]> Git Repo - u-boot.git/blame - arch/x86/cpu/cpu.c
x86: minnowmax: Adjust U-Boot environment address in SPI flash
[u-boot.git] / arch / x86 / cpu / cpu.c
CommitLineData
2262cfee 1/*
dbf7115a
GR
2 * (C) Copyright 2008-2011
3 * Graeme Russ, <[email protected]>
4 *
2262cfee 5 * (C) Copyright 2002
fa82f871 6 * Daniel Engström, Omicron Ceti AB, <[email protected]>
8bde7f77 7 *
2262cfee
WD
8 * (C) Copyright 2002
9 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
10 * Marius Groeger <[email protected]>
11 *
12 * (C) Copyright 2002
13 * Sysgo Real-Time Solutions, GmbH <www.elinos.com>
14 * Alex Zuepke <[email protected]>
15 *
52f952bf
BM
16 * Part of this file is adapted from coreboot
17 * src/arch/x86/lib/cpu.c
18 *
1a459660 19 * SPDX-License-Identifier: GPL-2.0+
2262cfee
WD
20 */
21
2262cfee
WD
22#include <common.h>
23#include <command.h>
6e6f4ce4 24#include <dm.h>
200182a7
SG
25#include <errno.h>
26#include <malloc.h>
095593c0 27#include <asm/control_regs.h>
200182a7 28#include <asm/cpu.h>
6e6f4ce4 29#include <asm/lapic.h>
e77b62e2 30#include <asm/microcode.h>
6e6f4ce4 31#include <asm/mp.h>
43dd22f5
BM
32#include <asm/msr.h>
33#include <asm/mtrr.h>
a49e3c7f 34#include <asm/post.h>
c53fd2bb 35#include <asm/processor.h>
0c24c9cc 36#include <asm/processor-flags.h>
3f5f18d1 37#include <asm/interrupt.h>
5e2400e8 38#include <asm/tables.h>
60a9b6bf 39#include <linux/compiler.h>
2262cfee 40
52f952bf
BM
41DECLARE_GLOBAL_DATA_PTR;
42
dbf7115a
GR
43/*
44 * Constructor for a conventional segment GDT (or LDT) entry
45 * This is a macro so it can be used in initialisers
46 */
59c6d0ef
GR
47#define GDT_ENTRY(flags, base, limit) \
48 ((((base) & 0xff000000ULL) << (56-24)) | \
49 (((flags) & 0x0000f0ffULL) << 40) | \
50 (((limit) & 0x000f0000ULL) << (48-16)) | \
51 (((base) & 0x00ffffffULL) << 16) | \
52 (((limit) & 0x0000ffffULL)))
53
59c6d0ef
GR
54struct gdt_ptr {
55 u16 len;
56 u32 ptr;
717979fd 57} __packed;
59c6d0ef 58
52f952bf
BM
59struct cpu_device_id {
60 unsigned vendor;
61 unsigned device;
62};
63
64struct cpuinfo_x86 {
65 uint8_t x86; /* CPU family */
66 uint8_t x86_vendor; /* CPU vendor */
67 uint8_t x86_model;
68 uint8_t x86_mask;
69};
70
71/*
72 * List of cpu vendor strings along with their normalized
73 * id values.
74 */
6d24a1ee 75static const struct {
52f952bf
BM
76 int vendor;
77 const char *name;
78} x86_vendors[] = {
79 { X86_VENDOR_INTEL, "GenuineIntel", },
80 { X86_VENDOR_CYRIX, "CyrixInstead", },
81 { X86_VENDOR_AMD, "AuthenticAMD", },
82 { X86_VENDOR_UMC, "UMC UMC UMC ", },
83 { X86_VENDOR_NEXGEN, "NexGenDriven", },
84 { X86_VENDOR_CENTAUR, "CentaurHauls", },
85 { X86_VENDOR_RISE, "RiseRiseRise", },
86 { X86_VENDOR_TRANSMETA, "GenuineTMx86", },
87 { X86_VENDOR_TRANSMETA, "TransmetaCPU", },
88 { X86_VENDOR_NSC, "Geode by NSC", },
89 { X86_VENDOR_SIS, "SiS SiS SiS ", },
90};
91
92static const char *const x86_vendor_name[] = {
93 [X86_VENDOR_INTEL] = "Intel",
94 [X86_VENDOR_CYRIX] = "Cyrix",
95 [X86_VENDOR_AMD] = "AMD",
96 [X86_VENDOR_UMC] = "UMC",
97 [X86_VENDOR_NEXGEN] = "NexGen",
98 [X86_VENDOR_CENTAUR] = "Centaur",
99 [X86_VENDOR_RISE] = "Rise",
100 [X86_VENDOR_TRANSMETA] = "Transmeta",
101 [X86_VENDOR_NSC] = "NSC",
102 [X86_VENDOR_SIS] = "SiS",
103};
104
74bfbe1b 105static void load_ds(u32 segment)
59c6d0ef 106{
74bfbe1b
GR
107 asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
108}
109
110static void load_es(u32 segment)
111{
112 asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
113}
114
115static void load_fs(u32 segment)
116{
117 asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
118}
119
120static void load_gs(u32 segment)
121{
122 asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
123}
124
125static void load_ss(u32 segment)
126{
127 asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
128}
129
130static void load_gdt(const u64 *boot_gdt, u16 num_entries)
131{
132 struct gdt_ptr gdt;
133
e34aef1d 134 gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
74bfbe1b
GR
135 gdt.ptr = (u32)boot_gdt;
136
137 asm volatile("lgdtl %0\n" : : "m" (gdt));
59c6d0ef
GR
138}
139
f0c7d9c7 140void arch_setup_gd(gd_t *new_gd)
9e6c572f 141{
f0c7d9c7
SG
142 u64 *gdt_addr;
143
2db93745
SG
144 gdt_addr = new_gd->arch.gdt;
145
19038e1b
BM
146 /*
147 * CS: code, read/execute, 4 GB, base 0
148 *
149 * Some OS (like VxWorks) requires GDT entry 1 to be the 32-bit CS
150 */
151 gdt_addr[X86_GDT_ENTRY_UNUSED] = GDT_ENTRY(0xc09b, 0, 0xfffff);
9e6c572f
GR
152 gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
153
154 /* DS: data, read/write, 4 GB, base 0 */
155 gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
156
157 /* FS: data, read/write, 4 GB, base (Global Data Pointer) */
2db93745 158 new_gd->arch.gd_addr = new_gd;
0cecc3b6 159 gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
2db93745 160 (ulong)&new_gd->arch.gd_addr, 0xfffff);
9e6c572f
GR
161
162 /* 16-bit CS: code, read/execute, 64 kB, base 0 */
e34aef1d 163 gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
9e6c572f
GR
164
165 /* 16-bit DS: data, read/write, 64 kB, base 0 */
e34aef1d
SG
166 gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
167
168 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
169 gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
9e6c572f
GR
170
171 load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
172 load_ds(X86_GDT_ENTRY_32BIT_DS);
173 load_es(X86_GDT_ENTRY_32BIT_DS);
174 load_gs(X86_GDT_ENTRY_32BIT_DS);
175 load_ss(X86_GDT_ENTRY_32BIT_DS);
176 load_fs(X86_GDT_ENTRY_32BIT_FS);
177}
178
002610f6
BM
179#ifdef CONFIG_HAVE_FSP
180/*
181 * Setup FSP execution environment GDT
182 *
183 * Per Intel FSP external architecture specification, before calling any FSP
184 * APIs, we need make sure the system is in flat 32-bit mode and both the code
185 * and data selectors should have full 4GB access range. Here we reuse the one
186 * we used in arch/x86/cpu/start16.S, and reload the segement registers.
187 */
188void setup_fsp_gdt(void)
189{
190 load_gdt((const u64 *)(gdt_rom + CONFIG_RESET_SEG_START), 4);
191 load_ds(X86_GDT_ENTRY_32BIT_DS);
192 load_ss(X86_GDT_ENTRY_32BIT_DS);
193 load_es(X86_GDT_ENTRY_32BIT_DS);
194 load_fs(X86_GDT_ENTRY_32BIT_DS);
195 load_gs(X86_GDT_ENTRY_32BIT_DS);
196}
197#endif
198
f30fc4de
GB
199int __weak x86_cleanup_before_linux(void)
200{
7949703a 201#ifdef CONFIG_BOOTSTAGE_STASH
ee2b2434 202 bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
7949703a
SG
203 CONFIG_BOOTSTAGE_STASH_SIZE);
204#endif
205
f30fc4de
GB
206 return 0;
207}
208
52f952bf
BM
209/*
210 * Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
211 * by the fact that they preserve the flags across the division of 5/2.
212 * PII and PPro exhibit this behavior too, but they have cpuid available.
213 */
214
215/*
216 * Perform the Cyrix 5/2 test. A Cyrix won't change
217 * the flags, while other 486 chips will.
218 */
219static inline int test_cyrix_52div(void)
220{
221 unsigned int test;
222
223 __asm__ __volatile__(
224 "sahf\n\t" /* clear flags (%eax = 0x0005) */
225 "div %b2\n\t" /* divide 5 by 2 */
226 "lahf" /* store flags into %ah */
227 : "=a" (test)
228 : "0" (5), "q" (2)
229 : "cc");
230
231 /* AH is 0x02 on Cyrix after the divide.. */
232 return (unsigned char) (test >> 8) == 0x02;
233}
234
235/*
236 * Detect a NexGen CPU running without BIOS hypercode new enough
237 * to have CPUID. (Thanks to Herbert Oppmann)
238 */
239
240static int deep_magic_nexgen_probe(void)
241{
242 int ret;
243
244 __asm__ __volatile__ (
245 " movw $0x5555, %%ax\n"
246 " xorw %%dx,%%dx\n"
247 " movw $2, %%cx\n"
248 " divw %%cx\n"
249 " movl $0, %%eax\n"
250 " jnz 1f\n"
251 " movl $1, %%eax\n"
252 "1:\n"
253 : "=a" (ret) : : "cx", "dx");
254 return ret;
255}
256
257static bool has_cpuid(void)
258{
259 return flag_is_changeable_p(X86_EFLAGS_ID);
260}
261
49491669
BM
262static bool has_mtrr(void)
263{
264 return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
265}
266
52f952bf
BM
267static int build_vendor_name(char *vendor_name)
268{
269 struct cpuid_result result;
270 result = cpuid(0x00000000);
271 unsigned int *name_as_ints = (unsigned int *)vendor_name;
272
273 name_as_ints[0] = result.ebx;
274 name_as_ints[1] = result.edx;
275 name_as_ints[2] = result.ecx;
276
277 return result.eax;
278}
279
280static void identify_cpu(struct cpu_device_id *cpu)
281{
282 char vendor_name[16];
283 int i;
284
285 vendor_name[0] = '\0'; /* Unset */
6cba6b92 286 cpu->device = 0; /* fix gcc 4.4.4 warning */
52f952bf
BM
287
288 /* Find the id and vendor_name */
289 if (!has_cpuid()) {
290 /* Its a 486 if we can modify the AC flag */
291 if (flag_is_changeable_p(X86_EFLAGS_AC))
292 cpu->device = 0x00000400; /* 486 */
293 else
294 cpu->device = 0x00000300; /* 386 */
295 if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
296 memcpy(vendor_name, "CyrixInstead", 13);
297 /* If we ever care we can enable cpuid here */
298 }
299 /* Detect NexGen with old hypercode */
300 else if (deep_magic_nexgen_probe())
301 memcpy(vendor_name, "NexGenDriven", 13);
302 }
303 if (has_cpuid()) {
304 int cpuid_level;
305
306 cpuid_level = build_vendor_name(vendor_name);
307 vendor_name[12] = '\0';
308
309 /* Intel-defined flags: level 0x00000001 */
310 if (cpuid_level >= 0x00000001) {
311 cpu->device = cpuid_eax(0x00000001);
312 } else {
313 /* Have CPUID level 0 only unheard of */
314 cpu->device = 0x00000400;
315 }
316 }
317 cpu->vendor = X86_VENDOR_UNKNOWN;
318 for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
319 if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
320 cpu->vendor = x86_vendors[i].vendor;
321 break;
322 }
323 }
324}
325
326static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
327{
328 c->x86 = (tfms >> 8) & 0xf;
329 c->x86_model = (tfms >> 4) & 0xf;
330 c->x86_mask = tfms & 0xf;
331 if (c->x86 == 0xf)
332 c->x86 += (tfms >> 20) & 0xff;
333 if (c->x86 >= 0x6)
334 c->x86_model += ((tfms >> 16) & 0xF) << 4;
335}
336
342727ac
SG
337u32 cpu_get_family_model(void)
338{
339 return gd->arch.x86_device & 0x0fff0ff0;
340}
341
342u32 cpu_get_stepping(void)
343{
344 return gd->arch.x86_mask;
345}
346
0ea76e92 347int x86_cpu_init_f(void)
2262cfee 348{
0c24c9cc
GR
349 const u32 em_rst = ~X86_CR0_EM;
350 const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
351
e49cceac
SG
352 if (ll_boot_init()) {
353 /* initialize FPU, reset EM, set MP and NE */
354 asm ("fninit\n" \
355 "movl %%cr0, %%eax\n" \
356 "andl %0, %%eax\n" \
357 "orl %1, %%eax\n" \
358 "movl %%eax, %%cr0\n" \
359 : : "i" (em_rst), "i" (mp_ne_set) : "eax");
360 }
8bde7f77 361
52f952bf
BM
362 /* identify CPU via cpuid and store the decoded info into gd->arch */
363 if (has_cpuid()) {
364 struct cpu_device_id cpu;
365 struct cpuinfo_x86 c;
366
367 identify_cpu(&cpu);
368 get_fms(&c, cpu.device);
369 gd->arch.x86 = c.x86;
370 gd->arch.x86_vendor = cpu.vendor;
371 gd->arch.x86_model = c.x86_model;
372 gd->arch.x86_mask = c.x86_mask;
373 gd->arch.x86_device = cpu.device;
49491669
BM
374
375 gd->arch.has_mtrr = has_mtrr();
52f952bf 376 }
b9da5086
SG
377 /* Don't allow PCI region 3 to use memory in the 2-4GB memory hole */
378 gd->pci_ram_top = 0x80000000U;
52f952bf 379
43dd22f5
BM
380 /* Configure fixed range MTRRs for some legacy regions */
381 if (gd->arch.has_mtrr) {
382 u64 mtrr_cap;
383
384 mtrr_cap = native_read_msr(MTRR_CAP_MSR);
385 if (mtrr_cap & MTRR_CAP_FIX) {
386 /* Mark the VGA RAM area as uncacheable */
8ba25eec
BM
387 native_write_msr(MTRR_FIX_16K_A0000_MSR,
388 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE),
389 MTRR_FIX_TYPE(MTRR_TYPE_UNCACHEABLE));
390
391 /*
392 * Mark the PCI ROM area as cacheable to improve ROM
393 * execution performance.
394 */
395 native_write_msr(MTRR_FIX_4K_C0000_MSR,
396 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
397 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
398 native_write_msr(MTRR_FIX_4K_C8000_MSR,
399 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
400 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
401 native_write_msr(MTRR_FIX_4K_D0000_MSR,
402 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
403 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
404 native_write_msr(MTRR_FIX_4K_D8000_MSR,
405 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK),
406 MTRR_FIX_TYPE(MTRR_TYPE_WRBACK));
43dd22f5
BM
407
408 /* Enable the fixed range MTRRs */
409 msr_setbits_64(MTRR_DEF_TYPE_MSR, MTRR_DEF_TYPE_FIX_EN);
410 }
411 }
412
4932443d
BM
413#ifdef CONFIG_I8254_TIMER
414 /* Set up the i8254 timer if required */
415 i8254_init();
416#endif
417
1c409bc7
GR
418 return 0;
419}
420
d653244b 421void x86_enable_caches(void)
1c409bc7 422{
095593c0 423 unsigned long cr0;
0ea76e92 424
095593c0
SR
425 cr0 = read_cr0();
426 cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
427 write_cr0(cr0);
428 wbinvd();
d653244b
GR
429}
430void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
431
095593c0
SR
432void x86_disable_caches(void)
433{
434 unsigned long cr0;
435
436 cr0 = read_cr0();
437 cr0 |= X86_CR0_NW | X86_CR0_CD;
438 wbinvd();
439 write_cr0(cr0);
440 wbinvd();
441}
442void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
443
d653244b
GR
444int x86_init_cache(void)
445{
446 enable_caches();
0ea76e92 447
2262cfee
WD
448 return 0;
449}
d653244b 450int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
2262cfee 451
54841ab5 452int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
2262cfee 453{
717979fd 454 printf("resetting ...\n");
dbf7115a
GR
455
456 /* wait 50 ms */
457 udelay(50000);
2262cfee
WD
458 disable_interrupts();
459 reset_cpu(0);
460
461 /*NOTREACHED*/
462 return 0;
463}
464
717979fd 465void flush_cache(unsigned long dummy1, unsigned long dummy2)
2262cfee
WD
466{
467 asm("wbinvd\n");
2262cfee 468}
3f5f18d1 469
e1ffd817 470__weak void reset_cpu(ulong addr)
3f5f18d1 471{
ff6a8f3c 472 /* Do a hard reset through the chipset's reset control register */
2a605d4d 473 outb(SYS_RST | RST_CPU, IO_PORT_RESET);
ff6a8f3c
SG
474 for (;;)
475 cpu_hlt();
476}
477
478void x86_full_reset(void)
479{
2a605d4d 480 outb(FULL_RST | SYS_RST | RST_CPU, IO_PORT_RESET);
3f5f18d1 481}
095593c0
SR
482
483int dcache_status(void)
484{
b6c9a205 485 return !(read_cr0() & X86_CR0_CD);
095593c0
SR
486}
487
488/* Define these functions to allow ehch-hcd to function */
489void flush_dcache_range(unsigned long start, unsigned long stop)
490{
491}
492
493void invalidate_dcache_range(unsigned long start, unsigned long stop)
494{
495}
89371409
SG
496
497void dcache_enable(void)
498{
499 enable_caches();
500}
501
502void dcache_disable(void)
503{
504 disable_caches();
505}
506
507void icache_enable(void)
508{
509}
510
511void icache_disable(void)
512{
513}
514
515int icache_status(void)
516{
517 return 1;
518}
7bddac94
SG
519
520void cpu_enable_paging_pae(ulong cr3)
521{
522 __asm__ __volatile__(
523 /* Load the page table address */
524 "movl %0, %%cr3\n"
525 /* Enable pae */
526 "movl %%cr4, %%eax\n"
527 "orl $0x00000020, %%eax\n"
528 "movl %%eax, %%cr4\n"
529 /* Enable paging */
530 "movl %%cr0, %%eax\n"
531 "orl $0x80000000, %%eax\n"
532 "movl %%eax, %%cr0\n"
533 :
534 : "r" (cr3)
535 : "eax");
536}
537
538void cpu_disable_paging_pae(void)
539{
540 /* Turn off paging */
541 __asm__ __volatile__ (
542 /* Disable paging */
543 "movl %%cr0, %%eax\n"
544 "andl $0x7fffffff, %%eax\n"
545 "movl %%eax, %%cr0\n"
546 /* Disable pae */
547 "movl %%cr4, %%eax\n"
548 "andl $0xffffffdf, %%eax\n"
549 "movl %%eax, %%cr4\n"
550 :
551 :
552 : "eax");
553}
92cc94a1 554
52f952bf 555static bool can_detect_long_mode(void)
92cc94a1 556{
52f952bf
BM
557 return cpuid_eax(0x80000000) > 0x80000000UL;
558}
92cc94a1 559
52f952bf
BM
560static bool has_long_mode(void)
561{
562 return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
92cc94a1
SG
563}
564
52f952bf 565int cpu_has_64bit(void)
92cc94a1 566{
52f952bf
BM
567 return has_cpuid() && can_detect_long_mode() &&
568 has_long_mode();
569}
92cc94a1 570
52f952bf
BM
571const char *cpu_vendor_name(int vendor)
572{
573 const char *name;
574 name = "<invalid cpu vendor>";
575 if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
576 (x86_vendor_name[vendor] != 0))
577 name = x86_vendor_name[vendor];
92cc94a1 578
52f952bf 579 return name;
92cc94a1
SG
580}
581
727c1a98 582char *cpu_get_name(char *name)
92cc94a1 583{
727c1a98 584 unsigned int *name_as_ints = (unsigned int *)name;
52f952bf 585 struct cpuid_result regs;
727c1a98 586 char *ptr;
52f952bf 587 int i;
92cc94a1 588
727c1a98 589 /* This bit adds up to 48 bytes */
52f952bf
BM
590 for (i = 0; i < 3; i++) {
591 regs = cpuid(0x80000002 + i);
592 name_as_ints[i * 4 + 0] = regs.eax;
593 name_as_ints[i * 4 + 1] = regs.ebx;
594 name_as_ints[i * 4 + 2] = regs.ecx;
595 name_as_ints[i * 4 + 3] = regs.edx;
596 }
727c1a98 597 name[CPU_MAX_NAME_LEN - 1] = '\0';
92cc94a1 598
52f952bf 599 /* Skip leading spaces. */
727c1a98
SG
600 ptr = name;
601 while (*ptr == ' ')
602 ptr++;
52f952bf 603
727c1a98 604 return ptr;
92cc94a1
SG
605}
606
727c1a98 607int default_print_cpuinfo(void)
92cc94a1 608{
52f952bf
BM
609 printf("CPU: %s, vendor %s, device %xh\n",
610 cpu_has_64bit() ? "x86_64" : "x86",
611 cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
92cc94a1
SG
612
613 return 0;
614}
200182a7
SG
615
616#define PAGETABLE_SIZE (6 * 4096)
617
618/**
619 * build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
620 *
621 * @pgtable: Pointer to a 24iKB block of memory
622 */
623static void build_pagetable(uint32_t *pgtable)
624{
625 uint i;
626
627 memset(pgtable, '\0', PAGETABLE_SIZE);
628
629 /* Level 4 needs a single entry */
630 pgtable[0] = (uint32_t)&pgtable[1024] + 7;
631
632 /* Level 3 has one 64-bit entry for each GiB of memory */
633 for (i = 0; i < 4; i++) {
634 pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
635 0x1000 * i + 7;
636 }
637
638 /* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
639 for (i = 0; i < 2048; i++)
640 pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
641}
642
643int cpu_jump_to_64bit(ulong setup_base, ulong target)
644{
645 uint32_t *pgtable;
646
647 pgtable = memalign(4096, PAGETABLE_SIZE);
648 if (!pgtable)
649 return -ENOMEM;
650
651 build_pagetable(pgtable);
652 cpu_call64((ulong)pgtable, setup_base, target);
653 free(pgtable);
654
655 return -EFAULT;
656}
a49e3c7f
SG
657
658void show_boot_progress(int val)
659{
a49e3c7f
SG
660 outb(val, POST_PORT);
661}
5e2400e8
BM
662
663#ifndef CONFIG_SYS_COREBOOT
664int last_stage_init(void)
665{
666 write_tables();
667
668 return 0;
669}
670#endif
bcb0c61e 671
6e6f4ce4
BM
672#ifdef CONFIG_SMP
673static int enable_smis(struct udevice *cpu, void *unused)
674{
675 return 0;
676}
677
678static struct mp_flight_record mp_steps[] = {
679 MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL),
680 /* Wait for APs to finish initialization before proceeding */
681 MP_FR_BLOCK_APS(NULL, NULL, enable_smis, NULL),
682};
683
684static int x86_mp_init(void)
685{
686 struct mp_params mp_params;
687
6e6f4ce4
BM
688 mp_params.parallel_microcode_load = 0,
689 mp_params.flight_plan = &mp_steps[0];
690 mp_params.num_records = ARRAY_SIZE(mp_steps);
691 mp_params.microcode_pointer = 0;
692
693 if (mp_init(&mp_params)) {
694 printf("Warning: MP init failure\n");
695 return -EIO;
696 }
697
698 return 0;
699}
700#endif
701
afd5d50c 702static int x86_init_cpus(void)
bcb0c61e 703{
6e6f4ce4
BM
704#ifdef CONFIG_SMP
705 debug("Init additional CPUs\n");
706 x86_mp_init();
c77b8912
BM
707#else
708 struct udevice *dev;
709
710 /*
711 * This causes the cpu-x86 driver to be probed.
712 * We don't check return value here as we want to allow boards
713 * which have not been converted to use cpu uclass driver to boot.
714 */
715 uclass_first_device(UCLASS_CPU, &dev);
6e6f4ce4
BM
716#endif
717
bcb0c61e
SG
718 return 0;
719}
720
721int cpu_init_r(void)
722{
ac643e03
SG
723 struct udevice *dev;
724 int ret;
725
726 if (!ll_boot_init())
727 return 0;
728
729 ret = x86_init_cpus();
730 if (ret)
731 return ret;
732
733 /*
734 * Set up the northbridge, PCH and LPC if available. Note that these
735 * may have had some limited pre-relocation init if they were probed
736 * before relocation, but this is post relocation.
737 */
738 uclass_first_device(UCLASS_NORTHBRIDGE, &dev);
739 uclass_first_device(UCLASS_PCH, &dev);
740 uclass_first_device(UCLASS_LPC, &dev);
e49cceac
SG
741
742 return 0;
bcb0c61e 743}
This page took 0.346492 seconds and 4 git commands to generate.