]>
Commit | Line | Data |
---|---|---|
9eefe2a2 SR |
1 | /* |
2 | * This file is part of UBIFS. | |
3 | * | |
4 | * Copyright (C) 2006-2008 Nokia Corporation. | |
5 | * | |
ff94bc40 | 6 | * SPDX-License-Identifier: GPL-2.0+ |
9eefe2a2 | 7 | * |
ff94bc40 HS |
8 | * Authors: Adrian Hunter |
9 | * Artem Bityutskiy (Битюцкий Артём) | |
10 | */ | |
11 | ||
12 | /* | |
13 | * This file implements commit-related functionality of the LEB properties | |
14 | * subsystem. | |
15 | */ | |
16 | ||
ff94bc40 HS |
17 | #ifndef __UBOOT__ |
18 | #include <linux/crc16.h> | |
19 | #include <linux/slab.h> | |
20 | #include <linux/random.h> | |
21 | #else | |
22 | #include <linux/compat.h> | |
23 | #include <linux/err.h> | |
24 | #include "crc16.h" | |
25 | #endif | |
26 | #include "ubifs.h" | |
27 | ||
28 | #ifndef __UBOOT__ | |
29 | static int dbg_populate_lsave(struct ubifs_info *c); | |
30 | #endif | |
31 | ||
32 | /** | |
33 | * first_dirty_cnode - find first dirty cnode. | |
34 | * @c: UBIFS file-system description object | |
35 | * @nnode: nnode at which to start | |
36 | * | |
37 | * This function returns the first dirty cnode or %NULL if there is not one. | |
38 | */ | |
39 | static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode) | |
40 | { | |
41 | ubifs_assert(nnode); | |
42 | while (1) { | |
43 | int i, cont = 0; | |
44 | ||
45 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | |
46 | struct ubifs_cnode *cnode; | |
47 | ||
48 | cnode = nnode->nbranch[i].cnode; | |
49 | if (cnode && | |
50 | test_bit(DIRTY_CNODE, &cnode->flags)) { | |
51 | if (cnode->level == 0) | |
52 | return cnode; | |
53 | nnode = (struct ubifs_nnode *)cnode; | |
54 | cont = 1; | |
55 | break; | |
56 | } | |
57 | } | |
58 | if (!cont) | |
59 | return (struct ubifs_cnode *)nnode; | |
60 | } | |
61 | } | |
62 | ||
63 | /** | |
64 | * next_dirty_cnode - find next dirty cnode. | |
65 | * @cnode: cnode from which to begin searching | |
66 | * | |
67 | * This function returns the next dirty cnode or %NULL if there is not one. | |
68 | */ | |
69 | static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode) | |
70 | { | |
71 | struct ubifs_nnode *nnode; | |
72 | int i; | |
73 | ||
74 | ubifs_assert(cnode); | |
75 | nnode = cnode->parent; | |
76 | if (!nnode) | |
77 | return NULL; | |
78 | for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) { | |
79 | cnode = nnode->nbranch[i].cnode; | |
80 | if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) { | |
81 | if (cnode->level == 0) | |
82 | return cnode; /* cnode is a pnode */ | |
83 | /* cnode is a nnode */ | |
84 | return first_dirty_cnode((struct ubifs_nnode *)cnode); | |
85 | } | |
86 | } | |
87 | return (struct ubifs_cnode *)nnode; | |
88 | } | |
89 | ||
90 | /** | |
91 | * get_cnodes_to_commit - create list of dirty cnodes to commit. | |
92 | * @c: UBIFS file-system description object | |
93 | * | |
94 | * This function returns the number of cnodes to commit. | |
95 | */ | |
96 | static int get_cnodes_to_commit(struct ubifs_info *c) | |
97 | { | |
98 | struct ubifs_cnode *cnode, *cnext; | |
99 | int cnt = 0; | |
100 | ||
101 | if (!c->nroot) | |
102 | return 0; | |
103 | ||
104 | if (!test_bit(DIRTY_CNODE, &c->nroot->flags)) | |
105 | return 0; | |
106 | ||
107 | c->lpt_cnext = first_dirty_cnode(c->nroot); | |
108 | cnode = c->lpt_cnext; | |
109 | if (!cnode) | |
110 | return 0; | |
111 | cnt += 1; | |
112 | while (1) { | |
113 | ubifs_assert(!test_bit(COW_CNODE, &cnode->flags)); | |
114 | __set_bit(COW_CNODE, &cnode->flags); | |
115 | cnext = next_dirty_cnode(cnode); | |
116 | if (!cnext) { | |
117 | cnode->cnext = c->lpt_cnext; | |
118 | break; | |
119 | } | |
120 | cnode->cnext = cnext; | |
121 | cnode = cnext; | |
122 | cnt += 1; | |
123 | } | |
124 | dbg_cmt("committing %d cnodes", cnt); | |
125 | dbg_lp("committing %d cnodes", cnt); | |
126 | ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt); | |
127 | return cnt; | |
128 | } | |
129 | ||
130 | /** | |
131 | * upd_ltab - update LPT LEB properties. | |
132 | * @c: UBIFS file-system description object | |
133 | * @lnum: LEB number | |
134 | * @free: amount of free space | |
135 | * @dirty: amount of dirty space to add | |
136 | */ | |
137 | static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty) | |
138 | { | |
139 | dbg_lp("LEB %d free %d dirty %d to %d +%d", | |
140 | lnum, c->ltab[lnum - c->lpt_first].free, | |
141 | c->ltab[lnum - c->lpt_first].dirty, free, dirty); | |
142 | ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); | |
143 | c->ltab[lnum - c->lpt_first].free = free; | |
144 | c->ltab[lnum - c->lpt_first].dirty += dirty; | |
145 | } | |
146 | ||
147 | /** | |
148 | * alloc_lpt_leb - allocate an LPT LEB that is empty. | |
149 | * @c: UBIFS file-system description object | |
150 | * @lnum: LEB number is passed and returned here | |
151 | * | |
152 | * This function finds the next empty LEB in the ltab starting from @lnum. If a | |
153 | * an empty LEB is found it is returned in @lnum and the function returns %0. | |
154 | * Otherwise the function returns -ENOSPC. Note however, that LPT is designed | |
155 | * never to run out of space. | |
156 | */ | |
157 | static int alloc_lpt_leb(struct ubifs_info *c, int *lnum) | |
158 | { | |
159 | int i, n; | |
160 | ||
161 | n = *lnum - c->lpt_first + 1; | |
162 | for (i = n; i < c->lpt_lebs; i++) { | |
163 | if (c->ltab[i].tgc || c->ltab[i].cmt) | |
164 | continue; | |
165 | if (c->ltab[i].free == c->leb_size) { | |
166 | c->ltab[i].cmt = 1; | |
167 | *lnum = i + c->lpt_first; | |
168 | return 0; | |
169 | } | |
170 | } | |
171 | ||
172 | for (i = 0; i < n; i++) { | |
173 | if (c->ltab[i].tgc || c->ltab[i].cmt) | |
174 | continue; | |
175 | if (c->ltab[i].free == c->leb_size) { | |
176 | c->ltab[i].cmt = 1; | |
177 | *lnum = i + c->lpt_first; | |
178 | return 0; | |
179 | } | |
180 | } | |
181 | return -ENOSPC; | |
182 | } | |
183 | ||
184 | /** | |
185 | * layout_cnodes - layout cnodes for commit. | |
186 | * @c: UBIFS file-system description object | |
187 | * | |
188 | * This function returns %0 on success and a negative error code on failure. | |
189 | */ | |
190 | static int layout_cnodes(struct ubifs_info *c) | |
191 | { | |
192 | int lnum, offs, len, alen, done_lsave, done_ltab, err; | |
193 | struct ubifs_cnode *cnode; | |
194 | ||
195 | err = dbg_chk_lpt_sz(c, 0, 0); | |
196 | if (err) | |
197 | return err; | |
198 | cnode = c->lpt_cnext; | |
199 | if (!cnode) | |
200 | return 0; | |
201 | lnum = c->nhead_lnum; | |
202 | offs = c->nhead_offs; | |
203 | /* Try to place lsave and ltab nicely */ | |
204 | done_lsave = !c->big_lpt; | |
205 | done_ltab = 0; | |
206 | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | |
207 | done_lsave = 1; | |
208 | c->lsave_lnum = lnum; | |
209 | c->lsave_offs = offs; | |
210 | offs += c->lsave_sz; | |
211 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | |
212 | } | |
213 | ||
214 | if (offs + c->ltab_sz <= c->leb_size) { | |
215 | done_ltab = 1; | |
216 | c->ltab_lnum = lnum; | |
217 | c->ltab_offs = offs; | |
218 | offs += c->ltab_sz; | |
219 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | |
220 | } | |
221 | ||
222 | do { | |
223 | if (cnode->level) { | |
224 | len = c->nnode_sz; | |
225 | c->dirty_nn_cnt -= 1; | |
226 | } else { | |
227 | len = c->pnode_sz; | |
228 | c->dirty_pn_cnt -= 1; | |
229 | } | |
230 | while (offs + len > c->leb_size) { | |
231 | alen = ALIGN(offs, c->min_io_size); | |
232 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
233 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | |
234 | err = alloc_lpt_leb(c, &lnum); | |
235 | if (err) | |
236 | goto no_space; | |
237 | offs = 0; | |
238 | ubifs_assert(lnum >= c->lpt_first && | |
239 | lnum <= c->lpt_last); | |
240 | /* Try to place lsave and ltab nicely */ | |
241 | if (!done_lsave) { | |
242 | done_lsave = 1; | |
243 | c->lsave_lnum = lnum; | |
244 | c->lsave_offs = offs; | |
245 | offs += c->lsave_sz; | |
246 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | |
247 | continue; | |
248 | } | |
249 | if (!done_ltab) { | |
250 | done_ltab = 1; | |
251 | c->ltab_lnum = lnum; | |
252 | c->ltab_offs = offs; | |
253 | offs += c->ltab_sz; | |
254 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | |
255 | continue; | |
256 | } | |
257 | break; | |
258 | } | |
259 | if (cnode->parent) { | |
260 | cnode->parent->nbranch[cnode->iip].lnum = lnum; | |
261 | cnode->parent->nbranch[cnode->iip].offs = offs; | |
262 | } else { | |
263 | c->lpt_lnum = lnum; | |
264 | c->lpt_offs = offs; | |
265 | } | |
266 | offs += len; | |
267 | dbg_chk_lpt_sz(c, 1, len); | |
268 | cnode = cnode->cnext; | |
269 | } while (cnode && cnode != c->lpt_cnext); | |
270 | ||
271 | /* Make sure to place LPT's save table */ | |
272 | if (!done_lsave) { | |
273 | if (offs + c->lsave_sz > c->leb_size) { | |
274 | alen = ALIGN(offs, c->min_io_size); | |
275 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
276 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | |
277 | err = alloc_lpt_leb(c, &lnum); | |
278 | if (err) | |
279 | goto no_space; | |
280 | offs = 0; | |
281 | ubifs_assert(lnum >= c->lpt_first && | |
282 | lnum <= c->lpt_last); | |
283 | } | |
284 | done_lsave = 1; | |
285 | c->lsave_lnum = lnum; | |
286 | c->lsave_offs = offs; | |
287 | offs += c->lsave_sz; | |
288 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | |
289 | } | |
290 | ||
291 | /* Make sure to place LPT's own lprops table */ | |
292 | if (!done_ltab) { | |
293 | if (offs + c->ltab_sz > c->leb_size) { | |
294 | alen = ALIGN(offs, c->min_io_size); | |
295 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
296 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | |
297 | err = alloc_lpt_leb(c, &lnum); | |
298 | if (err) | |
299 | goto no_space; | |
300 | offs = 0; | |
301 | ubifs_assert(lnum >= c->lpt_first && | |
302 | lnum <= c->lpt_last); | |
303 | } | |
304 | done_ltab = 1; | |
305 | c->ltab_lnum = lnum; | |
306 | c->ltab_offs = offs; | |
307 | offs += c->ltab_sz; | |
308 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | |
309 | } | |
310 | ||
311 | alen = ALIGN(offs, c->min_io_size); | |
312 | upd_ltab(c, lnum, c->leb_size - alen, alen - offs); | |
313 | dbg_chk_lpt_sz(c, 4, alen - offs); | |
314 | err = dbg_chk_lpt_sz(c, 3, alen); | |
315 | if (err) | |
316 | return err; | |
317 | return 0; | |
318 | ||
319 | no_space: | |
320 | ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", | |
321 | lnum, offs, len, done_ltab, done_lsave); | |
322 | ubifs_dump_lpt_info(c); | |
323 | ubifs_dump_lpt_lebs(c); | |
324 | dump_stack(); | |
325 | return err; | |
326 | } | |
327 | ||
328 | #ifndef __UBOOT__ | |
329 | /** | |
330 | * realloc_lpt_leb - allocate an LPT LEB that is empty. | |
331 | * @c: UBIFS file-system description object | |
332 | * @lnum: LEB number is passed and returned here | |
333 | * | |
334 | * This function duplicates exactly the results of the function alloc_lpt_leb. | |
335 | * It is used during end commit to reallocate the same LEB numbers that were | |
336 | * allocated by alloc_lpt_leb during start commit. | |
337 | * | |
338 | * This function finds the next LEB that was allocated by the alloc_lpt_leb | |
339 | * function starting from @lnum. If a LEB is found it is returned in @lnum and | |
340 | * the function returns %0. Otherwise the function returns -ENOSPC. | |
341 | * Note however, that LPT is designed never to run out of space. | |
342 | */ | |
343 | static int realloc_lpt_leb(struct ubifs_info *c, int *lnum) | |
344 | { | |
345 | int i, n; | |
346 | ||
347 | n = *lnum - c->lpt_first + 1; | |
348 | for (i = n; i < c->lpt_lebs; i++) | |
349 | if (c->ltab[i].cmt) { | |
350 | c->ltab[i].cmt = 0; | |
351 | *lnum = i + c->lpt_first; | |
352 | return 0; | |
353 | } | |
354 | ||
355 | for (i = 0; i < n; i++) | |
356 | if (c->ltab[i].cmt) { | |
357 | c->ltab[i].cmt = 0; | |
358 | *lnum = i + c->lpt_first; | |
359 | return 0; | |
360 | } | |
361 | return -ENOSPC; | |
362 | } | |
363 | ||
364 | /** | |
365 | * write_cnodes - write cnodes for commit. | |
366 | * @c: UBIFS file-system description object | |
367 | * | |
368 | * This function returns %0 on success and a negative error code on failure. | |
369 | */ | |
370 | static int write_cnodes(struct ubifs_info *c) | |
371 | { | |
372 | int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave; | |
373 | struct ubifs_cnode *cnode; | |
374 | void *buf = c->lpt_buf; | |
375 | ||
376 | cnode = c->lpt_cnext; | |
377 | if (!cnode) | |
378 | return 0; | |
379 | lnum = c->nhead_lnum; | |
380 | offs = c->nhead_offs; | |
381 | from = offs; | |
382 | /* Ensure empty LEB is unmapped */ | |
383 | if (offs == 0) { | |
384 | err = ubifs_leb_unmap(c, lnum); | |
385 | if (err) | |
386 | return err; | |
387 | } | |
388 | /* Try to place lsave and ltab nicely */ | |
389 | done_lsave = !c->big_lpt; | |
390 | done_ltab = 0; | |
391 | if (!done_lsave && offs + c->lsave_sz <= c->leb_size) { | |
392 | done_lsave = 1; | |
393 | ubifs_pack_lsave(c, buf + offs, c->lsave); | |
394 | offs += c->lsave_sz; | |
395 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | |
396 | } | |
397 | ||
398 | if (offs + c->ltab_sz <= c->leb_size) { | |
399 | done_ltab = 1; | |
400 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | |
401 | offs += c->ltab_sz; | |
402 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | |
403 | } | |
404 | ||
405 | /* Loop for each cnode */ | |
406 | do { | |
407 | if (cnode->level) | |
408 | len = c->nnode_sz; | |
409 | else | |
410 | len = c->pnode_sz; | |
411 | while (offs + len > c->leb_size) { | |
412 | wlen = offs - from; | |
413 | if (wlen) { | |
414 | alen = ALIGN(wlen, c->min_io_size); | |
415 | memset(buf + offs, 0xff, alen - wlen); | |
416 | err = ubifs_leb_write(c, lnum, buf + from, from, | |
417 | alen); | |
418 | if (err) | |
419 | return err; | |
420 | } | |
421 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | |
422 | err = realloc_lpt_leb(c, &lnum); | |
423 | if (err) | |
424 | goto no_space; | |
425 | offs = from = 0; | |
426 | ubifs_assert(lnum >= c->lpt_first && | |
427 | lnum <= c->lpt_last); | |
428 | err = ubifs_leb_unmap(c, lnum); | |
429 | if (err) | |
430 | return err; | |
431 | /* Try to place lsave and ltab nicely */ | |
432 | if (!done_lsave) { | |
433 | done_lsave = 1; | |
434 | ubifs_pack_lsave(c, buf + offs, c->lsave); | |
435 | offs += c->lsave_sz; | |
436 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | |
437 | continue; | |
438 | } | |
439 | if (!done_ltab) { | |
440 | done_ltab = 1; | |
441 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | |
442 | offs += c->ltab_sz; | |
443 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | |
444 | continue; | |
445 | } | |
446 | break; | |
447 | } | |
448 | if (cnode->level) | |
449 | ubifs_pack_nnode(c, buf + offs, | |
450 | (struct ubifs_nnode *)cnode); | |
451 | else | |
452 | ubifs_pack_pnode(c, buf + offs, | |
453 | (struct ubifs_pnode *)cnode); | |
454 | /* | |
455 | * The reason for the barriers is the same as in case of TNC. | |
456 | * See comment in 'write_index()'. 'dirty_cow_nnode()' and | |
457 | * 'dirty_cow_pnode()' are the functions for which this is | |
458 | * important. | |
459 | */ | |
460 | clear_bit(DIRTY_CNODE, &cnode->flags); | |
461 | smp_mb__before_clear_bit(); | |
462 | clear_bit(COW_CNODE, &cnode->flags); | |
463 | smp_mb__after_clear_bit(); | |
464 | offs += len; | |
465 | dbg_chk_lpt_sz(c, 1, len); | |
466 | cnode = cnode->cnext; | |
467 | } while (cnode && cnode != c->lpt_cnext); | |
468 | ||
469 | /* Make sure to place LPT's save table */ | |
470 | if (!done_lsave) { | |
471 | if (offs + c->lsave_sz > c->leb_size) { | |
472 | wlen = offs - from; | |
473 | alen = ALIGN(wlen, c->min_io_size); | |
474 | memset(buf + offs, 0xff, alen - wlen); | |
475 | err = ubifs_leb_write(c, lnum, buf + from, from, alen); | |
476 | if (err) | |
477 | return err; | |
478 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | |
479 | err = realloc_lpt_leb(c, &lnum); | |
480 | if (err) | |
481 | goto no_space; | |
482 | offs = from = 0; | |
483 | ubifs_assert(lnum >= c->lpt_first && | |
484 | lnum <= c->lpt_last); | |
485 | err = ubifs_leb_unmap(c, lnum); | |
486 | if (err) | |
487 | return err; | |
488 | } | |
489 | done_lsave = 1; | |
490 | ubifs_pack_lsave(c, buf + offs, c->lsave); | |
491 | offs += c->lsave_sz; | |
492 | dbg_chk_lpt_sz(c, 1, c->lsave_sz); | |
493 | } | |
494 | ||
495 | /* Make sure to place LPT's own lprops table */ | |
496 | if (!done_ltab) { | |
497 | if (offs + c->ltab_sz > c->leb_size) { | |
498 | wlen = offs - from; | |
499 | alen = ALIGN(wlen, c->min_io_size); | |
500 | memset(buf + offs, 0xff, alen - wlen); | |
501 | err = ubifs_leb_write(c, lnum, buf + from, from, alen); | |
502 | if (err) | |
503 | return err; | |
504 | dbg_chk_lpt_sz(c, 2, c->leb_size - offs); | |
505 | err = realloc_lpt_leb(c, &lnum); | |
506 | if (err) | |
507 | goto no_space; | |
508 | offs = from = 0; | |
509 | ubifs_assert(lnum >= c->lpt_first && | |
510 | lnum <= c->lpt_last); | |
511 | err = ubifs_leb_unmap(c, lnum); | |
512 | if (err) | |
513 | return err; | |
514 | } | |
515 | done_ltab = 1; | |
516 | ubifs_pack_ltab(c, buf + offs, c->ltab_cmt); | |
517 | offs += c->ltab_sz; | |
518 | dbg_chk_lpt_sz(c, 1, c->ltab_sz); | |
519 | } | |
520 | ||
521 | /* Write remaining data in buffer */ | |
522 | wlen = offs - from; | |
523 | alen = ALIGN(wlen, c->min_io_size); | |
524 | memset(buf + offs, 0xff, alen - wlen); | |
525 | err = ubifs_leb_write(c, lnum, buf + from, from, alen); | |
526 | if (err) | |
527 | return err; | |
528 | ||
529 | dbg_chk_lpt_sz(c, 4, alen - wlen); | |
530 | err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size)); | |
531 | if (err) | |
532 | return err; | |
533 | ||
534 | c->nhead_lnum = lnum; | |
535 | c->nhead_offs = ALIGN(offs, c->min_io_size); | |
536 | ||
537 | dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); | |
538 | dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); | |
539 | dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); | |
540 | if (c->big_lpt) | |
541 | dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); | |
542 | ||
543 | return 0; | |
544 | ||
545 | no_space: | |
546 | ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d", | |
547 | lnum, offs, len, done_ltab, done_lsave); | |
548 | ubifs_dump_lpt_info(c); | |
549 | ubifs_dump_lpt_lebs(c); | |
550 | dump_stack(); | |
551 | return err; | |
552 | } | |
553 | #endif | |
554 | ||
555 | /** | |
556 | * next_pnode_to_dirty - find next pnode to dirty. | |
557 | * @c: UBIFS file-system description object | |
558 | * @pnode: pnode | |
559 | * | |
560 | * This function returns the next pnode to dirty or %NULL if there are no more | |
561 | * pnodes. Note that pnodes that have never been written (lnum == 0) are | |
562 | * skipped. | |
563 | */ | |
564 | static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c, | |
565 | struct ubifs_pnode *pnode) | |
566 | { | |
567 | struct ubifs_nnode *nnode; | |
568 | int iip; | |
569 | ||
570 | /* Try to go right */ | |
571 | nnode = pnode->parent; | |
572 | for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { | |
573 | if (nnode->nbranch[iip].lnum) | |
574 | return ubifs_get_pnode(c, nnode, iip); | |
575 | } | |
576 | ||
577 | /* Go up while can't go right */ | |
578 | do { | |
579 | iip = nnode->iip + 1; | |
580 | nnode = nnode->parent; | |
581 | if (!nnode) | |
582 | return NULL; | |
583 | for (; iip < UBIFS_LPT_FANOUT; iip++) { | |
584 | if (nnode->nbranch[iip].lnum) | |
585 | break; | |
586 | } | |
587 | } while (iip >= UBIFS_LPT_FANOUT); | |
588 | ||
589 | /* Go right */ | |
590 | nnode = ubifs_get_nnode(c, nnode, iip); | |
591 | if (IS_ERR(nnode)) | |
592 | return (void *)nnode; | |
593 | ||
594 | /* Go down to level 1 */ | |
595 | while (nnode->level > 1) { | |
596 | for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) { | |
597 | if (nnode->nbranch[iip].lnum) | |
598 | break; | |
599 | } | |
600 | if (iip >= UBIFS_LPT_FANOUT) { | |
601 | /* | |
602 | * Should not happen, but we need to keep going | |
603 | * if it does. | |
604 | */ | |
605 | iip = 0; | |
606 | } | |
607 | nnode = ubifs_get_nnode(c, nnode, iip); | |
608 | if (IS_ERR(nnode)) | |
609 | return (void *)nnode; | |
610 | } | |
611 | ||
612 | for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) | |
613 | if (nnode->nbranch[iip].lnum) | |
614 | break; | |
615 | if (iip >= UBIFS_LPT_FANOUT) | |
616 | /* Should not happen, but we need to keep going if it does */ | |
617 | iip = 0; | |
618 | return ubifs_get_pnode(c, nnode, iip); | |
619 | } | |
620 | ||
621 | /** | |
622 | * pnode_lookup - lookup a pnode in the LPT. | |
623 | * @c: UBIFS file-system description object | |
624 | * @i: pnode number (0 to main_lebs - 1) | |
625 | * | |
626 | * This function returns a pointer to the pnode on success or a negative | |
627 | * error code on failure. | |
628 | */ | |
629 | static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i) | |
630 | { | |
631 | int err, h, iip, shft; | |
632 | struct ubifs_nnode *nnode; | |
633 | ||
634 | if (!c->nroot) { | |
635 | err = ubifs_read_nnode(c, NULL, 0); | |
636 | if (err) | |
637 | return ERR_PTR(err); | |
638 | } | |
639 | i <<= UBIFS_LPT_FANOUT_SHIFT; | |
640 | nnode = c->nroot; | |
641 | shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; | |
642 | for (h = 1; h < c->lpt_hght; h++) { | |
643 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | |
644 | shft -= UBIFS_LPT_FANOUT_SHIFT; | |
645 | nnode = ubifs_get_nnode(c, nnode, iip); | |
646 | if (IS_ERR(nnode)) | |
647 | return ERR_CAST(nnode); | |
648 | } | |
649 | iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); | |
650 | return ubifs_get_pnode(c, nnode, iip); | |
651 | } | |
652 | ||
653 | /** | |
654 | * add_pnode_dirt - add dirty space to LPT LEB properties. | |
655 | * @c: UBIFS file-system description object | |
656 | * @pnode: pnode for which to add dirt | |
657 | */ | |
658 | static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) | |
659 | { | |
660 | ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, | |
661 | c->pnode_sz); | |
662 | } | |
663 | ||
664 | /** | |
665 | * do_make_pnode_dirty - mark a pnode dirty. | |
666 | * @c: UBIFS file-system description object | |
667 | * @pnode: pnode to mark dirty | |
668 | */ | |
669 | static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode) | |
670 | { | |
671 | /* Assumes cnext list is empty i.e. not called during commit */ | |
672 | if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { | |
673 | struct ubifs_nnode *nnode; | |
674 | ||
675 | c->dirty_pn_cnt += 1; | |
676 | add_pnode_dirt(c, pnode); | |
677 | /* Mark parent and ancestors dirty too */ | |
678 | nnode = pnode->parent; | |
679 | while (nnode) { | |
680 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | |
681 | c->dirty_nn_cnt += 1; | |
682 | ubifs_add_nnode_dirt(c, nnode); | |
683 | nnode = nnode->parent; | |
684 | } else | |
685 | break; | |
686 | } | |
687 | } | |
688 | } | |
689 | ||
690 | /** | |
691 | * make_tree_dirty - mark the entire LEB properties tree dirty. | |
692 | * @c: UBIFS file-system description object | |
693 | * | |
694 | * This function is used by the "small" LPT model to cause the entire LEB | |
695 | * properties tree to be written. The "small" LPT model does not use LPT | |
696 | * garbage collection because it is more efficient to write the entire tree | |
697 | * (because it is small). | |
698 | * | |
699 | * This function returns %0 on success and a negative error code on failure. | |
700 | */ | |
701 | static int make_tree_dirty(struct ubifs_info *c) | |
702 | { | |
703 | struct ubifs_pnode *pnode; | |
704 | ||
705 | pnode = pnode_lookup(c, 0); | |
706 | if (IS_ERR(pnode)) | |
707 | return PTR_ERR(pnode); | |
708 | ||
709 | while (pnode) { | |
710 | do_make_pnode_dirty(c, pnode); | |
711 | pnode = next_pnode_to_dirty(c, pnode); | |
712 | if (IS_ERR(pnode)) | |
713 | return PTR_ERR(pnode); | |
714 | } | |
715 | return 0; | |
716 | } | |
717 | ||
718 | /** | |
719 | * need_write_all - determine if the LPT area is running out of free space. | |
720 | * @c: UBIFS file-system description object | |
721 | * | |
722 | * This function returns %1 if the LPT area is running out of free space and %0 | |
723 | * if it is not. | |
724 | */ | |
725 | static int need_write_all(struct ubifs_info *c) | |
726 | { | |
727 | long long free = 0; | |
728 | int i; | |
729 | ||
730 | for (i = 0; i < c->lpt_lebs; i++) { | |
731 | if (i + c->lpt_first == c->nhead_lnum) | |
732 | free += c->leb_size - c->nhead_offs; | |
733 | else if (c->ltab[i].free == c->leb_size) | |
734 | free += c->leb_size; | |
735 | else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | |
736 | free += c->leb_size; | |
737 | } | |
738 | /* Less than twice the size left */ | |
739 | if (free <= c->lpt_sz * 2) | |
740 | return 1; | |
741 | return 0; | |
742 | } | |
743 | ||
744 | /** | |
745 | * lpt_tgc_start - start trivial garbage collection of LPT LEBs. | |
746 | * @c: UBIFS file-system description object | |
747 | * | |
748 | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | |
749 | * free space and so may be reused as soon as the next commit is completed. | |
750 | * This function is called during start commit to mark LPT LEBs for trivial GC. | |
751 | */ | |
752 | static void lpt_tgc_start(struct ubifs_info *c) | |
753 | { | |
754 | int i; | |
755 | ||
756 | for (i = 0; i < c->lpt_lebs; i++) { | |
757 | if (i + c->lpt_first == c->nhead_lnum) | |
758 | continue; | |
759 | if (c->ltab[i].dirty > 0 && | |
760 | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) { | |
761 | c->ltab[i].tgc = 1; | |
762 | c->ltab[i].free = c->leb_size; | |
763 | c->ltab[i].dirty = 0; | |
764 | dbg_lp("LEB %d", i + c->lpt_first); | |
765 | } | |
766 | } | |
767 | } | |
768 | ||
769 | /** | |
770 | * lpt_tgc_end - end trivial garbage collection of LPT LEBs. | |
771 | * @c: UBIFS file-system description object | |
772 | * | |
773 | * LPT trivial garbage collection is where a LPT LEB contains only dirty and | |
774 | * free space and so may be reused as soon as the next commit is completed. | |
775 | * This function is called after the commit is completed (master node has been | |
776 | * written) and un-maps LPT LEBs that were marked for trivial GC. | |
777 | */ | |
778 | static int lpt_tgc_end(struct ubifs_info *c) | |
779 | { | |
780 | int i, err; | |
781 | ||
782 | for (i = 0; i < c->lpt_lebs; i++) | |
783 | if (c->ltab[i].tgc) { | |
784 | err = ubifs_leb_unmap(c, i + c->lpt_first); | |
785 | if (err) | |
786 | return err; | |
787 | c->ltab[i].tgc = 0; | |
788 | dbg_lp("LEB %d", i + c->lpt_first); | |
789 | } | |
790 | return 0; | |
791 | } | |
792 | ||
793 | /** | |
794 | * populate_lsave - fill the lsave array with important LEB numbers. | |
795 | * @c: the UBIFS file-system description object | |
796 | * | |
797 | * This function is only called for the "big" model. It records a small number | |
798 | * of LEB numbers of important LEBs. Important LEBs are ones that are (from | |
799 | * most important to least important): empty, freeable, freeable index, dirty | |
800 | * index, dirty or free. Upon mount, we read this list of LEB numbers and bring | |
801 | * their pnodes into memory. That will stop us from having to scan the LPT | |
802 | * straight away. For the "small" model we assume that scanning the LPT is no | |
803 | * big deal. | |
804 | */ | |
805 | static void populate_lsave(struct ubifs_info *c) | |
806 | { | |
807 | struct ubifs_lprops *lprops; | |
808 | struct ubifs_lpt_heap *heap; | |
809 | int i, cnt = 0; | |
810 | ||
811 | ubifs_assert(c->big_lpt); | |
812 | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | |
813 | c->lpt_drty_flgs |= LSAVE_DIRTY; | |
814 | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | |
815 | } | |
816 | ||
817 | #ifndef __UBOOT__ | |
818 | if (dbg_populate_lsave(c)) | |
819 | return; | |
820 | #endif | |
821 | ||
822 | list_for_each_entry(lprops, &c->empty_list, list) { | |
823 | c->lsave[cnt++] = lprops->lnum; | |
824 | if (cnt >= c->lsave_cnt) | |
825 | return; | |
826 | } | |
827 | list_for_each_entry(lprops, &c->freeable_list, list) { | |
828 | c->lsave[cnt++] = lprops->lnum; | |
829 | if (cnt >= c->lsave_cnt) | |
830 | return; | |
831 | } | |
832 | list_for_each_entry(lprops, &c->frdi_idx_list, list) { | |
833 | c->lsave[cnt++] = lprops->lnum; | |
834 | if (cnt >= c->lsave_cnt) | |
835 | return; | |
836 | } | |
837 | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | |
838 | for (i = 0; i < heap->cnt; i++) { | |
839 | c->lsave[cnt++] = heap->arr[i]->lnum; | |
840 | if (cnt >= c->lsave_cnt) | |
841 | return; | |
842 | } | |
843 | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | |
844 | for (i = 0; i < heap->cnt; i++) { | |
845 | c->lsave[cnt++] = heap->arr[i]->lnum; | |
846 | if (cnt >= c->lsave_cnt) | |
847 | return; | |
848 | } | |
849 | heap = &c->lpt_heap[LPROPS_FREE - 1]; | |
850 | for (i = 0; i < heap->cnt; i++) { | |
851 | c->lsave[cnt++] = heap->arr[i]->lnum; | |
852 | if (cnt >= c->lsave_cnt) | |
853 | return; | |
854 | } | |
855 | /* Fill it up completely */ | |
856 | while (cnt < c->lsave_cnt) | |
857 | c->lsave[cnt++] = c->main_first; | |
858 | } | |
859 | ||
860 | /** | |
861 | * nnode_lookup - lookup a nnode in the LPT. | |
862 | * @c: UBIFS file-system description object | |
863 | * @i: nnode number | |
864 | * | |
865 | * This function returns a pointer to the nnode on success or a negative | |
866 | * error code on failure. | |
867 | */ | |
868 | static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i) | |
869 | { | |
870 | int err, iip; | |
871 | struct ubifs_nnode *nnode; | |
872 | ||
873 | if (!c->nroot) { | |
874 | err = ubifs_read_nnode(c, NULL, 0); | |
875 | if (err) | |
876 | return ERR_PTR(err); | |
877 | } | |
878 | nnode = c->nroot; | |
879 | while (1) { | |
880 | iip = i & (UBIFS_LPT_FANOUT - 1); | |
881 | i >>= UBIFS_LPT_FANOUT_SHIFT; | |
882 | if (!i) | |
883 | break; | |
884 | nnode = ubifs_get_nnode(c, nnode, iip); | |
885 | if (IS_ERR(nnode)) | |
886 | return nnode; | |
887 | } | |
888 | return nnode; | |
889 | } | |
890 | ||
891 | /** | |
892 | * make_nnode_dirty - find a nnode and, if found, make it dirty. | |
893 | * @c: UBIFS file-system description object | |
894 | * @node_num: nnode number of nnode to make dirty | |
895 | * @lnum: LEB number where nnode was written | |
896 | * @offs: offset where nnode was written | |
897 | * | |
898 | * This function is used by LPT garbage collection. LPT garbage collection is | |
899 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
900 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
901 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
902 | * to be reused. | |
903 | * | |
904 | * This function returns %0 on success and a negative error code on failure. | |
905 | */ | |
906 | static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum, | |
907 | int offs) | |
908 | { | |
909 | struct ubifs_nnode *nnode; | |
910 | ||
911 | nnode = nnode_lookup(c, node_num); | |
912 | if (IS_ERR(nnode)) | |
913 | return PTR_ERR(nnode); | |
914 | if (nnode->parent) { | |
915 | struct ubifs_nbranch *branch; | |
916 | ||
917 | branch = &nnode->parent->nbranch[nnode->iip]; | |
918 | if (branch->lnum != lnum || branch->offs != offs) | |
919 | return 0; /* nnode is obsolete */ | |
920 | } else if (c->lpt_lnum != lnum || c->lpt_offs != offs) | |
921 | return 0; /* nnode is obsolete */ | |
922 | /* Assumes cnext list is empty i.e. not called during commit */ | |
923 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | |
924 | c->dirty_nn_cnt += 1; | |
925 | ubifs_add_nnode_dirt(c, nnode); | |
926 | /* Mark parent and ancestors dirty too */ | |
927 | nnode = nnode->parent; | |
928 | while (nnode) { | |
929 | if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { | |
930 | c->dirty_nn_cnt += 1; | |
931 | ubifs_add_nnode_dirt(c, nnode); | |
932 | nnode = nnode->parent; | |
933 | } else | |
934 | break; | |
935 | } | |
936 | } | |
937 | return 0; | |
938 | } | |
939 | ||
940 | /** | |
941 | * make_pnode_dirty - find a pnode and, if found, make it dirty. | |
942 | * @c: UBIFS file-system description object | |
943 | * @node_num: pnode number of pnode to make dirty | |
944 | * @lnum: LEB number where pnode was written | |
945 | * @offs: offset where pnode was written | |
946 | * | |
947 | * This function is used by LPT garbage collection. LPT garbage collection is | |
948 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
949 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
950 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
951 | * to be reused. | |
952 | * | |
953 | * This function returns %0 on success and a negative error code on failure. | |
954 | */ | |
955 | static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum, | |
956 | int offs) | |
957 | { | |
958 | struct ubifs_pnode *pnode; | |
959 | struct ubifs_nbranch *branch; | |
960 | ||
961 | pnode = pnode_lookup(c, node_num); | |
962 | if (IS_ERR(pnode)) | |
963 | return PTR_ERR(pnode); | |
964 | branch = &pnode->parent->nbranch[pnode->iip]; | |
965 | if (branch->lnum != lnum || branch->offs != offs) | |
966 | return 0; | |
967 | do_make_pnode_dirty(c, pnode); | |
968 | return 0; | |
969 | } | |
970 | ||
971 | /** | |
972 | * make_ltab_dirty - make ltab node dirty. | |
973 | * @c: UBIFS file-system description object | |
974 | * @lnum: LEB number where ltab was written | |
975 | * @offs: offset where ltab was written | |
976 | * | |
977 | * This function is used by LPT garbage collection. LPT garbage collection is | |
978 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
979 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
980 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
981 | * to be reused. | |
982 | * | |
983 | * This function returns %0 on success and a negative error code on failure. | |
984 | */ | |
985 | static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | |
986 | { | |
987 | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | |
988 | return 0; /* This ltab node is obsolete */ | |
989 | if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { | |
990 | c->lpt_drty_flgs |= LTAB_DIRTY; | |
991 | ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); | |
992 | } | |
993 | return 0; | |
994 | } | |
995 | ||
996 | /** | |
997 | * make_lsave_dirty - make lsave node dirty. | |
998 | * @c: UBIFS file-system description object | |
999 | * @lnum: LEB number where lsave was written | |
1000 | * @offs: offset where lsave was written | |
1001 | * | |
1002 | * This function is used by LPT garbage collection. LPT garbage collection is | |
1003 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
1004 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
1005 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
1006 | * to be reused. | |
1007 | * | |
1008 | * This function returns %0 on success and a negative error code on failure. | |
1009 | */ | |
1010 | static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | |
1011 | { | |
1012 | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | |
1013 | return 0; /* This lsave node is obsolete */ | |
1014 | if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) { | |
1015 | c->lpt_drty_flgs |= LSAVE_DIRTY; | |
1016 | ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz); | |
1017 | } | |
1018 | return 0; | |
1019 | } | |
1020 | ||
1021 | /** | |
1022 | * make_node_dirty - make node dirty. | |
1023 | * @c: UBIFS file-system description object | |
1024 | * @node_type: LPT node type | |
1025 | * @node_num: node number | |
1026 | * @lnum: LEB number where node was written | |
1027 | * @offs: offset where node was written | |
1028 | * | |
1029 | * This function is used by LPT garbage collection. LPT garbage collection is | |
1030 | * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection | |
1031 | * simply involves marking all the nodes in the LEB being garbage-collected as | |
1032 | * dirty. The dirty nodes are written next commit, after which the LEB is free | |
1033 | * to be reused. | |
9eefe2a2 | 1034 | * |
ff94bc40 HS |
1035 | * This function returns %0 on success and a negative error code on failure. |
1036 | */ | |
1037 | static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num, | |
1038 | int lnum, int offs) | |
1039 | { | |
1040 | switch (node_type) { | |
1041 | case UBIFS_LPT_NNODE: | |
1042 | return make_nnode_dirty(c, node_num, lnum, offs); | |
1043 | case UBIFS_LPT_PNODE: | |
1044 | return make_pnode_dirty(c, node_num, lnum, offs); | |
1045 | case UBIFS_LPT_LTAB: | |
1046 | return make_ltab_dirty(c, lnum, offs); | |
1047 | case UBIFS_LPT_LSAVE: | |
1048 | return make_lsave_dirty(c, lnum, offs); | |
1049 | } | |
1050 | return -EINVAL; | |
1051 | } | |
1052 | ||
1053 | /** | |
1054 | * get_lpt_node_len - return the length of a node based on its type. | |
1055 | * @c: UBIFS file-system description object | |
1056 | * @node_type: LPT node type | |
1057 | */ | |
1058 | static int get_lpt_node_len(const struct ubifs_info *c, int node_type) | |
1059 | { | |
1060 | switch (node_type) { | |
1061 | case UBIFS_LPT_NNODE: | |
1062 | return c->nnode_sz; | |
1063 | case UBIFS_LPT_PNODE: | |
1064 | return c->pnode_sz; | |
1065 | case UBIFS_LPT_LTAB: | |
1066 | return c->ltab_sz; | |
1067 | case UBIFS_LPT_LSAVE: | |
1068 | return c->lsave_sz; | |
1069 | } | |
1070 | return 0; | |
1071 | } | |
1072 | ||
1073 | /** | |
1074 | * get_pad_len - return the length of padding in a buffer. | |
1075 | * @c: UBIFS file-system description object | |
1076 | * @buf: buffer | |
1077 | * @len: length of buffer | |
1078 | */ | |
1079 | static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len) | |
1080 | { | |
1081 | int offs, pad_len; | |
1082 | ||
1083 | if (c->min_io_size == 1) | |
1084 | return 0; | |
1085 | offs = c->leb_size - len; | |
1086 | pad_len = ALIGN(offs, c->min_io_size) - offs; | |
1087 | return pad_len; | |
1088 | } | |
1089 | ||
1090 | /** | |
1091 | * get_lpt_node_type - return type (and node number) of a node in a buffer. | |
1092 | * @c: UBIFS file-system description object | |
1093 | * @buf: buffer | |
1094 | * @node_num: node number is returned here | |
1095 | */ | |
1096 | static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf, | |
1097 | int *node_num) | |
1098 | { | |
1099 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | |
1100 | int pos = 0, node_type; | |
1101 | ||
1102 | node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); | |
1103 | *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); | |
1104 | return node_type; | |
1105 | } | |
1106 | ||
1107 | /** | |
1108 | * is_a_node - determine if a buffer contains a node. | |
1109 | * @c: UBIFS file-system description object | |
1110 | * @buf: buffer | |
1111 | * @len: length of buffer | |
9eefe2a2 | 1112 | * |
ff94bc40 | 1113 | * This function returns %1 if the buffer contains a node or %0 if it does not. |
9eefe2a2 | 1114 | */ |
ff94bc40 HS |
1115 | static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len) |
1116 | { | |
1117 | uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; | |
1118 | int pos = 0, node_type, node_len; | |
1119 | uint16_t crc, calc_crc; | |
9eefe2a2 | 1120 | |
ff94bc40 HS |
1121 | if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8) |
1122 | return 0; | |
1123 | node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS); | |
1124 | if (node_type == UBIFS_LPT_NOT_A_NODE) | |
1125 | return 0; | |
1126 | node_len = get_lpt_node_len(c, node_type); | |
1127 | if (!node_len || node_len > len) | |
1128 | return 0; | |
1129 | pos = 0; | |
1130 | addr = buf; | |
1131 | crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); | |
1132 | calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, | |
1133 | node_len - UBIFS_LPT_CRC_BYTES); | |
1134 | if (crc != calc_crc) | |
1135 | return 0; | |
1136 | return 1; | |
1137 | } | |
1138 | ||
1139 | /** | |
1140 | * lpt_gc_lnum - garbage collect a LPT LEB. | |
1141 | * @c: UBIFS file-system description object | |
1142 | * @lnum: LEB number to garbage collect | |
1143 | * | |
1144 | * LPT garbage collection is used only for the "big" LPT model | |
1145 | * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes | |
1146 | * in the LEB being garbage-collected as dirty. The dirty nodes are written | |
1147 | * next commit, after which the LEB is free to be reused. | |
1148 | * | |
1149 | * This function returns %0 on success and a negative error code on failure. | |
9eefe2a2 | 1150 | */ |
ff94bc40 HS |
1151 | static int lpt_gc_lnum(struct ubifs_info *c, int lnum) |
1152 | { | |
1153 | int err, len = c->leb_size, node_type, node_num, node_len, offs; | |
1154 | void *buf = c->lpt_buf; | |
9eefe2a2 | 1155 | |
ff94bc40 HS |
1156 | dbg_lp("LEB %d", lnum); |
1157 | ||
1158 | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | |
1159 | if (err) | |
1160 | return err; | |
1161 | ||
1162 | while (1) { | |
1163 | if (!is_a_node(c, buf, len)) { | |
1164 | int pad_len; | |
1165 | ||
1166 | pad_len = get_pad_len(c, buf, len); | |
1167 | if (pad_len) { | |
1168 | buf += pad_len; | |
1169 | len -= pad_len; | |
1170 | continue; | |
1171 | } | |
1172 | return 0; | |
1173 | } | |
1174 | node_type = get_lpt_node_type(c, buf, &node_num); | |
1175 | node_len = get_lpt_node_len(c, node_type); | |
1176 | offs = c->leb_size - len; | |
1177 | ubifs_assert(node_len != 0); | |
1178 | mutex_lock(&c->lp_mutex); | |
1179 | err = make_node_dirty(c, node_type, node_num, lnum, offs); | |
1180 | mutex_unlock(&c->lp_mutex); | |
1181 | if (err) | |
1182 | return err; | |
1183 | buf += node_len; | |
1184 | len -= node_len; | |
1185 | } | |
1186 | return 0; | |
1187 | } | |
1188 | ||
1189 | /** | |
1190 | * lpt_gc - LPT garbage collection. | |
1191 | * @c: UBIFS file-system description object | |
1192 | * | |
1193 | * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'. | |
1194 | * Returns %0 on success and a negative error code on failure. | |
1195 | */ | |
1196 | static int lpt_gc(struct ubifs_info *c) | |
1197 | { | |
1198 | int i, lnum = -1, dirty = 0; | |
1199 | ||
1200 | mutex_lock(&c->lp_mutex); | |
1201 | for (i = 0; i < c->lpt_lebs; i++) { | |
1202 | ubifs_assert(!c->ltab[i].tgc); | |
1203 | if (i + c->lpt_first == c->nhead_lnum || | |
1204 | c->ltab[i].free + c->ltab[i].dirty == c->leb_size) | |
1205 | continue; | |
1206 | if (c->ltab[i].dirty > dirty) { | |
1207 | dirty = c->ltab[i].dirty; | |
1208 | lnum = i + c->lpt_first; | |
1209 | } | |
1210 | } | |
1211 | mutex_unlock(&c->lp_mutex); | |
1212 | if (lnum == -1) | |
1213 | return -ENOSPC; | |
1214 | return lpt_gc_lnum(c, lnum); | |
1215 | } | |
1216 | ||
1217 | /** | |
1218 | * ubifs_lpt_start_commit - UBIFS commit starts. | |
1219 | * @c: the UBIFS file-system description object | |
1220 | * | |
1221 | * This function has to be called when UBIFS starts the commit operation. | |
1222 | * This function "freezes" all currently dirty LEB properties and does not | |
1223 | * change them anymore. Further changes are saved and tracked separately | |
1224 | * because they are not part of this commit. This function returns zero in case | |
1225 | * of success and a negative error code in case of failure. | |
1226 | */ | |
1227 | int ubifs_lpt_start_commit(struct ubifs_info *c) | |
1228 | { | |
1229 | int err, cnt; | |
1230 | ||
1231 | dbg_lp(""); | |
1232 | ||
1233 | mutex_lock(&c->lp_mutex); | |
1234 | err = dbg_chk_lpt_free_spc(c); | |
1235 | if (err) | |
1236 | goto out; | |
1237 | err = dbg_check_ltab(c); | |
1238 | if (err) | |
1239 | goto out; | |
1240 | ||
1241 | if (c->check_lpt_free) { | |
1242 | /* | |
1243 | * We ensure there is enough free space in | |
1244 | * ubifs_lpt_post_commit() by marking nodes dirty. That | |
1245 | * information is lost when we unmount, so we also need | |
1246 | * to check free space once after mounting also. | |
1247 | */ | |
1248 | c->check_lpt_free = 0; | |
1249 | while (need_write_all(c)) { | |
1250 | mutex_unlock(&c->lp_mutex); | |
1251 | err = lpt_gc(c); | |
1252 | if (err) | |
1253 | return err; | |
1254 | mutex_lock(&c->lp_mutex); | |
1255 | } | |
1256 | } | |
1257 | ||
1258 | lpt_tgc_start(c); | |
1259 | ||
1260 | if (!c->dirty_pn_cnt) { | |
1261 | dbg_cmt("no cnodes to commit"); | |
1262 | err = 0; | |
1263 | goto out; | |
1264 | } | |
1265 | ||
1266 | if (!c->big_lpt && need_write_all(c)) { | |
1267 | /* If needed, write everything */ | |
1268 | err = make_tree_dirty(c); | |
1269 | if (err) | |
1270 | goto out; | |
1271 | lpt_tgc_start(c); | |
1272 | } | |
1273 | ||
1274 | if (c->big_lpt) | |
1275 | populate_lsave(c); | |
1276 | ||
1277 | cnt = get_cnodes_to_commit(c); | |
1278 | ubifs_assert(cnt != 0); | |
1279 | ||
1280 | err = layout_cnodes(c); | |
1281 | if (err) | |
1282 | goto out; | |
1283 | ||
1284 | /* Copy the LPT's own lprops for end commit to write */ | |
1285 | memcpy(c->ltab_cmt, c->ltab, | |
1286 | sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); | |
1287 | c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY); | |
1288 | ||
1289 | out: | |
1290 | mutex_unlock(&c->lp_mutex); | |
1291 | return err; | |
1292 | } | |
9eefe2a2 SR |
1293 | |
1294 | /** | |
1295 | * free_obsolete_cnodes - free obsolete cnodes for commit end. | |
1296 | * @c: UBIFS file-system description object | |
1297 | */ | |
1298 | static void free_obsolete_cnodes(struct ubifs_info *c) | |
1299 | { | |
1300 | struct ubifs_cnode *cnode, *cnext; | |
1301 | ||
1302 | cnext = c->lpt_cnext; | |
1303 | if (!cnext) | |
1304 | return; | |
1305 | do { | |
1306 | cnode = cnext; | |
1307 | cnext = cnode->cnext; | |
1308 | if (test_bit(OBSOLETE_CNODE, &cnode->flags)) | |
1309 | kfree(cnode); | |
1310 | else | |
1311 | cnode->cnext = NULL; | |
1312 | } while (cnext != c->lpt_cnext); | |
1313 | c->lpt_cnext = NULL; | |
1314 | } | |
1315 | ||
ff94bc40 HS |
1316 | #ifndef __UBOOT__ |
1317 | /** | |
1318 | * ubifs_lpt_end_commit - finish the commit operation. | |
1319 | * @c: the UBIFS file-system description object | |
1320 | * | |
1321 | * This function has to be called when the commit operation finishes. It | |
1322 | * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to | |
1323 | * the media. Returns zero in case of success and a negative error code in case | |
1324 | * of failure. | |
1325 | */ | |
1326 | int ubifs_lpt_end_commit(struct ubifs_info *c) | |
1327 | { | |
1328 | int err; | |
1329 | ||
1330 | dbg_lp(""); | |
1331 | ||
1332 | if (!c->lpt_cnext) | |
1333 | return 0; | |
1334 | ||
1335 | err = write_cnodes(c); | |
1336 | if (err) | |
1337 | return err; | |
1338 | ||
1339 | mutex_lock(&c->lp_mutex); | |
1340 | free_obsolete_cnodes(c); | |
1341 | mutex_unlock(&c->lp_mutex); | |
1342 | ||
1343 | return 0; | |
1344 | } | |
1345 | #endif | |
1346 | ||
1347 | /** | |
1348 | * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC. | |
1349 | * @c: UBIFS file-system description object | |
1350 | * | |
1351 | * LPT trivial GC is completed after a commit. Also LPT GC is done after a | |
1352 | * commit for the "big" LPT model. | |
1353 | */ | |
1354 | int ubifs_lpt_post_commit(struct ubifs_info *c) | |
1355 | { | |
1356 | int err; | |
1357 | ||
1358 | mutex_lock(&c->lp_mutex); | |
1359 | err = lpt_tgc_end(c); | |
1360 | if (err) | |
1361 | goto out; | |
1362 | if (c->big_lpt) | |
1363 | while (need_write_all(c)) { | |
1364 | mutex_unlock(&c->lp_mutex); | |
1365 | err = lpt_gc(c); | |
1366 | if (err) | |
1367 | return err; | |
1368 | mutex_lock(&c->lp_mutex); | |
1369 | } | |
1370 | out: | |
1371 | mutex_unlock(&c->lp_mutex); | |
1372 | return err; | |
1373 | } | |
1374 | ||
9eefe2a2 SR |
1375 | /** |
1376 | * first_nnode - find the first nnode in memory. | |
1377 | * @c: UBIFS file-system description object | |
1378 | * @hght: height of tree where nnode found is returned here | |
1379 | * | |
1380 | * This function returns a pointer to the nnode found or %NULL if no nnode is | |
1381 | * found. This function is a helper to 'ubifs_lpt_free()'. | |
1382 | */ | |
1383 | static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght) | |
1384 | { | |
1385 | struct ubifs_nnode *nnode; | |
1386 | int h, i, found; | |
1387 | ||
1388 | nnode = c->nroot; | |
1389 | *hght = 0; | |
1390 | if (!nnode) | |
1391 | return NULL; | |
1392 | for (h = 1; h < c->lpt_hght; h++) { | |
1393 | found = 0; | |
1394 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | |
1395 | if (nnode->nbranch[i].nnode) { | |
1396 | found = 1; | |
1397 | nnode = nnode->nbranch[i].nnode; | |
1398 | *hght = h; | |
1399 | break; | |
1400 | } | |
1401 | } | |
1402 | if (!found) | |
1403 | break; | |
1404 | } | |
1405 | return nnode; | |
1406 | } | |
1407 | ||
1408 | /** | |
1409 | * next_nnode - find the next nnode in memory. | |
1410 | * @c: UBIFS file-system description object | |
1411 | * @nnode: nnode from which to start. | |
1412 | * @hght: height of tree where nnode is, is passed and returned here | |
1413 | * | |
1414 | * This function returns a pointer to the nnode found or %NULL if no nnode is | |
1415 | * found. This function is a helper to 'ubifs_lpt_free()'. | |
1416 | */ | |
1417 | static struct ubifs_nnode *next_nnode(struct ubifs_info *c, | |
1418 | struct ubifs_nnode *nnode, int *hght) | |
1419 | { | |
1420 | struct ubifs_nnode *parent; | |
1421 | int iip, h, i, found; | |
1422 | ||
1423 | parent = nnode->parent; | |
1424 | if (!parent) | |
1425 | return NULL; | |
1426 | if (nnode->iip == UBIFS_LPT_FANOUT - 1) { | |
1427 | *hght -= 1; | |
1428 | return parent; | |
1429 | } | |
1430 | for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) { | |
1431 | nnode = parent->nbranch[iip].nnode; | |
1432 | if (nnode) | |
1433 | break; | |
1434 | } | |
1435 | if (!nnode) { | |
1436 | *hght -= 1; | |
1437 | return parent; | |
1438 | } | |
1439 | for (h = *hght + 1; h < c->lpt_hght; h++) { | |
1440 | found = 0; | |
1441 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | |
1442 | if (nnode->nbranch[i].nnode) { | |
1443 | found = 1; | |
1444 | nnode = nnode->nbranch[i].nnode; | |
1445 | *hght = h; | |
1446 | break; | |
1447 | } | |
1448 | } | |
1449 | if (!found) | |
1450 | break; | |
1451 | } | |
1452 | return nnode; | |
1453 | } | |
1454 | ||
1455 | /** | |
1456 | * ubifs_lpt_free - free resources owned by the LPT. | |
1457 | * @c: UBIFS file-system description object | |
1458 | * @wr_only: free only resources used for writing | |
1459 | */ | |
1460 | void ubifs_lpt_free(struct ubifs_info *c, int wr_only) | |
1461 | { | |
1462 | struct ubifs_nnode *nnode; | |
1463 | int i, hght; | |
1464 | ||
1465 | /* Free write-only things first */ | |
1466 | ||
1467 | free_obsolete_cnodes(c); /* Leftover from a failed commit */ | |
1468 | ||
1469 | vfree(c->ltab_cmt); | |
1470 | c->ltab_cmt = NULL; | |
1471 | vfree(c->lpt_buf); | |
1472 | c->lpt_buf = NULL; | |
1473 | kfree(c->lsave); | |
1474 | c->lsave = NULL; | |
1475 | ||
1476 | if (wr_only) | |
1477 | return; | |
1478 | ||
1479 | /* Now free the rest */ | |
1480 | ||
1481 | nnode = first_nnode(c, &hght); | |
1482 | while (nnode) { | |
1483 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) | |
1484 | kfree(nnode->nbranch[i].nnode); | |
1485 | nnode = next_nnode(c, nnode, &hght); | |
1486 | } | |
1487 | for (i = 0; i < LPROPS_HEAP_CNT; i++) | |
1488 | kfree(c->lpt_heap[i].arr); | |
1489 | kfree(c->dirty_idx.arr); | |
1490 | kfree(c->nroot); | |
1491 | vfree(c->ltab); | |
1492 | kfree(c->lpt_nod_buf); | |
1493 | } | |
ff94bc40 HS |
1494 | |
1495 | #ifndef __UBOOT__ | |
1496 | /* | |
1497 | * Everything below is related to debugging. | |
1498 | */ | |
1499 | ||
1500 | /** | |
1501 | * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes. | |
1502 | * @buf: buffer | |
1503 | * @len: buffer length | |
1504 | */ | |
1505 | static int dbg_is_all_ff(uint8_t *buf, int len) | |
1506 | { | |
1507 | int i; | |
1508 | ||
1509 | for (i = 0; i < len; i++) | |
1510 | if (buf[i] != 0xff) | |
1511 | return 0; | |
1512 | return 1; | |
1513 | } | |
1514 | ||
1515 | /** | |
1516 | * dbg_is_nnode_dirty - determine if a nnode is dirty. | |
1517 | * @c: the UBIFS file-system description object | |
1518 | * @lnum: LEB number where nnode was written | |
1519 | * @offs: offset where nnode was written | |
1520 | */ | |
1521 | static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs) | |
1522 | { | |
1523 | struct ubifs_nnode *nnode; | |
1524 | int hght; | |
1525 | ||
1526 | /* Entire tree is in memory so first_nnode / next_nnode are OK */ | |
1527 | nnode = first_nnode(c, &hght); | |
1528 | for (; nnode; nnode = next_nnode(c, nnode, &hght)) { | |
1529 | struct ubifs_nbranch *branch; | |
1530 | ||
1531 | cond_resched(); | |
1532 | if (nnode->parent) { | |
1533 | branch = &nnode->parent->nbranch[nnode->iip]; | |
1534 | if (branch->lnum != lnum || branch->offs != offs) | |
1535 | continue; | |
1536 | if (test_bit(DIRTY_CNODE, &nnode->flags)) | |
1537 | return 1; | |
1538 | return 0; | |
1539 | } else { | |
1540 | if (c->lpt_lnum != lnum || c->lpt_offs != offs) | |
1541 | continue; | |
1542 | if (test_bit(DIRTY_CNODE, &nnode->flags)) | |
1543 | return 1; | |
1544 | return 0; | |
1545 | } | |
1546 | } | |
1547 | return 1; | |
1548 | } | |
1549 | ||
1550 | /** | |
1551 | * dbg_is_pnode_dirty - determine if a pnode is dirty. | |
1552 | * @c: the UBIFS file-system description object | |
1553 | * @lnum: LEB number where pnode was written | |
1554 | * @offs: offset where pnode was written | |
1555 | */ | |
1556 | static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs) | |
1557 | { | |
1558 | int i, cnt; | |
1559 | ||
1560 | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | |
1561 | for (i = 0; i < cnt; i++) { | |
1562 | struct ubifs_pnode *pnode; | |
1563 | struct ubifs_nbranch *branch; | |
1564 | ||
1565 | cond_resched(); | |
1566 | pnode = pnode_lookup(c, i); | |
1567 | if (IS_ERR(pnode)) | |
1568 | return PTR_ERR(pnode); | |
1569 | branch = &pnode->parent->nbranch[pnode->iip]; | |
1570 | if (branch->lnum != lnum || branch->offs != offs) | |
1571 | continue; | |
1572 | if (test_bit(DIRTY_CNODE, &pnode->flags)) | |
1573 | return 1; | |
1574 | return 0; | |
1575 | } | |
1576 | return 1; | |
1577 | } | |
1578 | ||
1579 | /** | |
1580 | * dbg_is_ltab_dirty - determine if a ltab node is dirty. | |
1581 | * @c: the UBIFS file-system description object | |
1582 | * @lnum: LEB number where ltab node was written | |
1583 | * @offs: offset where ltab node was written | |
1584 | */ | |
1585 | static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs) | |
1586 | { | |
1587 | if (lnum != c->ltab_lnum || offs != c->ltab_offs) | |
1588 | return 1; | |
1589 | return (c->lpt_drty_flgs & LTAB_DIRTY) != 0; | |
1590 | } | |
1591 | ||
1592 | /** | |
1593 | * dbg_is_lsave_dirty - determine if a lsave node is dirty. | |
1594 | * @c: the UBIFS file-system description object | |
1595 | * @lnum: LEB number where lsave node was written | |
1596 | * @offs: offset where lsave node was written | |
1597 | */ | |
1598 | static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs) | |
1599 | { | |
1600 | if (lnum != c->lsave_lnum || offs != c->lsave_offs) | |
1601 | return 1; | |
1602 | return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0; | |
1603 | } | |
1604 | ||
1605 | /** | |
1606 | * dbg_is_node_dirty - determine if a node is dirty. | |
1607 | * @c: the UBIFS file-system description object | |
1608 | * @node_type: node type | |
1609 | * @lnum: LEB number where node was written | |
1610 | * @offs: offset where node was written | |
1611 | */ | |
1612 | static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum, | |
1613 | int offs) | |
1614 | { | |
1615 | switch (node_type) { | |
1616 | case UBIFS_LPT_NNODE: | |
1617 | return dbg_is_nnode_dirty(c, lnum, offs); | |
1618 | case UBIFS_LPT_PNODE: | |
1619 | return dbg_is_pnode_dirty(c, lnum, offs); | |
1620 | case UBIFS_LPT_LTAB: | |
1621 | return dbg_is_ltab_dirty(c, lnum, offs); | |
1622 | case UBIFS_LPT_LSAVE: | |
1623 | return dbg_is_lsave_dirty(c, lnum, offs); | |
1624 | } | |
1625 | return 1; | |
1626 | } | |
1627 | ||
1628 | /** | |
1629 | * dbg_check_ltab_lnum - check the ltab for a LPT LEB number. | |
1630 | * @c: the UBIFS file-system description object | |
1631 | * @lnum: LEB number where node was written | |
1632 | * @offs: offset where node was written | |
1633 | * | |
1634 | * This function returns %0 on success and a negative error code on failure. | |
1635 | */ | |
1636 | static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum) | |
1637 | { | |
1638 | int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len; | |
1639 | int ret; | |
1640 | void *buf, *p; | |
1641 | ||
1642 | if (!dbg_is_chk_lprops(c)) | |
1643 | return 0; | |
1644 | ||
1645 | buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); | |
1646 | if (!buf) { | |
1647 | ubifs_err("cannot allocate memory for ltab checking"); | |
1648 | return 0; | |
1649 | } | |
1650 | ||
1651 | dbg_lp("LEB %d", lnum); | |
1652 | ||
1653 | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | |
1654 | if (err) | |
1655 | goto out; | |
1656 | ||
1657 | while (1) { | |
1658 | if (!is_a_node(c, p, len)) { | |
1659 | int i, pad_len; | |
1660 | ||
1661 | pad_len = get_pad_len(c, p, len); | |
1662 | if (pad_len) { | |
1663 | p += pad_len; | |
1664 | len -= pad_len; | |
1665 | dirty += pad_len; | |
1666 | continue; | |
1667 | } | |
1668 | if (!dbg_is_all_ff(p, len)) { | |
1669 | ubifs_err("invalid empty space in LEB %d at %d", | |
1670 | lnum, c->leb_size - len); | |
1671 | err = -EINVAL; | |
1672 | } | |
1673 | i = lnum - c->lpt_first; | |
1674 | if (len != c->ltab[i].free) { | |
1675 | ubifs_err("invalid free space in LEB %d (free %d, expected %d)", | |
1676 | lnum, len, c->ltab[i].free); | |
1677 | err = -EINVAL; | |
1678 | } | |
1679 | if (dirty != c->ltab[i].dirty) { | |
1680 | ubifs_err("invalid dirty space in LEB %d (dirty %d, expected %d)", | |
1681 | lnum, dirty, c->ltab[i].dirty); | |
1682 | err = -EINVAL; | |
1683 | } | |
1684 | goto out; | |
1685 | } | |
1686 | node_type = get_lpt_node_type(c, p, &node_num); | |
1687 | node_len = get_lpt_node_len(c, node_type); | |
1688 | ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len); | |
1689 | if (ret == 1) | |
1690 | dirty += node_len; | |
1691 | p += node_len; | |
1692 | len -= node_len; | |
1693 | } | |
1694 | ||
1695 | err = 0; | |
1696 | out: | |
1697 | vfree(buf); | |
1698 | return err; | |
1699 | } | |
1700 | ||
1701 | /** | |
1702 | * dbg_check_ltab - check the free and dirty space in the ltab. | |
1703 | * @c: the UBIFS file-system description object | |
1704 | * | |
1705 | * This function returns %0 on success and a negative error code on failure. | |
1706 | */ | |
1707 | int dbg_check_ltab(struct ubifs_info *c) | |
1708 | { | |
1709 | int lnum, err, i, cnt; | |
1710 | ||
1711 | if (!dbg_is_chk_lprops(c)) | |
1712 | return 0; | |
1713 | ||
1714 | /* Bring the entire tree into memory */ | |
1715 | cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); | |
1716 | for (i = 0; i < cnt; i++) { | |
1717 | struct ubifs_pnode *pnode; | |
1718 | ||
1719 | pnode = pnode_lookup(c, i); | |
1720 | if (IS_ERR(pnode)) | |
1721 | return PTR_ERR(pnode); | |
1722 | cond_resched(); | |
1723 | } | |
1724 | ||
1725 | /* Check nodes */ | |
1726 | err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0); | |
1727 | if (err) | |
1728 | return err; | |
1729 | ||
1730 | /* Check each LEB */ | |
1731 | for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { | |
1732 | err = dbg_check_ltab_lnum(c, lnum); | |
1733 | if (err) { | |
1734 | ubifs_err("failed at LEB %d", lnum); | |
1735 | return err; | |
1736 | } | |
1737 | } | |
1738 | ||
1739 | dbg_lp("succeeded"); | |
1740 | return 0; | |
1741 | } | |
1742 | ||
1743 | /** | |
1744 | * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT. | |
1745 | * @c: the UBIFS file-system description object | |
1746 | * | |
1747 | * This function returns %0 on success and a negative error code on failure. | |
1748 | */ | |
1749 | int dbg_chk_lpt_free_spc(struct ubifs_info *c) | |
1750 | { | |
1751 | long long free = 0; | |
1752 | int i; | |
1753 | ||
1754 | if (!dbg_is_chk_lprops(c)) | |
1755 | return 0; | |
1756 | ||
1757 | for (i = 0; i < c->lpt_lebs; i++) { | |
1758 | if (c->ltab[i].tgc || c->ltab[i].cmt) | |
1759 | continue; | |
1760 | if (i + c->lpt_first == c->nhead_lnum) | |
1761 | free += c->leb_size - c->nhead_offs; | |
1762 | else if (c->ltab[i].free == c->leb_size) | |
1763 | free += c->leb_size; | |
1764 | } | |
1765 | if (free < c->lpt_sz) { | |
1766 | ubifs_err("LPT space error: free %lld lpt_sz %lld", | |
1767 | free, c->lpt_sz); | |
1768 | ubifs_dump_lpt_info(c); | |
1769 | ubifs_dump_lpt_lebs(c); | |
1770 | dump_stack(); | |
1771 | return -EINVAL; | |
1772 | } | |
1773 | return 0; | |
1774 | } | |
1775 | ||
1776 | /** | |
1777 | * dbg_chk_lpt_sz - check LPT does not write more than LPT size. | |
1778 | * @c: the UBIFS file-system description object | |
1779 | * @action: what to do | |
1780 | * @len: length written | |
1781 | * | |
1782 | * This function returns %0 on success and a negative error code on failure. | |
1783 | * The @action argument may be one of: | |
1784 | * o %0 - LPT debugging checking starts, initialize debugging variables; | |
1785 | * o %1 - wrote an LPT node, increase LPT size by @len bytes; | |
1786 | * o %2 - switched to a different LEB and wasted @len bytes; | |
1787 | * o %3 - check that we've written the right number of bytes. | |
1788 | * o %4 - wasted @len bytes; | |
1789 | */ | |
1790 | int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len) | |
1791 | { | |
1792 | struct ubifs_debug_info *d = c->dbg; | |
1793 | long long chk_lpt_sz, lpt_sz; | |
1794 | int err = 0; | |
1795 | ||
1796 | if (!dbg_is_chk_lprops(c)) | |
1797 | return 0; | |
1798 | ||
1799 | switch (action) { | |
1800 | case 0: | |
1801 | d->chk_lpt_sz = 0; | |
1802 | d->chk_lpt_sz2 = 0; | |
1803 | d->chk_lpt_lebs = 0; | |
1804 | d->chk_lpt_wastage = 0; | |
1805 | if (c->dirty_pn_cnt > c->pnode_cnt) { | |
1806 | ubifs_err("dirty pnodes %d exceed max %d", | |
1807 | c->dirty_pn_cnt, c->pnode_cnt); | |
1808 | err = -EINVAL; | |
1809 | } | |
1810 | if (c->dirty_nn_cnt > c->nnode_cnt) { | |
1811 | ubifs_err("dirty nnodes %d exceed max %d", | |
1812 | c->dirty_nn_cnt, c->nnode_cnt); | |
1813 | err = -EINVAL; | |
1814 | } | |
1815 | return err; | |
1816 | case 1: | |
1817 | d->chk_lpt_sz += len; | |
1818 | return 0; | |
1819 | case 2: | |
1820 | d->chk_lpt_sz += len; | |
1821 | d->chk_lpt_wastage += len; | |
1822 | d->chk_lpt_lebs += 1; | |
1823 | return 0; | |
1824 | case 3: | |
1825 | chk_lpt_sz = c->leb_size; | |
1826 | chk_lpt_sz *= d->chk_lpt_lebs; | |
1827 | chk_lpt_sz += len - c->nhead_offs; | |
1828 | if (d->chk_lpt_sz != chk_lpt_sz) { | |
1829 | ubifs_err("LPT wrote %lld but space used was %lld", | |
1830 | d->chk_lpt_sz, chk_lpt_sz); | |
1831 | err = -EINVAL; | |
1832 | } | |
1833 | if (d->chk_lpt_sz > c->lpt_sz) { | |
1834 | ubifs_err("LPT wrote %lld but lpt_sz is %lld", | |
1835 | d->chk_lpt_sz, c->lpt_sz); | |
1836 | err = -EINVAL; | |
1837 | } | |
1838 | if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) { | |
1839 | ubifs_err("LPT layout size %lld but wrote %lld", | |
1840 | d->chk_lpt_sz, d->chk_lpt_sz2); | |
1841 | err = -EINVAL; | |
1842 | } | |
1843 | if (d->chk_lpt_sz2 && d->new_nhead_offs != len) { | |
1844 | ubifs_err("LPT new nhead offs: expected %d was %d", | |
1845 | d->new_nhead_offs, len); | |
1846 | err = -EINVAL; | |
1847 | } | |
1848 | lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; | |
1849 | lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; | |
1850 | lpt_sz += c->ltab_sz; | |
1851 | if (c->big_lpt) | |
1852 | lpt_sz += c->lsave_sz; | |
1853 | if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) { | |
1854 | ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld", | |
1855 | d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz); | |
1856 | err = -EINVAL; | |
1857 | } | |
1858 | if (err) { | |
1859 | ubifs_dump_lpt_info(c); | |
1860 | ubifs_dump_lpt_lebs(c); | |
1861 | dump_stack(); | |
1862 | } | |
1863 | d->chk_lpt_sz2 = d->chk_lpt_sz; | |
1864 | d->chk_lpt_sz = 0; | |
1865 | d->chk_lpt_wastage = 0; | |
1866 | d->chk_lpt_lebs = 0; | |
1867 | d->new_nhead_offs = len; | |
1868 | return err; | |
1869 | case 4: | |
1870 | d->chk_lpt_sz += len; | |
1871 | d->chk_lpt_wastage += len; | |
1872 | return 0; | |
1873 | default: | |
1874 | return -EINVAL; | |
1875 | } | |
1876 | } | |
1877 | ||
1878 | /** | |
1879 | * ubifs_dump_lpt_leb - dump an LPT LEB. | |
1880 | * @c: UBIFS file-system description object | |
1881 | * @lnum: LEB number to dump | |
1882 | * | |
1883 | * This function dumps an LEB from LPT area. Nodes in this area are very | |
1884 | * different to nodes in the main area (e.g., they do not have common headers, | |
1885 | * they do not have 8-byte alignments, etc), so we have a separate function to | |
1886 | * dump LPT area LEBs. Note, LPT has to be locked by the caller. | |
1887 | */ | |
1888 | static void dump_lpt_leb(const struct ubifs_info *c, int lnum) | |
1889 | { | |
1890 | int err, len = c->leb_size, node_type, node_num, node_len, offs; | |
1891 | void *buf, *p; | |
1892 | ||
1893 | pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); | |
1894 | buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); | |
1895 | if (!buf) { | |
1896 | ubifs_err("cannot allocate memory to dump LPT"); | |
1897 | return; | |
1898 | } | |
1899 | ||
1900 | err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1); | |
1901 | if (err) | |
1902 | goto out; | |
1903 | ||
1904 | while (1) { | |
1905 | offs = c->leb_size - len; | |
1906 | if (!is_a_node(c, p, len)) { | |
1907 | int pad_len; | |
1908 | ||
1909 | pad_len = get_pad_len(c, p, len); | |
1910 | if (pad_len) { | |
1911 | pr_err("LEB %d:%d, pad %d bytes\n", | |
1912 | lnum, offs, pad_len); | |
1913 | p += pad_len; | |
1914 | len -= pad_len; | |
1915 | continue; | |
1916 | } | |
1917 | if (len) | |
1918 | pr_err("LEB %d:%d, free %d bytes\n", | |
1919 | lnum, offs, len); | |
1920 | break; | |
1921 | } | |
1922 | ||
1923 | node_type = get_lpt_node_type(c, p, &node_num); | |
1924 | switch (node_type) { | |
1925 | case UBIFS_LPT_PNODE: | |
1926 | { | |
1927 | node_len = c->pnode_sz; | |
1928 | if (c->big_lpt) | |
1929 | pr_err("LEB %d:%d, pnode num %d\n", | |
1930 | lnum, offs, node_num); | |
1931 | else | |
1932 | pr_err("LEB %d:%d, pnode\n", lnum, offs); | |
1933 | break; | |
1934 | } | |
1935 | case UBIFS_LPT_NNODE: | |
1936 | { | |
1937 | int i; | |
1938 | struct ubifs_nnode nnode; | |
1939 | ||
1940 | node_len = c->nnode_sz; | |
1941 | if (c->big_lpt) | |
1942 | pr_err("LEB %d:%d, nnode num %d, ", | |
1943 | lnum, offs, node_num); | |
1944 | else | |
1945 | pr_err("LEB %d:%d, nnode, ", | |
1946 | lnum, offs); | |
1947 | err = ubifs_unpack_nnode(c, p, &nnode); | |
1948 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | |
1949 | pr_cont("%d:%d", nnode.nbranch[i].lnum, | |
1950 | nnode.nbranch[i].offs); | |
1951 | if (i != UBIFS_LPT_FANOUT - 1) | |
1952 | pr_cont(", "); | |
1953 | } | |
1954 | pr_cont("\n"); | |
1955 | break; | |
1956 | } | |
1957 | case UBIFS_LPT_LTAB: | |
1958 | node_len = c->ltab_sz; | |
1959 | pr_err("LEB %d:%d, ltab\n", lnum, offs); | |
1960 | break; | |
1961 | case UBIFS_LPT_LSAVE: | |
1962 | node_len = c->lsave_sz; | |
1963 | pr_err("LEB %d:%d, lsave len\n", lnum, offs); | |
1964 | break; | |
1965 | default: | |
1966 | ubifs_err("LPT node type %d not recognized", node_type); | |
1967 | goto out; | |
1968 | } | |
1969 | ||
1970 | p += node_len; | |
1971 | len -= node_len; | |
1972 | } | |
1973 | ||
1974 | pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); | |
1975 | out: | |
1976 | vfree(buf); | |
1977 | return; | |
1978 | } | |
1979 | ||
1980 | /** | |
1981 | * ubifs_dump_lpt_lebs - dump LPT lebs. | |
1982 | * @c: UBIFS file-system description object | |
1983 | * | |
1984 | * This function dumps all LPT LEBs. The caller has to make sure the LPT is | |
1985 | * locked. | |
1986 | */ | |
1987 | void ubifs_dump_lpt_lebs(const struct ubifs_info *c) | |
1988 | { | |
1989 | int i; | |
1990 | ||
1991 | pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid); | |
1992 | for (i = 0; i < c->lpt_lebs; i++) | |
1993 | dump_lpt_leb(c, i + c->lpt_first); | |
1994 | pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid); | |
1995 | } | |
1996 | ||
1997 | /** | |
1998 | * dbg_populate_lsave - debugging version of 'populate_lsave()' | |
1999 | * @c: UBIFS file-system description object | |
2000 | * | |
2001 | * This is a debugging version for 'populate_lsave()' which populates lsave | |
2002 | * with random LEBs instead of useful LEBs, which is good for test coverage. | |
2003 | * Returns zero if lsave has not been populated (this debugging feature is | |
2004 | * disabled) an non-zero if lsave has been populated. | |
2005 | */ | |
2006 | static int dbg_populate_lsave(struct ubifs_info *c) | |
2007 | { | |
2008 | struct ubifs_lprops *lprops; | |
2009 | struct ubifs_lpt_heap *heap; | |
2010 | int i; | |
2011 | ||
2012 | if (!dbg_is_chk_gen(c)) | |
2013 | return 0; | |
2014 | if (prandom_u32() & 3) | |
2015 | return 0; | |
2016 | ||
2017 | for (i = 0; i < c->lsave_cnt; i++) | |
2018 | c->lsave[i] = c->main_first; | |
2019 | ||
2020 | list_for_each_entry(lprops, &c->empty_list, list) | |
2021 | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; | |
2022 | list_for_each_entry(lprops, &c->freeable_list, list) | |
2023 | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; | |
2024 | list_for_each_entry(lprops, &c->frdi_idx_list, list) | |
2025 | c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum; | |
2026 | ||
2027 | heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1]; | |
2028 | for (i = 0; i < heap->cnt; i++) | |
2029 | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; | |
2030 | heap = &c->lpt_heap[LPROPS_DIRTY - 1]; | |
2031 | for (i = 0; i < heap->cnt; i++) | |
2032 | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; | |
2033 | heap = &c->lpt_heap[LPROPS_FREE - 1]; | |
2034 | for (i = 0; i < heap->cnt; i++) | |
2035 | c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum; | |
2036 | ||
2037 | return 1; | |
2038 | } | |
2039 | #endif |