]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0 |
040cc7b3 AH |
2 | /* |
3 | * This file is part of UBIFS. | |
4 | * | |
5 | * Copyright (C) 2006-2008 Nokia Corporation. | |
6 | * | |
040cc7b3 AH |
7 | * Authors: Adrian Hunter |
8 | * Artem Bityutskiy (Битюцкий Артём) | |
9 | */ | |
10 | ||
11 | /* | |
12 | * This file implements garbage collection. The procedure for garbage collection | |
13 | * is different depending on whether a LEB as an index LEB (contains index | |
14 | * nodes) or not. For non-index LEBs, garbage collection finds a LEB which | |
15 | * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete | |
16 | * nodes to the journal, at which point the garbage-collected LEB is free to be | |
17 | * reused. For index LEBs, garbage collection marks the non-obsolete index nodes | |
18 | * dirty in the TNC, and after the next commit, the garbage-collected LEB is | |
19 | * to be reused. Garbage collection will cause the number of dirty index nodes | |
20 | * to grow, however sufficient space is reserved for the index to ensure the | |
21 | * commit will never run out of space. | |
22 | * | |
23 | * Notes about dead watermark. At current UBIFS implementation we assume that | |
24 | * LEBs which have less than @c->dead_wm bytes of free + dirty space are full | |
25 | * and not worth garbage-collecting. The dead watermark is one min. I/O unit | |
26 | * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS | |
27 | * Garbage Collector has to synchronize the GC head's write buffer before | |
28 | * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can | |
29 | * actually reclaim even very small pieces of dirty space by garbage collecting | |
30 | * enough dirty LEBs, but we do not bother doing this at this implementation. | |
31 | * | |
32 | * Notes about dark watermark. The results of GC work depends on how big are | |
33 | * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, | |
34 | * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would | |
35 | * have to waste large pieces of free space at the end of LEB B, because nodes | |
36 | * from LEB A would not fit. And the worst situation is when all nodes are of | |
37 | * maximum size. So dark watermark is the amount of free + dirty space in LEB | |
38 | * which are guaranteed to be reclaimable. If LEB has less space, the GC might | |
39 | * be unable to reclaim it. So, LEBs with free + dirty greater than dark | |
40 | * watermark are "good" LEBs from GC's point of few. The other LEBs are not so | |
41 | * good, and GC takes extra care when moving them. | |
42 | */ | |
43 | #ifndef __UBOOT__ | |
f7ae49fc | 44 | #include <log.h> |
61b29b82 | 45 | #include <dm/devres.h> |
040cc7b3 AH |
46 | #include <linux/slab.h> |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/list_sort.h> | |
49 | #endif | |
50 | #include "ubifs.h" | |
51 | ||
52 | #ifndef __UBOOT__ | |
53 | /* | |
54 | * GC may need to move more than one LEB to make progress. The below constants | |
55 | * define "soft" and "hard" limits on the number of LEBs the garbage collector | |
56 | * may move. | |
57 | */ | |
58 | #define SOFT_LEBS_LIMIT 4 | |
59 | #define HARD_LEBS_LIMIT 32 | |
60 | ||
61 | /** | |
62 | * switch_gc_head - switch the garbage collection journal head. | |
63 | * @c: UBIFS file-system description object | |
64 | * @buf: buffer to write | |
65 | * @len: length of the buffer to write | |
66 | * @lnum: LEB number written is returned here | |
67 | * @offs: offset written is returned here | |
68 | * | |
69 | * This function switch the GC head to the next LEB which is reserved in | |
70 | * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, | |
71 | * and other negative error code in case of failures. | |
72 | */ | |
73 | static int switch_gc_head(struct ubifs_info *c) | |
74 | { | |
75 | int err, gc_lnum = c->gc_lnum; | |
76 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
77 | ||
78 | ubifs_assert(gc_lnum != -1); | |
79 | dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", | |
80 | wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, | |
81 | c->leb_size - wbuf->offs - wbuf->used); | |
82 | ||
83 | err = ubifs_wbuf_sync_nolock(wbuf); | |
84 | if (err) | |
85 | return err; | |
86 | ||
87 | /* | |
88 | * The GC write-buffer was synchronized, we may safely unmap | |
89 | * 'c->gc_lnum'. | |
90 | */ | |
91 | err = ubifs_leb_unmap(c, gc_lnum); | |
92 | if (err) | |
93 | return err; | |
94 | ||
95 | err = ubifs_wbuf_sync_nolock(wbuf); | |
96 | if (err) | |
97 | return err; | |
98 | ||
99 | err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); | |
100 | if (err) | |
101 | return err; | |
102 | ||
103 | c->gc_lnum = -1; | |
104 | err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); | |
105 | return err; | |
106 | } | |
107 | ||
108 | /** | |
109 | * data_nodes_cmp - compare 2 data nodes. | |
110 | * @priv: UBIFS file-system description object | |
111 | * @a: first data node | |
112 | * @a: second data node | |
113 | * | |
114 | * This function compares data nodes @a and @b. Returns %1 if @a has greater | |
115 | * inode or block number, and %-1 otherwise. | |
116 | */ | |
117 | static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) | |
118 | { | |
119 | ino_t inuma, inumb; | |
120 | struct ubifs_info *c = priv; | |
121 | struct ubifs_scan_node *sa, *sb; | |
122 | ||
123 | cond_resched(); | |
124 | if (a == b) | |
125 | return 0; | |
126 | ||
127 | sa = list_entry(a, struct ubifs_scan_node, list); | |
128 | sb = list_entry(b, struct ubifs_scan_node, list); | |
129 | ||
130 | ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); | |
131 | ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); | |
132 | ubifs_assert(sa->type == UBIFS_DATA_NODE); | |
133 | ubifs_assert(sb->type == UBIFS_DATA_NODE); | |
134 | ||
135 | inuma = key_inum(c, &sa->key); | |
136 | inumb = key_inum(c, &sb->key); | |
137 | ||
138 | if (inuma == inumb) { | |
139 | unsigned int blka = key_block(c, &sa->key); | |
140 | unsigned int blkb = key_block(c, &sb->key); | |
141 | ||
142 | if (blka <= blkb) | |
143 | return -1; | |
144 | } else if (inuma <= inumb) | |
145 | return -1; | |
146 | ||
147 | return 1; | |
148 | } | |
149 | ||
150 | /* | |
151 | * nondata_nodes_cmp - compare 2 non-data nodes. | |
152 | * @priv: UBIFS file-system description object | |
153 | * @a: first node | |
154 | * @a: second node | |
155 | * | |
156 | * This function compares nodes @a and @b. It makes sure that inode nodes go | |
157 | * first and sorted by length in descending order. Directory entry nodes go | |
158 | * after inode nodes and are sorted in ascending hash valuer order. | |
159 | */ | |
160 | static int nondata_nodes_cmp(void *priv, struct list_head *a, | |
161 | struct list_head *b) | |
162 | { | |
163 | ino_t inuma, inumb; | |
164 | struct ubifs_info *c = priv; | |
165 | struct ubifs_scan_node *sa, *sb; | |
166 | ||
167 | cond_resched(); | |
168 | if (a == b) | |
169 | return 0; | |
170 | ||
171 | sa = list_entry(a, struct ubifs_scan_node, list); | |
172 | sb = list_entry(b, struct ubifs_scan_node, list); | |
173 | ||
174 | ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && | |
175 | key_type(c, &sb->key) != UBIFS_DATA_KEY); | |
176 | ubifs_assert(sa->type != UBIFS_DATA_NODE && | |
177 | sb->type != UBIFS_DATA_NODE); | |
178 | ||
179 | /* Inodes go before directory entries */ | |
180 | if (sa->type == UBIFS_INO_NODE) { | |
181 | if (sb->type == UBIFS_INO_NODE) | |
182 | return sb->len - sa->len; | |
183 | return -1; | |
184 | } | |
185 | if (sb->type == UBIFS_INO_NODE) | |
186 | return 1; | |
187 | ||
188 | ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || | |
189 | key_type(c, &sa->key) == UBIFS_XENT_KEY); | |
190 | ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || | |
191 | key_type(c, &sb->key) == UBIFS_XENT_KEY); | |
192 | ubifs_assert(sa->type == UBIFS_DENT_NODE || | |
193 | sa->type == UBIFS_XENT_NODE); | |
194 | ubifs_assert(sb->type == UBIFS_DENT_NODE || | |
195 | sb->type == UBIFS_XENT_NODE); | |
196 | ||
197 | inuma = key_inum(c, &sa->key); | |
198 | inumb = key_inum(c, &sb->key); | |
199 | ||
200 | if (inuma == inumb) { | |
201 | uint32_t hasha = key_hash(c, &sa->key); | |
202 | uint32_t hashb = key_hash(c, &sb->key); | |
203 | ||
204 | if (hasha <= hashb) | |
205 | return -1; | |
206 | } else if (inuma <= inumb) | |
207 | return -1; | |
208 | ||
209 | return 1; | |
210 | } | |
211 | ||
212 | /** | |
213 | * sort_nodes - sort nodes for GC. | |
214 | * @c: UBIFS file-system description object | |
215 | * @sleb: describes nodes to sort and contains the result on exit | |
216 | * @nondata: contains non-data nodes on exit | |
217 | * @min: minimum node size is returned here | |
218 | * | |
219 | * This function sorts the list of inodes to garbage collect. First of all, it | |
220 | * kills obsolete nodes and separates data and non-data nodes to the | |
221 | * @sleb->nodes and @nondata lists correspondingly. | |
222 | * | |
223 | * Data nodes are then sorted in block number order - this is important for | |
224 | * bulk-read; data nodes with lower inode number go before data nodes with | |
225 | * higher inode number, and data nodes with lower block number go before data | |
226 | * nodes with higher block number; | |
227 | * | |
228 | * Non-data nodes are sorted as follows. | |
229 | * o First go inode nodes - they are sorted in descending length order. | |
230 | * o Then go directory entry nodes - they are sorted in hash order, which | |
231 | * should supposedly optimize 'readdir()'. Direntry nodes with lower parent | |
232 | * inode number go before direntry nodes with higher parent inode number, | |
233 | * and direntry nodes with lower name hash values go before direntry nodes | |
234 | * with higher name hash values. | |
235 | * | |
236 | * This function returns zero in case of success and a negative error code in | |
237 | * case of failure. | |
238 | */ | |
239 | static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | |
240 | struct list_head *nondata, int *min) | |
241 | { | |
242 | int err; | |
243 | struct ubifs_scan_node *snod, *tmp; | |
244 | ||
245 | *min = INT_MAX; | |
246 | ||
247 | /* Separate data nodes and non-data nodes */ | |
248 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | |
249 | ubifs_assert(snod->type == UBIFS_INO_NODE || | |
250 | snod->type == UBIFS_DATA_NODE || | |
251 | snod->type == UBIFS_DENT_NODE || | |
252 | snod->type == UBIFS_XENT_NODE || | |
253 | snod->type == UBIFS_TRUN_NODE); | |
254 | ||
255 | if (snod->type != UBIFS_INO_NODE && | |
256 | snod->type != UBIFS_DATA_NODE && | |
257 | snod->type != UBIFS_DENT_NODE && | |
258 | snod->type != UBIFS_XENT_NODE) { | |
259 | /* Probably truncation node, zap it */ | |
260 | list_del(&snod->list); | |
261 | kfree(snod); | |
262 | continue; | |
263 | } | |
264 | ||
265 | ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || | |
266 | key_type(c, &snod->key) == UBIFS_INO_KEY || | |
267 | key_type(c, &snod->key) == UBIFS_DENT_KEY || | |
268 | key_type(c, &snod->key) == UBIFS_XENT_KEY); | |
269 | ||
270 | err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, | |
271 | snod->offs, 0); | |
272 | if (err < 0) | |
273 | return err; | |
274 | ||
275 | if (!err) { | |
276 | /* The node is obsolete, remove it from the list */ | |
277 | list_del(&snod->list); | |
278 | kfree(snod); | |
279 | continue; | |
280 | } | |
281 | ||
282 | if (snod->len < *min) | |
283 | *min = snod->len; | |
284 | ||
285 | if (key_type(c, &snod->key) != UBIFS_DATA_KEY) | |
286 | list_move_tail(&snod->list, nondata); | |
287 | } | |
288 | ||
289 | /* Sort data and non-data nodes */ | |
290 | list_sort(c, &sleb->nodes, &data_nodes_cmp); | |
291 | list_sort(c, nondata, &nondata_nodes_cmp); | |
292 | ||
293 | err = dbg_check_data_nodes_order(c, &sleb->nodes); | |
294 | if (err) | |
295 | return err; | |
296 | err = dbg_check_nondata_nodes_order(c, nondata); | |
297 | if (err) | |
298 | return err; | |
299 | return 0; | |
300 | } | |
301 | ||
302 | /** | |
303 | * move_node - move a node. | |
304 | * @c: UBIFS file-system description object | |
305 | * @sleb: describes the LEB to move nodes from | |
306 | * @snod: the mode to move | |
307 | * @wbuf: write-buffer to move node to | |
308 | * | |
309 | * This function moves node @snod to @wbuf, changes TNC correspondingly, and | |
310 | * destroys @snod. Returns zero in case of success and a negative error code in | |
311 | * case of failure. | |
312 | */ | |
313 | static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | |
314 | struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) | |
315 | { | |
316 | int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; | |
317 | ||
318 | cond_resched(); | |
319 | err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); | |
320 | if (err) | |
321 | return err; | |
322 | ||
323 | err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, | |
324 | snod->offs, new_lnum, new_offs, | |
325 | snod->len); | |
326 | list_del(&snod->list); | |
327 | kfree(snod); | |
328 | return err; | |
329 | } | |
330 | ||
331 | /** | |
332 | * move_nodes - move nodes. | |
333 | * @c: UBIFS file-system description object | |
334 | * @sleb: describes the LEB to move nodes from | |
335 | * | |
336 | * This function moves valid nodes from data LEB described by @sleb to the GC | |
337 | * journal head. This function returns zero in case of success, %-EAGAIN if | |
338 | * commit is required, and other negative error codes in case of other | |
339 | * failures. | |
340 | */ | |
341 | static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) | |
342 | { | |
343 | int err, min; | |
344 | LIST_HEAD(nondata); | |
345 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
346 | ||
347 | if (wbuf->lnum == -1) { | |
348 | /* | |
349 | * The GC journal head is not set, because it is the first GC | |
350 | * invocation since mount. | |
351 | */ | |
352 | err = switch_gc_head(c); | |
353 | if (err) | |
354 | return err; | |
355 | } | |
356 | ||
357 | err = sort_nodes(c, sleb, &nondata, &min); | |
358 | if (err) | |
359 | goto out; | |
360 | ||
361 | /* Write nodes to their new location. Use the first-fit strategy */ | |
362 | while (1) { | |
363 | int avail; | |
364 | struct ubifs_scan_node *snod, *tmp; | |
365 | ||
366 | /* Move data nodes */ | |
367 | list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { | |
368 | avail = c->leb_size - wbuf->offs - wbuf->used; | |
369 | if (snod->len > avail) | |
370 | /* | |
371 | * Do not skip data nodes in order to optimize | |
372 | * bulk-read. | |
373 | */ | |
374 | break; | |
375 | ||
376 | err = move_node(c, sleb, snod, wbuf); | |
377 | if (err) | |
378 | goto out; | |
379 | } | |
380 | ||
381 | /* Move non-data nodes */ | |
382 | list_for_each_entry_safe(snod, tmp, &nondata, list) { | |
383 | avail = c->leb_size - wbuf->offs - wbuf->used; | |
384 | if (avail < min) | |
385 | break; | |
386 | ||
387 | if (snod->len > avail) { | |
388 | /* | |
389 | * Keep going only if this is an inode with | |
390 | * some data. Otherwise stop and switch the GC | |
391 | * head. IOW, we assume that data-less inode | |
392 | * nodes and direntry nodes are roughly of the | |
393 | * same size. | |
394 | */ | |
395 | if (key_type(c, &snod->key) == UBIFS_DENT_KEY || | |
396 | snod->len == UBIFS_INO_NODE_SZ) | |
397 | break; | |
398 | continue; | |
399 | } | |
400 | ||
401 | err = move_node(c, sleb, snod, wbuf); | |
402 | if (err) | |
403 | goto out; | |
404 | } | |
405 | ||
406 | if (list_empty(&sleb->nodes) && list_empty(&nondata)) | |
407 | break; | |
408 | ||
409 | /* | |
410 | * Waste the rest of the space in the LEB and switch to the | |
411 | * next LEB. | |
412 | */ | |
413 | err = switch_gc_head(c); | |
414 | if (err) | |
415 | goto out; | |
416 | } | |
417 | ||
418 | return 0; | |
419 | ||
420 | out: | |
421 | list_splice_tail(&nondata, &sleb->nodes); | |
422 | return err; | |
423 | } | |
424 | ||
425 | /** | |
426 | * gc_sync_wbufs - sync write-buffers for GC. | |
427 | * @c: UBIFS file-system description object | |
428 | * | |
429 | * We must guarantee that obsoleting nodes are on flash. Unfortunately they may | |
430 | * be in a write-buffer instead. That is, a node could be written to a | |
431 | * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is | |
432 | * erased before the write-buffer is sync'd and then there is an unclean | |
433 | * unmount, then an existing node is lost. To avoid this, we sync all | |
434 | * write-buffers. | |
435 | * | |
436 | * This function returns %0 on success or a negative error code on failure. | |
437 | */ | |
438 | static int gc_sync_wbufs(struct ubifs_info *c) | |
439 | { | |
440 | int err, i; | |
441 | ||
442 | for (i = 0; i < c->jhead_cnt; i++) { | |
443 | if (i == GCHD) | |
444 | continue; | |
445 | err = ubifs_wbuf_sync(&c->jheads[i].wbuf); | |
446 | if (err) | |
447 | return err; | |
448 | } | |
449 | return 0; | |
450 | } | |
451 | ||
452 | /** | |
453 | * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. | |
454 | * @c: UBIFS file-system description object | |
455 | * @lp: describes the LEB to garbage collect | |
456 | * | |
457 | * This function garbage-collects an LEB and returns one of the @LEB_FREED, | |
458 | * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is | |
459 | * required, and other negative error codes in case of failures. | |
460 | */ | |
461 | int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) | |
462 | { | |
463 | struct ubifs_scan_leb *sleb; | |
464 | struct ubifs_scan_node *snod; | |
465 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
466 | int err = 0, lnum = lp->lnum; | |
467 | ||
468 | ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || | |
469 | c->need_recovery); | |
470 | ubifs_assert(c->gc_lnum != lnum); | |
471 | ubifs_assert(wbuf->lnum != lnum); | |
472 | ||
473 | if (lp->free + lp->dirty == c->leb_size) { | |
474 | /* Special case - a free LEB */ | |
475 | dbg_gc("LEB %d is free, return it", lp->lnum); | |
476 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | |
477 | ||
478 | if (lp->free != c->leb_size) { | |
479 | /* | |
480 | * Write buffers must be sync'd before unmapping | |
481 | * freeable LEBs, because one of them may contain data | |
482 | * which obsoletes something in 'lp->pnum'. | |
483 | */ | |
484 | err = gc_sync_wbufs(c); | |
485 | if (err) | |
486 | return err; | |
487 | err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, | |
488 | 0, 0, 0, 0); | |
489 | if (err) | |
490 | return err; | |
491 | } | |
492 | err = ubifs_leb_unmap(c, lp->lnum); | |
493 | if (err) | |
494 | return err; | |
495 | ||
496 | if (c->gc_lnum == -1) { | |
497 | c->gc_lnum = lnum; | |
498 | return LEB_RETAINED; | |
499 | } | |
500 | ||
501 | return LEB_FREED; | |
502 | } | |
503 | ||
504 | /* | |
505 | * We scan the entire LEB even though we only really need to scan up to | |
506 | * (c->leb_size - lp->free). | |
507 | */ | |
508 | sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); | |
509 | if (IS_ERR(sleb)) | |
510 | return PTR_ERR(sleb); | |
511 | ||
512 | ubifs_assert(!list_empty(&sleb->nodes)); | |
513 | snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); | |
514 | ||
515 | if (snod->type == UBIFS_IDX_NODE) { | |
516 | struct ubifs_gced_idx_leb *idx_gc; | |
517 | ||
518 | dbg_gc("indexing LEB %d (free %d, dirty %d)", | |
519 | lnum, lp->free, lp->dirty); | |
520 | list_for_each_entry(snod, &sleb->nodes, list) { | |
521 | struct ubifs_idx_node *idx = snod->node; | |
522 | int level = le16_to_cpu(idx->level); | |
523 | ||
524 | ubifs_assert(snod->type == UBIFS_IDX_NODE); | |
525 | key_read(c, ubifs_idx_key(c, idx), &snod->key); | |
526 | err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, | |
527 | snod->offs); | |
528 | if (err) | |
529 | goto out; | |
530 | } | |
531 | ||
532 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | |
533 | if (!idx_gc) { | |
534 | err = -ENOMEM; | |
535 | goto out; | |
536 | } | |
537 | ||
538 | idx_gc->lnum = lnum; | |
539 | idx_gc->unmap = 0; | |
540 | list_add(&idx_gc->list, &c->idx_gc); | |
541 | ||
542 | /* | |
543 | * Don't release the LEB until after the next commit, because | |
544 | * it may contain data which is needed for recovery. So | |
545 | * although we freed this LEB, it will become usable only after | |
546 | * the commit. | |
547 | */ | |
548 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, | |
549 | LPROPS_INDEX, 1); | |
550 | if (err) | |
551 | goto out; | |
552 | err = LEB_FREED_IDX; | |
553 | } else { | |
554 | dbg_gc("data LEB %d (free %d, dirty %d)", | |
555 | lnum, lp->free, lp->dirty); | |
556 | ||
557 | err = move_nodes(c, sleb); | |
558 | if (err) | |
559 | goto out_inc_seq; | |
560 | ||
561 | err = gc_sync_wbufs(c); | |
562 | if (err) | |
563 | goto out_inc_seq; | |
564 | ||
565 | err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); | |
566 | if (err) | |
567 | goto out_inc_seq; | |
568 | ||
569 | /* Allow for races with TNC */ | |
570 | c->gced_lnum = lnum; | |
571 | smp_wmb(); | |
572 | c->gc_seq += 1; | |
573 | smp_wmb(); | |
574 | ||
575 | if (c->gc_lnum == -1) { | |
576 | c->gc_lnum = lnum; | |
577 | err = LEB_RETAINED; | |
578 | } else { | |
579 | err = ubifs_wbuf_sync_nolock(wbuf); | |
580 | if (err) | |
581 | goto out; | |
582 | ||
583 | err = ubifs_leb_unmap(c, lnum); | |
584 | if (err) | |
585 | goto out; | |
586 | ||
587 | err = LEB_FREED; | |
588 | } | |
589 | } | |
590 | ||
591 | out: | |
592 | ubifs_scan_destroy(sleb); | |
593 | return err; | |
594 | ||
595 | out_inc_seq: | |
596 | /* We may have moved at least some nodes so allow for races with TNC */ | |
597 | c->gced_lnum = lnum; | |
598 | smp_wmb(); | |
599 | c->gc_seq += 1; | |
600 | smp_wmb(); | |
601 | goto out; | |
602 | } | |
603 | ||
604 | /** | |
605 | * ubifs_garbage_collect - UBIFS garbage collector. | |
606 | * @c: UBIFS file-system description object | |
607 | * @anyway: do GC even if there are free LEBs | |
608 | * | |
609 | * This function does out-of-place garbage collection. The return codes are: | |
610 | * o positive LEB number if the LEB has been freed and may be used; | |
611 | * o %-EAGAIN if the caller has to run commit; | |
612 | * o %-ENOSPC if GC failed to make any progress; | |
613 | * o other negative error codes in case of other errors. | |
614 | * | |
615 | * Garbage collector writes data to the journal when GC'ing data LEBs, and just | |
616 | * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point | |
617 | * commit may be required. But commit cannot be run from inside GC, because the | |
618 | * caller might be holding the commit lock, so %-EAGAIN is returned instead; | |
619 | * And this error code means that the caller has to run commit, and re-run GC | |
620 | * if there is still no free space. | |
621 | * | |
622 | * There are many reasons why this function may return %-EAGAIN: | |
623 | * o the log is full and there is no space to write an LEB reference for | |
624 | * @c->gc_lnum; | |
625 | * o the journal is too large and exceeds size limitations; | |
626 | * o GC moved indexing LEBs, but they can be used only after the commit; | |
627 | * o the shrinker fails to find clean znodes to free and requests the commit; | |
628 | * o etc. | |
629 | * | |
630 | * Note, if the file-system is close to be full, this function may return | |
631 | * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of | |
632 | * the function. E.g., this happens if the limits on the journal size are too | |
633 | * tough and GC writes too much to the journal before an LEB is freed. This | |
634 | * might also mean that the journal is too large, and the TNC becomes to big, | |
635 | * so that the shrinker is constantly called, finds not clean znodes to free, | |
636 | * and requests commit. Well, this may also happen if the journal is all right, | |
637 | * but another kernel process consumes too much memory. Anyway, infinite | |
638 | * %-EAGAIN may happen, but in some extreme/misconfiguration cases. | |
639 | */ | |
640 | int ubifs_garbage_collect(struct ubifs_info *c, int anyway) | |
641 | { | |
642 | int i, err, ret, min_space = c->dead_wm; | |
643 | struct ubifs_lprops lp; | |
644 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
645 | ||
646 | ubifs_assert_cmt_locked(c); | |
647 | ubifs_assert(!c->ro_media && !c->ro_mount); | |
648 | ||
649 | if (ubifs_gc_should_commit(c)) | |
650 | return -EAGAIN; | |
651 | ||
652 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
653 | ||
654 | if (c->ro_error) { | |
655 | ret = -EROFS; | |
656 | goto out_unlock; | |
657 | } | |
658 | ||
659 | /* We expect the write-buffer to be empty on entry */ | |
660 | ubifs_assert(!wbuf->used); | |
661 | ||
662 | for (i = 0; ; i++) { | |
663 | int space_before, space_after; | |
664 | ||
665 | cond_resched(); | |
666 | ||
667 | /* Give the commit an opportunity to run */ | |
668 | if (ubifs_gc_should_commit(c)) { | |
669 | ret = -EAGAIN; | |
670 | break; | |
671 | } | |
672 | ||
673 | if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { | |
674 | /* | |
675 | * We've done enough iterations. Indexing LEBs were | |
676 | * moved and will be available after the commit. | |
677 | */ | |
678 | dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); | |
679 | ubifs_commit_required(c); | |
680 | ret = -EAGAIN; | |
681 | break; | |
682 | } | |
683 | ||
684 | if (i > HARD_LEBS_LIMIT) { | |
685 | /* | |
686 | * We've moved too many LEBs and have not made | |
687 | * progress, give up. | |
688 | */ | |
689 | dbg_gc("hard limit, -ENOSPC"); | |
690 | ret = -ENOSPC; | |
691 | break; | |
692 | } | |
693 | ||
694 | /* | |
695 | * Empty and freeable LEBs can turn up while we waited for | |
696 | * the wbuf lock, or while we have been running GC. In that | |
697 | * case, we should just return one of those instead of | |
698 | * continuing to GC dirty LEBs. Hence we request | |
699 | * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. | |
700 | */ | |
701 | ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); | |
702 | if (ret) { | |
703 | if (ret == -ENOSPC) | |
704 | dbg_gc("no more dirty LEBs"); | |
705 | break; | |
706 | } | |
707 | ||
708 | dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", | |
709 | lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, | |
710 | min_space); | |
711 | ||
712 | space_before = c->leb_size - wbuf->offs - wbuf->used; | |
713 | if (wbuf->lnum == -1) | |
714 | space_before = 0; | |
715 | ||
716 | ret = ubifs_garbage_collect_leb(c, &lp); | |
717 | if (ret < 0) { | |
718 | if (ret == -EAGAIN) { | |
719 | /* | |
720 | * This is not error, so we have to return the | |
721 | * LEB to lprops. But if 'ubifs_return_leb()' | |
722 | * fails, its failure code is propagated to the | |
723 | * caller instead of the original '-EAGAIN'. | |
724 | */ | |
725 | err = ubifs_return_leb(c, lp.lnum); | |
726 | if (err) | |
727 | ret = err; | |
728 | break; | |
729 | } | |
730 | goto out; | |
731 | } | |
732 | ||
733 | if (ret == LEB_FREED) { | |
734 | /* An LEB has been freed and is ready for use */ | |
735 | dbg_gc("LEB %d freed, return", lp.lnum); | |
736 | ret = lp.lnum; | |
737 | break; | |
738 | } | |
739 | ||
740 | if (ret == LEB_FREED_IDX) { | |
741 | /* | |
742 | * This was an indexing LEB and it cannot be | |
743 | * immediately used. And instead of requesting the | |
744 | * commit straight away, we try to garbage collect some | |
745 | * more. | |
746 | */ | |
747 | dbg_gc("indexing LEB %d freed, continue", lp.lnum); | |
748 | continue; | |
749 | } | |
750 | ||
751 | ubifs_assert(ret == LEB_RETAINED); | |
752 | space_after = c->leb_size - wbuf->offs - wbuf->used; | |
753 | dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, | |
754 | space_after - space_before); | |
755 | ||
756 | if (space_after > space_before) { | |
757 | /* GC makes progress, keep working */ | |
758 | min_space >>= 1; | |
759 | if (min_space < c->dead_wm) | |
760 | min_space = c->dead_wm; | |
761 | continue; | |
762 | } | |
763 | ||
764 | dbg_gc("did not make progress"); | |
765 | ||
766 | /* | |
767 | * GC moved an LEB bud have not done any progress. This means | |
768 | * that the previous GC head LEB contained too few free space | |
769 | * and the LEB which was GC'ed contained only large nodes which | |
770 | * did not fit that space. | |
771 | * | |
772 | * We can do 2 things: | |
773 | * 1. pick another LEB in a hope it'll contain a small node | |
774 | * which will fit the space we have at the end of current GC | |
775 | * head LEB, but there is no guarantee, so we try this out | |
776 | * unless we have already been working for too long; | |
777 | * 2. request an LEB with more dirty space, which will force | |
778 | * 'ubifs_find_dirty_leb()' to start scanning the lprops | |
779 | * table, instead of just picking one from the heap | |
780 | * (previously it already picked the dirtiest LEB). | |
781 | */ | |
782 | if (i < SOFT_LEBS_LIMIT) { | |
783 | dbg_gc("try again"); | |
784 | continue; | |
785 | } | |
786 | ||
787 | min_space <<= 1; | |
788 | if (min_space > c->dark_wm) | |
789 | min_space = c->dark_wm; | |
790 | dbg_gc("set min. space to %d", min_space); | |
791 | } | |
792 | ||
793 | if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { | |
794 | dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); | |
795 | ubifs_commit_required(c); | |
796 | ret = -EAGAIN; | |
797 | } | |
798 | ||
799 | err = ubifs_wbuf_sync_nolock(wbuf); | |
800 | if (!err) | |
801 | err = ubifs_leb_unmap(c, c->gc_lnum); | |
802 | if (err) { | |
803 | ret = err; | |
804 | goto out; | |
805 | } | |
806 | out_unlock: | |
807 | mutex_unlock(&wbuf->io_mutex); | |
808 | return ret; | |
809 | ||
810 | out: | |
811 | ubifs_assert(ret < 0); | |
812 | ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); | |
813 | ubifs_wbuf_sync_nolock(wbuf); | |
814 | ubifs_ro_mode(c, ret); | |
815 | mutex_unlock(&wbuf->io_mutex); | |
816 | ubifs_return_leb(c, lp.lnum); | |
817 | return ret; | |
818 | } | |
819 | ||
820 | /** | |
821 | * ubifs_gc_start_commit - garbage collection at start of commit. | |
822 | * @c: UBIFS file-system description object | |
823 | * | |
824 | * If a LEB has only dirty and free space, then we may safely unmap it and make | |
825 | * it free. Note, we cannot do this with indexing LEBs because dirty space may | |
826 | * correspond index nodes that are required for recovery. In that case, the | |
827 | * LEB cannot be unmapped until after the next commit. | |
828 | * | |
829 | * This function returns %0 upon success and a negative error code upon failure. | |
830 | */ | |
831 | int ubifs_gc_start_commit(struct ubifs_info *c) | |
832 | { | |
833 | struct ubifs_gced_idx_leb *idx_gc; | |
834 | const struct ubifs_lprops *lp; | |
835 | int err = 0, flags; | |
836 | ||
837 | ubifs_get_lprops(c); | |
838 | ||
839 | /* | |
840 | * Unmap (non-index) freeable LEBs. Note that recovery requires that all | |
841 | * wbufs are sync'd before this, which is done in 'do_commit()'. | |
842 | */ | |
843 | while (1) { | |
844 | lp = ubifs_fast_find_freeable(c); | |
845 | if (IS_ERR(lp)) { | |
846 | err = PTR_ERR(lp); | |
847 | goto out; | |
848 | } | |
849 | if (!lp) | |
850 | break; | |
851 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | |
852 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | |
853 | err = ubifs_leb_unmap(c, lp->lnum); | |
854 | if (err) | |
855 | goto out; | |
856 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); | |
857 | if (IS_ERR(lp)) { | |
858 | err = PTR_ERR(lp); | |
859 | goto out; | |
860 | } | |
861 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | |
862 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | |
863 | } | |
864 | ||
865 | /* Mark GC'd index LEBs OK to unmap after this commit finishes */ | |
866 | list_for_each_entry(idx_gc, &c->idx_gc, list) | |
867 | idx_gc->unmap = 1; | |
868 | ||
869 | /* Record index freeable LEBs for unmapping after commit */ | |
870 | while (1) { | |
871 | lp = ubifs_fast_find_frdi_idx(c); | |
872 | if (IS_ERR(lp)) { | |
873 | err = PTR_ERR(lp); | |
874 | goto out; | |
875 | } | |
876 | if (!lp) | |
877 | break; | |
878 | idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); | |
879 | if (!idx_gc) { | |
880 | err = -ENOMEM; | |
881 | goto out; | |
882 | } | |
883 | ubifs_assert(!(lp->flags & LPROPS_TAKEN)); | |
884 | ubifs_assert(lp->flags & LPROPS_INDEX); | |
885 | /* Don't release the LEB until after the next commit */ | |
886 | flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; | |
887 | lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); | |
888 | if (IS_ERR(lp)) { | |
889 | err = PTR_ERR(lp); | |
890 | kfree(idx_gc); | |
891 | goto out; | |
892 | } | |
893 | ubifs_assert(lp->flags & LPROPS_TAKEN); | |
894 | ubifs_assert(!(lp->flags & LPROPS_INDEX)); | |
895 | idx_gc->lnum = lp->lnum; | |
896 | idx_gc->unmap = 1; | |
897 | list_add(&idx_gc->list, &c->idx_gc); | |
898 | } | |
899 | out: | |
900 | ubifs_release_lprops(c); | |
901 | return err; | |
902 | } | |
903 | ||
904 | /** | |
905 | * ubifs_gc_end_commit - garbage collection at end of commit. | |
906 | * @c: UBIFS file-system description object | |
907 | * | |
908 | * This function completes out-of-place garbage collection of index LEBs. | |
909 | */ | |
910 | int ubifs_gc_end_commit(struct ubifs_info *c) | |
911 | { | |
912 | struct ubifs_gced_idx_leb *idx_gc, *tmp; | |
913 | struct ubifs_wbuf *wbuf; | |
914 | int err = 0; | |
915 | ||
916 | wbuf = &c->jheads[GCHD].wbuf; | |
917 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
918 | list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) | |
919 | if (idx_gc->unmap) { | |
920 | dbg_gc("LEB %d", idx_gc->lnum); | |
921 | err = ubifs_leb_unmap(c, idx_gc->lnum); | |
922 | if (err) | |
923 | goto out; | |
924 | err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, | |
925 | LPROPS_NC, 0, LPROPS_TAKEN, -1); | |
926 | if (err) | |
927 | goto out; | |
928 | list_del(&idx_gc->list); | |
929 | kfree(idx_gc); | |
930 | } | |
931 | out: | |
932 | mutex_unlock(&wbuf->io_mutex); | |
933 | return err; | |
934 | } | |
935 | #endif | |
936 | /** | |
937 | * ubifs_destroy_idx_gc - destroy idx_gc list. | |
938 | * @c: UBIFS file-system description object | |
939 | * | |
940 | * This function destroys the @c->idx_gc list. It is called when unmounting | |
941 | * so locks are not needed. Returns zero in case of success and a negative | |
942 | * error code in case of failure. | |
943 | */ | |
944 | void ubifs_destroy_idx_gc(struct ubifs_info *c) | |
945 | { | |
946 | while (!list_empty(&c->idx_gc)) { | |
947 | struct ubifs_gced_idx_leb *idx_gc; | |
948 | ||
949 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, | |
950 | list); | |
951 | c->idx_gc_cnt -= 1; | |
952 | list_del(&idx_gc->list); | |
953 | kfree(idx_gc); | |
954 | } | |
955 | } | |
956 | #ifndef __UBOOT__ | |
957 | /** | |
958 | * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. | |
959 | * @c: UBIFS file-system description object | |
960 | * | |
961 | * Called during start commit so locks are not needed. | |
962 | */ | |
963 | int ubifs_get_idx_gc_leb(struct ubifs_info *c) | |
964 | { | |
965 | struct ubifs_gced_idx_leb *idx_gc; | |
966 | int lnum; | |
967 | ||
968 | if (list_empty(&c->idx_gc)) | |
969 | return -ENOSPC; | |
970 | idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); | |
971 | lnum = idx_gc->lnum; | |
972 | /* c->idx_gc_cnt is updated by the caller when lprops are updated */ | |
973 | list_del(&idx_gc->list); | |
974 | kfree(idx_gc); | |
975 | return lnum; | |
976 | } | |
977 | #endif |