) | |
104 | 40 8 B First usable LBA for partitions (primary partition table last | |
105 | LBA + 1) | |
106 | 48 8 B Last usable LBA (secondary partition table first LBA - 1) | |
107 | 56 16 B Disk GUID (also referred as UUID on UNIXes) | |
108 | 72 8 B Partition entries starting LBA (always 2 in primary copy) | |
109 | 80 4 B Number of partition entries | |
110 | 84 4 B Size of a partition entry (usually 128) | |
111 | 88 4 B CRC32 of partition array | |
112 | 92 * Reserved; must be ZERO (420 bytes for a 512-byte LBA) | |
113 | ||
114 | TOTAL: 512 B | |
115 | ||
116 | ||
117 | ||
118 | IMPORTANT: | |
119 | ||
120 | GPT headers and partition entries are protected by CRC32 (the POSIX CRC32). | |
121 | ||
122 | Primary GPT header and Secondary GPT header have swapped values of "Current LBA" | |
123 | and "Backup LBA" and therefore different CRC32 check-sum. | |
124 | ||
125 | CRC32 for GPT headers (field "CRC of header") are calculated up till | |
126 | "Header size" (92), NOT 512 bytes. | |
127 | ||
128 | CRC32 for partition entries (field "CRC32 of partition array") is calculated for | |
129 | the whole array entry ( Number_of_partition_entries * | |
130 | sizeof(partition_entry_size (usually 128))) | |
131 | ||
132 | Observe, how Secondary GPT is placed in the memory. It is NOT a mirror reflect | |
133 | of the Primary. | |
134 | ||
135 | ||
136 | Partition Entry Format: | |
137 | ---------------------- | |
138 | Offset Size Description | |
139 | ||
140 | 0 16 B Partition type GUID | |
141 | 16 16 B Unique partition GUID | |
142 | 32 8 B First LBA (Little Endian) | |
143 | 40 8 B Last LBA (inclusive) | |
144 | 48 8 B Attribute flags [+] | |
145 | 56 72 B Partition name (text) | |
146 | ||
147 | Attribute flags: | |
148 | Bit 0 - System partition | |
149 | Bit 60 - Read-only | |
150 | Bit 62 - Hidden | |
151 | Bit 63 - Not mount | |
152 | ||
153 | ||
154 | Creating GPT partitions in U-Boot: | |
155 | ============== | |
156 | ||
157 | To restore GUID partition table one needs to: | |
158 | 1. Define partition layout in the environment. | |
159 | Format of partitions layout: | |
160 | "partitions=uuid_disk=...;name=u-boot,size=60MiB,uuid=...; | |
161 | name=kernel,size=60MiB,uuid=...;" | |
162 | or | |
163 | "partitions=uuid_disk=${uuid_gpt_disk};name=${uboot_name}, | |
164 | size=${uboot_size},uuid=${uboot_uuid};" | |
165 | ||
166 | Fields 'name', 'size' and 'uuid' are mandatory for every partition. | |
167 | The field 'start' is optional. | |
168 | ||
169 | 2. Define 'CONFIG_EFI_PARTITION' and 'CONFIG_CMD_GPT' | |
170 | ||
171 | 2. From u-boot prompt type: | |
172 | gpt write mmc 0 $partitions | |
173 | ||
174 | ||
175 | Useful info: | |
176 | ============ | |
177 | ||
178 | Two programs, namely: 'fdisk' and 'parted' are recommended to work with GPT | |
179 | recovery. Parted is able to handle GUID partitions. Unfortunately the 'fdisk' | |
180 | hasn't got such ability. | |
181 | Please, pay attention at -l switch for parted. | |
182 | ||
183 | "uuid" program is recommended to generate UUID string. Moreover it can decode | |
184 | (-d switch) passed in UUID string. It can be used to generate partitions UUID | |
185 | passed to u-boot environment variables. |