]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
0d4e8509 MV |
2 | /* |
3 | * Freescale i.MX28 NAND flash driver | |
4 | * | |
5 | * Copyright (C) 2011 Marek Vasut <[email protected]> | |
6 | * on behalf of DENX Software Engineering GmbH | |
7 | * | |
8 | * Based on code from LTIB: | |
9 | * Freescale GPMI NFC NAND Flash Driver | |
10 | * | |
11 | * Copyright (C) 2010 Freescale Semiconductor, Inc. | |
12 | * Copyright (C) 2008 Embedded Alley Solutions, Inc. | |
29f40c07 | 13 | * Copyright 2017-2019 NXP |
0d4e8509 MV |
14 | */ |
15 | ||
651eb732 | 16 | #include <common.h> |
1eb69ae4 | 17 | #include <cpu_func.h> |
68748340 | 18 | #include <dm.h> |
90526e9f | 19 | #include <asm/cache.h> |
6ae3900a | 20 | #include <linux/mtd/rawnand.h> |
984df7ad | 21 | #include <linux/sizes.h> |
0d4e8509 | 22 | #include <linux/types.h> |
0d4e8509 | 23 | #include <malloc.h> |
1221ce45 | 24 | #include <linux/errno.h> |
0d4e8509 MV |
25 | #include <asm/io.h> |
26 | #include <asm/arch/clock.h> | |
27 | #include <asm/arch/imx-regs.h> | |
552a848e SB |
28 | #include <asm/mach-imx/regs-bch.h> |
29 | #include <asm/mach-imx/regs-gpmi.h> | |
0d4e8509 | 30 | #include <asm/arch/sys_proto.h> |
1d43e24b | 31 | #include <mxs_nand.h> |
0d4e8509 MV |
32 | |
33 | #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 | |
34 | ||
39320e72 PF |
35 | #if defined(CONFIG_MX6) || defined(CONFIG_MX7) || defined(CONFIG_IMX8) || \ |
36 | defined(CONFIG_IMX8M) | |
ae695b18 SR |
37 | #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2 |
38 | #else | |
39 | #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0 | |
40 | #endif | |
0d4e8509 | 41 | #define MXS_NAND_METADATA_SIZE 10 |
1fbdb706 | 42 | #define MXS_NAND_BITS_PER_ECC_LEVEL 13 |
2a83c95f SA |
43 | |
44 | #if !defined(CONFIG_SYS_CACHELINE_SIZE) || CONFIG_SYS_CACHELINE_SIZE < 32 | |
0d4e8509 | 45 | #define MXS_NAND_COMMAND_BUFFER_SIZE 32 |
2a83c95f SA |
46 | #else |
47 | #define MXS_NAND_COMMAND_BUFFER_SIZE CONFIG_SYS_CACHELINE_SIZE | |
48 | #endif | |
0d4e8509 MV |
49 | |
50 | #define MXS_NAND_BCH_TIMEOUT 10000 | |
51 | ||
0d4e8509 MV |
52 | struct nand_ecclayout fake_ecc_layout; |
53 | ||
6b9408ed MV |
54 | /* |
55 | * Cache management functions | |
56 | */ | |
10015025 | 57 | #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) |
6b9408ed MV |
58 | static void mxs_nand_flush_data_buf(struct mxs_nand_info *info) |
59 | { | |
39320e72 | 60 | uint32_t addr = (uintptr_t)info->data_buf; |
6b9408ed MV |
61 | |
62 | flush_dcache_range(addr, addr + info->data_buf_size); | |
63 | } | |
64 | ||
65 | static void mxs_nand_inval_data_buf(struct mxs_nand_info *info) | |
66 | { | |
39320e72 | 67 | uint32_t addr = (uintptr_t)info->data_buf; |
6b9408ed MV |
68 | |
69 | invalidate_dcache_range(addr, addr + info->data_buf_size); | |
70 | } | |
71 | ||
72 | static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) | |
73 | { | |
39320e72 | 74 | uint32_t addr = (uintptr_t)info->cmd_buf; |
6b9408ed MV |
75 | |
76 | flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE); | |
77 | } | |
78 | #else | |
79 | static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {} | |
80 | static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {} | |
81 | static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {} | |
82 | #endif | |
83 | ||
0d4e8509 MV |
84 | static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) |
85 | { | |
86 | struct mxs_dma_desc *desc; | |
87 | ||
88 | if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { | |
89 | printf("MXS NAND: Too many DMA descriptors requested\n"); | |
90 | return NULL; | |
91 | } | |
92 | ||
93 | desc = info->desc[info->desc_index]; | |
94 | info->desc_index++; | |
95 | ||
96 | return desc; | |
97 | } | |
98 | ||
99 | static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) | |
100 | { | |
101 | int i; | |
102 | struct mxs_dma_desc *desc; | |
103 | ||
104 | for (i = 0; i < info->desc_index; i++) { | |
105 | desc = info->desc[i]; | |
106 | memset(desc, 0, sizeof(struct mxs_dma_desc)); | |
107 | desc->address = (dma_addr_t)desc; | |
108 | } | |
109 | ||
110 | info->desc_index = 0; | |
111 | } | |
112 | ||
0d4e8509 MV |
113 | static uint32_t mxs_nand_aux_status_offset(void) |
114 | { | |
115 | return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; | |
116 | } | |
117 | ||
616f03da YL |
118 | static inline bool mxs_nand_bbm_in_data_chunk(struct bch_geometry *geo, struct mtd_info *mtd, |
119 | unsigned int *chunk_num) | |
0d4e8509 | 120 | { |
616f03da | 121 | unsigned int i, j; |
0d4e8509 | 122 | |
616f03da YL |
123 | if (geo->ecc_chunk0_size != geo->ecc_chunkn_size) { |
124 | dev_err(this->dev, "The size of chunk0 must equal to chunkn\n"); | |
125 | return false; | |
126 | } | |
0d4e8509 | 127 | |
616f03da YL |
128 | i = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) / |
129 | (geo->gf_len * geo->ecc_strength + | |
130 | geo->ecc_chunkn_size * 8); | |
0d4e8509 | 131 | |
616f03da YL |
132 | j = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8) - |
133 | (geo->gf_len * geo->ecc_strength + | |
134 | geo->ecc_chunkn_size * 8) * i; | |
0d4e8509 | 135 | |
616f03da YL |
136 | if (j < geo->ecc_chunkn_size * 8) { |
137 | *chunk_num = i + 1; | |
138 | dev_dbg(this->dev, "Set ecc to %d and bbm in chunk %d\n", | |
139 | geo->ecc_strength, *chunk_num); | |
140 | return true; | |
141 | } | |
0d4e8509 | 142 | |
616f03da | 143 | return false; |
0d4e8509 MV |
144 | } |
145 | ||
984df7ad | 146 | static inline int mxs_nand_calc_ecc_layout_by_info(struct bch_geometry *geo, |
62754450 SA |
147 | struct mtd_info *mtd, |
148 | unsigned int ecc_strength, | |
149 | unsigned int ecc_step) | |
984df7ad SA |
150 | { |
151 | struct nand_chip *chip = mtd_to_nand(mtd); | |
502bdc6b | 152 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); |
616f03da | 153 | unsigned int block_mark_bit_offset; |
984df7ad | 154 | |
62754450 | 155 | switch (ecc_step) { |
984df7ad SA |
156 | case SZ_512: |
157 | geo->gf_len = 13; | |
158 | break; | |
159 | case SZ_1K: | |
160 | geo->gf_len = 14; | |
161 | break; | |
162 | default: | |
163 | return -EINVAL; | |
164 | } | |
165 | ||
616f03da YL |
166 | geo->ecc_chunk0_size = ecc_step; |
167 | geo->ecc_chunkn_size = ecc_step; | |
62754450 | 168 | geo->ecc_strength = round_up(ecc_strength, 2); |
984df7ad SA |
169 | |
170 | /* Keep the C >= O */ | |
616f03da | 171 | if (geo->ecc_chunkn_size < mtd->oobsize) |
984df7ad SA |
172 | return -EINVAL; |
173 | ||
502bdc6b | 174 | if (geo->ecc_strength > nand_info->max_ecc_strength_supported) |
984df7ad SA |
175 | return -EINVAL; |
176 | ||
616f03da YL |
177 | geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size; |
178 | ||
179 | /* For bit swap. */ | |
180 | block_mark_bit_offset = mtd->writesize * 8 - | |
181 | (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) | |
182 | + MXS_NAND_METADATA_SIZE * 8); | |
183 | ||
184 | geo->block_mark_byte_offset = block_mark_bit_offset / 8; | |
185 | geo->block_mark_bit_offset = block_mark_bit_offset % 8; | |
984df7ad SA |
186 | |
187 | return 0; | |
188 | } | |
189 | ||
616f03da | 190 | static inline int mxs_nand_legacy_calc_ecc_layout(struct bch_geometry *geo, |
28897e8d | 191 | struct mtd_info *mtd) |
0d4e8509 | 192 | { |
502bdc6b SA |
193 | struct nand_chip *chip = mtd_to_nand(mtd); |
194 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
616f03da | 195 | unsigned int block_mark_bit_offset; |
502bdc6b | 196 | |
28897e8d SA |
197 | /* The default for the length of Galois Field. */ |
198 | geo->gf_len = 13; | |
199 | ||
200 | /* The default for chunk size. */ | |
616f03da YL |
201 | geo->ecc_chunk0_size = 512; |
202 | geo->ecc_chunkn_size = 512; | |
28897e8d | 203 | |
616f03da | 204 | if (geo->ecc_chunkn_size < mtd->oobsize) { |
28897e8d | 205 | geo->gf_len = 14; |
616f03da YL |
206 | geo->ecc_chunk0_size *= 2; |
207 | geo->ecc_chunkn_size *= 2; | |
28897e8d SA |
208 | } |
209 | ||
616f03da | 210 | geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size; |
28897e8d | 211 | |
28897e8d SA |
212 | /* |
213 | * Determine the ECC layout with the formula: | |
214 | * ECC bits per chunk = (total page spare data bits) / | |
215 | * (bits per ECC level) / (chunks per page) | |
216 | * where: | |
217 | * total page spare data bits = | |
218 | * (page oob size - meta data size) * (bits per byte) | |
219 | */ | |
220 | geo->ecc_strength = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8) | |
221 | / (geo->gf_len * geo->ecc_chunk_count); | |
222 | ||
984df7ad | 223 | geo->ecc_strength = min(round_down(geo->ecc_strength, 2), |
502bdc6b | 224 | nand_info->max_ecc_strength_supported); |
28897e8d | 225 | |
616f03da YL |
226 | block_mark_bit_offset = mtd->writesize * 8 - |
227 | (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) | |
228 | + MXS_NAND_METADATA_SIZE * 8); | |
229 | ||
230 | geo->block_mark_byte_offset = block_mark_bit_offset / 8; | |
231 | geo->block_mark_bit_offset = block_mark_bit_offset % 8; | |
232 | ||
233 | return 0; | |
234 | } | |
235 | ||
236 | static inline int mxs_nand_calc_ecc_for_large_oob(struct bch_geometry *geo, | |
237 | struct mtd_info *mtd) | |
238 | { | |
239 | struct nand_chip *chip = mtd_to_nand(mtd); | |
240 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
241 | unsigned int block_mark_bit_offset; | |
242 | unsigned int max_ecc; | |
243 | unsigned int bbm_chunk; | |
244 | unsigned int i; | |
245 | ||
246 | /* sanity check for the minimum ecc nand required */ | |
247 | if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) | |
248 | return -EINVAL; | |
249 | geo->ecc_strength = chip->ecc_strength_ds; | |
250 | ||
251 | /* calculate the maximum ecc platform can support*/ | |
252 | geo->gf_len = 14; | |
253 | geo->ecc_chunk0_size = 1024; | |
254 | geo->ecc_chunkn_size = 1024; | |
255 | geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunkn_size; | |
256 | max_ecc = ((mtd->oobsize - MXS_NAND_METADATA_SIZE) * 8) | |
257 | / (geo->gf_len * geo->ecc_chunk_count); | |
258 | max_ecc = min(round_down(max_ecc, 2), | |
259 | nand_info->max_ecc_strength_supported); | |
260 | ||
261 | ||
262 | /* search a supported ecc strength that makes bbm */ | |
263 | /* located in data chunk */ | |
264 | geo->ecc_strength = chip->ecc_strength_ds; | |
265 | while (!(geo->ecc_strength > max_ecc)) { | |
266 | if (mxs_nand_bbm_in_data_chunk(geo, mtd, &bbm_chunk)) | |
267 | break; | |
268 | geo->ecc_strength += 2; | |
269 | } | |
270 | ||
271 | /* if none of them works, keep using the minimum ecc */ | |
272 | /* nand required but changing ecc page layout */ | |
273 | if (geo->ecc_strength > max_ecc) { | |
274 | geo->ecc_strength = chip->ecc_strength_ds; | |
275 | /* add extra ecc for meta data */ | |
276 | geo->ecc_chunk0_size = 0; | |
277 | geo->ecc_chunk_count = (mtd->writesize / geo->ecc_chunkn_size) + 1; | |
278 | geo->ecc_for_meta = 1; | |
279 | /* check if oob can afford this extra ecc chunk */ | |
280 | if (mtd->oobsize * 8 < MXS_NAND_METADATA_SIZE * 8 + | |
281 | geo->gf_len * geo->ecc_strength | |
282 | * geo->ecc_chunk_count) { | |
283 | printf("unsupported NAND chip with new layout\n"); | |
284 | return -EINVAL; | |
285 | } | |
286 | ||
287 | /* calculate in which chunk bbm located */ | |
288 | bbm_chunk = (mtd->writesize * 8 - MXS_NAND_METADATA_SIZE * 8 - | |
289 | geo->gf_len * geo->ecc_strength) / | |
290 | (geo->gf_len * geo->ecc_strength + | |
291 | geo->ecc_chunkn_size * 8) + 1; | |
292 | } | |
293 | ||
294 | /* calculate the number of ecc chunk behind the bbm */ | |
295 | i = (mtd->writesize / geo->ecc_chunkn_size) - bbm_chunk + 1; | |
296 | ||
297 | block_mark_bit_offset = mtd->writesize * 8 - | |
298 | (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - i) | |
299 | + MXS_NAND_METADATA_SIZE * 8); | |
300 | ||
301 | geo->block_mark_byte_offset = block_mark_bit_offset / 8; | |
302 | geo->block_mark_bit_offset = block_mark_bit_offset % 8; | |
303 | ||
28897e8d | 304 | return 0; |
0d4e8509 MV |
305 | } |
306 | ||
307 | /* | |
308 | * Wait for BCH complete IRQ and clear the IRQ | |
309 | */ | |
931747e5 | 310 | static int mxs_nand_wait_for_bch_complete(struct mxs_nand_info *nand_info) |
0d4e8509 | 311 | { |
0d4e8509 MV |
312 | int timeout = MXS_NAND_BCH_TIMEOUT; |
313 | int ret; | |
314 | ||
931747e5 | 315 | ret = mxs_wait_mask_set(&nand_info->bch_regs->hw_bch_ctrl_reg, |
0d4e8509 MV |
316 | BCH_CTRL_COMPLETE_IRQ, timeout); |
317 | ||
931747e5 | 318 | writel(BCH_CTRL_COMPLETE_IRQ, &nand_info->bch_regs->hw_bch_ctrl_clr); |
0d4e8509 MV |
319 | |
320 | return ret; | |
321 | } | |
322 | ||
323 | /* | |
324 | * This is the function that we install in the cmd_ctrl function pointer of the | |
325 | * owning struct nand_chip. The only functions in the reference implementation | |
326 | * that use these functions pointers are cmdfunc and select_chip. | |
327 | * | |
328 | * In this driver, we implement our own select_chip, so this function will only | |
329 | * be called by the reference implementation's cmdfunc. For this reason, we can | |
330 | * ignore the chip enable bit and concentrate only on sending bytes to the NAND | |
331 | * Flash. | |
332 | */ | |
333 | static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) | |
334 | { | |
17cb4b8f SW |
335 | struct nand_chip *nand = mtd_to_nand(mtd); |
336 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
0d4e8509 MV |
337 | struct mxs_dma_desc *d; |
338 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; | |
339 | int ret; | |
340 | ||
341 | /* | |
342 | * If this condition is true, something is _VERY_ wrong in MTD | |
343 | * subsystem! | |
344 | */ | |
345 | if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { | |
346 | printf("MXS NAND: Command queue too long\n"); | |
347 | return; | |
348 | } | |
349 | ||
350 | /* | |
351 | * Every operation begins with a command byte and a series of zero or | |
352 | * more address bytes. These are distinguished by either the Address | |
353 | * Latch Enable (ALE) or Command Latch Enable (CLE) signals being | |
354 | * asserted. When MTD is ready to execute the command, it will | |
355 | * deasert both latch enables. | |
356 | * | |
357 | * Rather than run a separate DMA operation for every single byte, we | |
358 | * queue them up and run a single DMA operation for the entire series | |
359 | * of command and data bytes. | |
360 | */ | |
361 | if (ctrl & (NAND_ALE | NAND_CLE)) { | |
362 | if (data != NAND_CMD_NONE) | |
363 | nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; | |
364 | return; | |
365 | } | |
366 | ||
367 | /* | |
368 | * If control arrives here, MTD has deasserted both the ALE and CLE, | |
369 | * which means it's ready to run an operation. Check if we have any | |
370 | * bytes to send. | |
371 | */ | |
372 | if (nand_info->cmd_queue_len == 0) | |
373 | return; | |
374 | ||
375 | /* Compile the DMA descriptor -- a descriptor that sends command. */ | |
376 | d = mxs_nand_get_dma_desc(nand_info); | |
377 | d->cmd.data = | |
378 | MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | | |
379 | MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | | |
380 | MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | | |
381 | (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); | |
382 | ||
383 | d->cmd.address = (dma_addr_t)nand_info->cmd_buf; | |
384 | ||
385 | d->cmd.pio_words[0] = | |
386 | GPMI_CTRL0_COMMAND_MODE_WRITE | | |
387 | GPMI_CTRL0_WORD_LENGTH | | |
388 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
389 | GPMI_CTRL0_ADDRESS_NAND_CLE | | |
390 | GPMI_CTRL0_ADDRESS_INCREMENT | | |
391 | nand_info->cmd_queue_len; | |
392 | ||
393 | mxs_dma_desc_append(channel, d); | |
394 | ||
6b9408ed MV |
395 | /* Flush caches */ |
396 | mxs_nand_flush_cmd_buf(nand_info); | |
397 | ||
0d4e8509 MV |
398 | /* Execute the DMA chain. */ |
399 | ret = mxs_dma_go(channel); | |
400 | if (ret) | |
401 | printf("MXS NAND: Error sending command\n"); | |
402 | ||
403 | mxs_nand_return_dma_descs(nand_info); | |
404 | ||
405 | /* Reset the command queue. */ | |
406 | nand_info->cmd_queue_len = 0; | |
407 | } | |
408 | ||
409 | /* | |
410 | * Test if the NAND flash is ready. | |
411 | */ | |
412 | static int mxs_nand_device_ready(struct mtd_info *mtd) | |
413 | { | |
17cb4b8f SW |
414 | struct nand_chip *chip = mtd_to_nand(mtd); |
415 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
0d4e8509 MV |
416 | uint32_t tmp; |
417 | ||
931747e5 | 418 | tmp = readl(&nand_info->gpmi_regs->hw_gpmi_stat); |
0d4e8509 MV |
419 | tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); |
420 | ||
421 | return tmp & 1; | |
422 | } | |
423 | ||
424 | /* | |
425 | * Select the NAND chip. | |
426 | */ | |
427 | static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) | |
428 | { | |
17cb4b8f SW |
429 | struct nand_chip *nand = mtd_to_nand(mtd); |
430 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
0d4e8509 MV |
431 | |
432 | nand_info->cur_chip = chip; | |
433 | } | |
434 | ||
435 | /* | |
436 | * Handle block mark swapping. | |
437 | * | |
438 | * Note that, when this function is called, it doesn't know whether it's | |
439 | * swapping the block mark, or swapping it *back* -- but it doesn't matter | |
440 | * because the the operation is the same. | |
441 | */ | |
28897e8d SA |
442 | static void mxs_nand_swap_block_mark(struct bch_geometry *geo, |
443 | uint8_t *data_buf, uint8_t *oob_buf) | |
0d4e8509 | 444 | { |
28897e8d SA |
445 | uint32_t bit_offset = geo->block_mark_bit_offset; |
446 | uint32_t buf_offset = geo->block_mark_byte_offset; | |
0d4e8509 MV |
447 | |
448 | uint32_t src; | |
449 | uint32_t dst; | |
450 | ||
0d4e8509 MV |
451 | /* |
452 | * Get the byte from the data area that overlays the block mark. Since | |
453 | * the ECC engine applies its own view to the bits in the page, the | |
454 | * physical block mark won't (in general) appear on a byte boundary in | |
455 | * the data. | |
456 | */ | |
457 | src = data_buf[buf_offset] >> bit_offset; | |
458 | src |= data_buf[buf_offset + 1] << (8 - bit_offset); | |
459 | ||
460 | dst = oob_buf[0]; | |
461 | ||
462 | oob_buf[0] = src; | |
463 | ||
464 | data_buf[buf_offset] &= ~(0xff << bit_offset); | |
465 | data_buf[buf_offset + 1] &= 0xff << bit_offset; | |
466 | ||
467 | data_buf[buf_offset] |= dst << bit_offset; | |
468 | data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); | |
469 | } | |
470 | ||
471 | /* | |
472 | * Read data from NAND. | |
473 | */ | |
474 | static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) | |
475 | { | |
17cb4b8f SW |
476 | struct nand_chip *nand = mtd_to_nand(mtd); |
477 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
0d4e8509 MV |
478 | struct mxs_dma_desc *d; |
479 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; | |
480 | int ret; | |
481 | ||
482 | if (length > NAND_MAX_PAGESIZE) { | |
483 | printf("MXS NAND: DMA buffer too big\n"); | |
484 | return; | |
485 | } | |
486 | ||
487 | if (!buf) { | |
488 | printf("MXS NAND: DMA buffer is NULL\n"); | |
489 | return; | |
490 | } | |
491 | ||
492 | /* Compile the DMA descriptor - a descriptor that reads data. */ | |
493 | d = mxs_nand_get_dma_desc(nand_info); | |
494 | d->cmd.data = | |
495 | MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | | |
496 | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | | |
497 | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | | |
498 | (length << MXS_DMA_DESC_BYTES_OFFSET); | |
499 | ||
500 | d->cmd.address = (dma_addr_t)nand_info->data_buf; | |
501 | ||
502 | d->cmd.pio_words[0] = | |
503 | GPMI_CTRL0_COMMAND_MODE_READ | | |
504 | GPMI_CTRL0_WORD_LENGTH | | |
505 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
506 | GPMI_CTRL0_ADDRESS_NAND_DATA | | |
507 | length; | |
508 | ||
509 | mxs_dma_desc_append(channel, d); | |
510 | ||
511 | /* | |
512 | * A DMA descriptor that waits for the command to end and the chip to | |
513 | * become ready. | |
514 | * | |
515 | * I think we actually should *not* be waiting for the chip to become | |
516 | * ready because, after all, we don't care. I think the original code | |
517 | * did that and no one has re-thought it yet. | |
518 | */ | |
519 | d = mxs_nand_get_dma_desc(nand_info); | |
520 | d->cmd.data = | |
521 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | | |
522 | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | | |
5263a02e | 523 | MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); |
0d4e8509 MV |
524 | |
525 | d->cmd.address = 0; | |
526 | ||
527 | d->cmd.pio_words[0] = | |
528 | GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | | |
529 | GPMI_CTRL0_WORD_LENGTH | | |
530 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
531 | GPMI_CTRL0_ADDRESS_NAND_DATA; | |
532 | ||
533 | mxs_dma_desc_append(channel, d); | |
534 | ||
ecfb8768 PF |
535 | /* Invalidate caches */ |
536 | mxs_nand_inval_data_buf(nand_info); | |
537 | ||
0d4e8509 MV |
538 | /* Execute the DMA chain. */ |
539 | ret = mxs_dma_go(channel); | |
540 | if (ret) { | |
541 | printf("MXS NAND: DMA read error\n"); | |
542 | goto rtn; | |
543 | } | |
544 | ||
6b9408ed MV |
545 | /* Invalidate caches */ |
546 | mxs_nand_inval_data_buf(nand_info); | |
547 | ||
0d4e8509 MV |
548 | memcpy(buf, nand_info->data_buf, length); |
549 | ||
550 | rtn: | |
551 | mxs_nand_return_dma_descs(nand_info); | |
552 | } | |
553 | ||
554 | /* | |
555 | * Write data to NAND. | |
556 | */ | |
557 | static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, | |
558 | int length) | |
559 | { | |
17cb4b8f SW |
560 | struct nand_chip *nand = mtd_to_nand(mtd); |
561 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
0d4e8509 MV |
562 | struct mxs_dma_desc *d; |
563 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; | |
564 | int ret; | |
565 | ||
566 | if (length > NAND_MAX_PAGESIZE) { | |
567 | printf("MXS NAND: DMA buffer too big\n"); | |
568 | return; | |
569 | } | |
570 | ||
571 | if (!buf) { | |
572 | printf("MXS NAND: DMA buffer is NULL\n"); | |
573 | return; | |
574 | } | |
575 | ||
576 | memcpy(nand_info->data_buf, buf, length); | |
577 | ||
578 | /* Compile the DMA descriptor - a descriptor that writes data. */ | |
579 | d = mxs_nand_get_dma_desc(nand_info); | |
580 | d->cmd.data = | |
581 | MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | | |
582 | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | | |
88a2cbb2 | 583 | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | |
0d4e8509 MV |
584 | (length << MXS_DMA_DESC_BYTES_OFFSET); |
585 | ||
586 | d->cmd.address = (dma_addr_t)nand_info->data_buf; | |
587 | ||
588 | d->cmd.pio_words[0] = | |
589 | GPMI_CTRL0_COMMAND_MODE_WRITE | | |
590 | GPMI_CTRL0_WORD_LENGTH | | |
591 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
592 | GPMI_CTRL0_ADDRESS_NAND_DATA | | |
593 | length; | |
594 | ||
595 | mxs_dma_desc_append(channel, d); | |
596 | ||
6b9408ed MV |
597 | /* Flush caches */ |
598 | mxs_nand_flush_data_buf(nand_info); | |
599 | ||
0d4e8509 MV |
600 | /* Execute the DMA chain. */ |
601 | ret = mxs_dma_go(channel); | |
602 | if (ret) | |
603 | printf("MXS NAND: DMA write error\n"); | |
604 | ||
605 | mxs_nand_return_dma_descs(nand_info); | |
606 | } | |
607 | ||
608 | /* | |
609 | * Read a single byte from NAND. | |
610 | */ | |
611 | static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) | |
612 | { | |
613 | uint8_t buf; | |
614 | mxs_nand_read_buf(mtd, &buf, 1); | |
615 | return buf; | |
616 | } | |
617 | ||
552c8827 PF |
618 | static bool mxs_nand_erased_page(struct mtd_info *mtd, struct nand_chip *nand, |
619 | u8 *buf, int chunk, int page) | |
620 | { | |
621 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
622 | struct bch_geometry *geo = &nand_info->bch_geometry; | |
623 | unsigned int flip_bits = 0, flip_bits_noecc = 0; | |
624 | unsigned int threshold; | |
625 | unsigned int base = geo->ecc_chunkn_size * chunk; | |
626 | u32 *dma_buf = (u32 *)buf; | |
627 | int i; | |
628 | ||
629 | threshold = geo->gf_len / 2; | |
630 | if (threshold > geo->ecc_strength) | |
631 | threshold = geo->ecc_strength; | |
632 | ||
633 | for (i = 0; i < geo->ecc_chunkn_size; i++) { | |
634 | flip_bits += hweight8(~buf[base + i]); | |
635 | if (flip_bits > threshold) | |
636 | return false; | |
637 | } | |
638 | ||
639 | nand->cmdfunc(mtd, NAND_CMD_READ0, 0, page); | |
640 | nand->read_buf(mtd, buf, mtd->writesize); | |
641 | ||
642 | for (i = 0; i < mtd->writesize / 4; i++) { | |
643 | flip_bits_noecc += hweight32(~dma_buf[i]); | |
644 | if (flip_bits_noecc > threshold) | |
645 | return false; | |
646 | } | |
647 | ||
648 | mtd->ecc_stats.corrected += flip_bits; | |
649 | ||
650 | memset(buf, 0xff, mtd->writesize); | |
651 | ||
652 | printf("The page(%d) is an erased page(%d,%d,%d,%d).\n", page, chunk, threshold, flip_bits, flip_bits_noecc); | |
653 | ||
654 | return true; | |
655 | } | |
656 | ||
0d4e8509 MV |
657 | /* |
658 | * Read a page from NAND. | |
659 | */ | |
660 | static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand, | |
dfe64e2c SL |
661 | uint8_t *buf, int oob_required, |
662 | int page) | |
0d4e8509 | 663 | { |
17cb4b8f | 664 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
28897e8d | 665 | struct bch_geometry *geo = &nand_info->bch_geometry; |
29f40c07 | 666 | struct mxs_bch_regs *bch_regs = nand_info->bch_regs; |
0d4e8509 MV |
667 | struct mxs_dma_desc *d; |
668 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; | |
669 | uint32_t corrected = 0, failed = 0; | |
670 | uint8_t *status; | |
671 | int i, ret; | |
29f40c07 | 672 | int flag = 0; |
0d4e8509 MV |
673 | |
674 | /* Compile the DMA descriptor - wait for ready. */ | |
675 | d = mxs_nand_get_dma_desc(nand_info); | |
676 | d->cmd.data = | |
677 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | | |
678 | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | | |
679 | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); | |
680 | ||
681 | d->cmd.address = 0; | |
682 | ||
683 | d->cmd.pio_words[0] = | |
684 | GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | | |
685 | GPMI_CTRL0_WORD_LENGTH | | |
686 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
687 | GPMI_CTRL0_ADDRESS_NAND_DATA; | |
688 | ||
689 | mxs_dma_desc_append(channel, d); | |
690 | ||
691 | /* Compile the DMA descriptor - enable the BCH block and read. */ | |
692 | d = mxs_nand_get_dma_desc(nand_info); | |
693 | d->cmd.data = | |
694 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | | |
695 | MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); | |
696 | ||
697 | d->cmd.address = 0; | |
698 | ||
699 | d->cmd.pio_words[0] = | |
700 | GPMI_CTRL0_COMMAND_MODE_READ | | |
701 | GPMI_CTRL0_WORD_LENGTH | | |
702 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
703 | GPMI_CTRL0_ADDRESS_NAND_DATA | | |
704 | (mtd->writesize + mtd->oobsize); | |
705 | d->cmd.pio_words[1] = 0; | |
706 | d->cmd.pio_words[2] = | |
707 | GPMI_ECCCTRL_ENABLE_ECC | | |
708 | GPMI_ECCCTRL_ECC_CMD_DECODE | | |
709 | GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; | |
710 | d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; | |
711 | d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; | |
712 | d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; | |
713 | ||
bf9382ad | 714 | if (nand_info->en_randomizer) { |
fe04bcd7 AG |
715 | d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE | |
716 | GPMI_ECCCTRL_RANDOMIZER_TYPE2; | |
717 | d->cmd.pio_words[3] |= (page % 256) << 16; | |
718 | } | |
719 | ||
0d4e8509 MV |
720 | mxs_dma_desc_append(channel, d); |
721 | ||
722 | /* Compile the DMA descriptor - disable the BCH block. */ | |
723 | d = mxs_nand_get_dma_desc(nand_info); | |
724 | d->cmd.data = | |
725 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | | |
726 | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | | |
727 | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); | |
728 | ||
729 | d->cmd.address = 0; | |
730 | ||
731 | d->cmd.pio_words[0] = | |
732 | GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | | |
733 | GPMI_CTRL0_WORD_LENGTH | | |
734 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
735 | GPMI_CTRL0_ADDRESS_NAND_DATA | | |
736 | (mtd->writesize + mtd->oobsize); | |
737 | d->cmd.pio_words[1] = 0; | |
738 | d->cmd.pio_words[2] = 0; | |
739 | ||
740 | mxs_dma_desc_append(channel, d); | |
741 | ||
742 | /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ | |
743 | d = mxs_nand_get_dma_desc(nand_info); | |
744 | d->cmd.data = | |
745 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | | |
746 | MXS_DMA_DESC_DEC_SEM; | |
747 | ||
748 | d->cmd.address = 0; | |
749 | ||
750 | mxs_dma_desc_append(channel, d); | |
751 | ||
ecfb8768 PF |
752 | /* Invalidate caches */ |
753 | mxs_nand_inval_data_buf(nand_info); | |
754 | ||
0d4e8509 MV |
755 | /* Execute the DMA chain. */ |
756 | ret = mxs_dma_go(channel); | |
757 | if (ret) { | |
758 | printf("MXS NAND: DMA read error\n"); | |
759 | goto rtn; | |
760 | } | |
761 | ||
931747e5 | 762 | ret = mxs_nand_wait_for_bch_complete(nand_info); |
0d4e8509 MV |
763 | if (ret) { |
764 | printf("MXS NAND: BCH read timeout\n"); | |
765 | goto rtn; | |
766 | } | |
767 | ||
552c8827 PF |
768 | mxs_nand_return_dma_descs(nand_info); |
769 | ||
6b9408ed MV |
770 | /* Invalidate caches */ |
771 | mxs_nand_inval_data_buf(nand_info); | |
772 | ||
0d4e8509 | 773 | /* Read DMA completed, now do the mark swapping. */ |
28897e8d | 774 | mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf); |
0d4e8509 MV |
775 | |
776 | /* Loop over status bytes, accumulating ECC status. */ | |
777 | status = nand_info->oob_buf + mxs_nand_aux_status_offset(); | |
28897e8d | 778 | for (i = 0; i < geo->ecc_chunk_count; i++) { |
0d4e8509 MV |
779 | if (status[i] == 0x00) |
780 | continue; | |
781 | ||
29f40c07 | 782 | if (status[i] == 0xff) { |
f7bb012a HX |
783 | if (!nand_info->en_randomizer && |
784 | (is_mx6dqp() || is_mx7() || is_mx6ul() || | |
785 | is_imx8() || is_imx8m())) | |
29f40c07 PF |
786 | if (readl(&bch_regs->hw_bch_debug1)) |
787 | flag = 1; | |
0d4e8509 | 788 | continue; |
29f40c07 | 789 | } |
0d4e8509 MV |
790 | |
791 | if (status[i] == 0xfe) { | |
552c8827 PF |
792 | if (mxs_nand_erased_page(mtd, nand, |
793 | nand_info->data_buf, i, page)) | |
794 | break; | |
0d4e8509 MV |
795 | failed++; |
796 | continue; | |
797 | } | |
798 | ||
799 | corrected += status[i]; | |
800 | } | |
801 | ||
802 | /* Propagate ECC status to the owning MTD. */ | |
803 | mtd->ecc_stats.failed += failed; | |
804 | mtd->ecc_stats.corrected += corrected; | |
805 | ||
806 | /* | |
807 | * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for | |
808 | * details about our policy for delivering the OOB. | |
809 | * | |
810 | * We fill the caller's buffer with set bits, and then copy the block | |
811 | * mark to the caller's buffer. Note that, if block mark swapping was | |
812 | * necessary, it has already been done, so we can rely on the first | |
813 | * byte of the auxiliary buffer to contain the block mark. | |
814 | */ | |
815 | memset(nand->oob_poi, 0xff, mtd->oobsize); | |
816 | ||
817 | nand->oob_poi[0] = nand_info->oob_buf[0]; | |
818 | ||
819 | memcpy(buf, nand_info->data_buf, mtd->writesize); | |
820 | ||
29f40c07 PF |
821 | if (flag) |
822 | memset(buf, 0xff, mtd->writesize); | |
0d4e8509 MV |
823 | rtn: |
824 | mxs_nand_return_dma_descs(nand_info); | |
825 | ||
826 | return ret; | |
827 | } | |
828 | ||
829 | /* | |
830 | * Write a page to NAND. | |
831 | */ | |
dfe64e2c SL |
832 | static int mxs_nand_ecc_write_page(struct mtd_info *mtd, |
833 | struct nand_chip *nand, const uint8_t *buf, | |
81c77252 | 834 | int oob_required, int page) |
0d4e8509 | 835 | { |
17cb4b8f | 836 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
28897e8d | 837 | struct bch_geometry *geo = &nand_info->bch_geometry; |
0d4e8509 MV |
838 | struct mxs_dma_desc *d; |
839 | uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; | |
840 | int ret; | |
841 | ||
842 | memcpy(nand_info->data_buf, buf, mtd->writesize); | |
843 | memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); | |
844 | ||
845 | /* Handle block mark swapping. */ | |
28897e8d | 846 | mxs_nand_swap_block_mark(geo, nand_info->data_buf, nand_info->oob_buf); |
0d4e8509 MV |
847 | |
848 | /* Compile the DMA descriptor - write data. */ | |
849 | d = mxs_nand_get_dma_desc(nand_info); | |
850 | d->cmd.data = | |
851 | MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | | |
852 | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | | |
853 | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); | |
854 | ||
855 | d->cmd.address = 0; | |
856 | ||
857 | d->cmd.pio_words[0] = | |
858 | GPMI_CTRL0_COMMAND_MODE_WRITE | | |
859 | GPMI_CTRL0_WORD_LENGTH | | |
860 | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | | |
861 | GPMI_CTRL0_ADDRESS_NAND_DATA; | |
862 | d->cmd.pio_words[1] = 0; | |
863 | d->cmd.pio_words[2] = | |
864 | GPMI_ECCCTRL_ENABLE_ECC | | |
865 | GPMI_ECCCTRL_ECC_CMD_ENCODE | | |
866 | GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; | |
867 | d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); | |
868 | d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; | |
869 | d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; | |
870 | ||
bf9382ad | 871 | if (nand_info->en_randomizer) { |
9ab5f221 IO |
872 | d->cmd.pio_words[2] |= GPMI_ECCCTRL_RANDOMIZER_ENABLE | |
873 | GPMI_ECCCTRL_RANDOMIZER_TYPE2; | |
874 | /* | |
875 | * Write NAND page number needed to be randomized | |
876 | * to GPMI_ECCCOUNT register. | |
877 | * | |
878 | * The value is between 0-255. For additional details | |
879 | * check 9.6.6.4 of i.MX7D Applications Processor reference | |
880 | */ | |
fe04bcd7 | 881 | d->cmd.pio_words[3] |= (page % 256) << 16; |
9ab5f221 IO |
882 | } |
883 | ||
0d4e8509 MV |
884 | mxs_dma_desc_append(channel, d); |
885 | ||
6b9408ed MV |
886 | /* Flush caches */ |
887 | mxs_nand_flush_data_buf(nand_info); | |
888 | ||
0d4e8509 MV |
889 | /* Execute the DMA chain. */ |
890 | ret = mxs_dma_go(channel); | |
891 | if (ret) { | |
892 | printf("MXS NAND: DMA write error\n"); | |
893 | goto rtn; | |
894 | } | |
895 | ||
931747e5 | 896 | ret = mxs_nand_wait_for_bch_complete(nand_info); |
0d4e8509 MV |
897 | if (ret) { |
898 | printf("MXS NAND: BCH write timeout\n"); | |
899 | goto rtn; | |
900 | } | |
901 | ||
902 | rtn: | |
903 | mxs_nand_return_dma_descs(nand_info); | |
dfe64e2c | 904 | return 0; |
0d4e8509 MV |
905 | } |
906 | ||
907 | /* | |
908 | * Read OOB from NAND. | |
909 | * | |
910 | * This function is a veneer that replaces the function originally installed by | |
911 | * the NAND Flash MTD code. | |
912 | */ | |
913 | static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, | |
914 | struct mtd_oob_ops *ops) | |
915 | { | |
17cb4b8f SW |
916 | struct nand_chip *chip = mtd_to_nand(mtd); |
917 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
0d4e8509 MV |
918 | int ret; |
919 | ||
dfe64e2c | 920 | if (ops->mode == MTD_OPS_RAW) |
0d4e8509 MV |
921 | nand_info->raw_oob_mode = 1; |
922 | else | |
923 | nand_info->raw_oob_mode = 0; | |
924 | ||
925 | ret = nand_info->hooked_read_oob(mtd, from, ops); | |
926 | ||
927 | nand_info->raw_oob_mode = 0; | |
928 | ||
929 | return ret; | |
930 | } | |
931 | ||
932 | /* | |
933 | * Write OOB to NAND. | |
934 | * | |
935 | * This function is a veneer that replaces the function originally installed by | |
936 | * the NAND Flash MTD code. | |
937 | */ | |
938 | static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, | |
939 | struct mtd_oob_ops *ops) | |
940 | { | |
17cb4b8f SW |
941 | struct nand_chip *chip = mtd_to_nand(mtd); |
942 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
0d4e8509 MV |
943 | int ret; |
944 | ||
dfe64e2c | 945 | if (ops->mode == MTD_OPS_RAW) |
0d4e8509 MV |
946 | nand_info->raw_oob_mode = 1; |
947 | else | |
948 | nand_info->raw_oob_mode = 0; | |
949 | ||
950 | ret = nand_info->hooked_write_oob(mtd, to, ops); | |
951 | ||
952 | nand_info->raw_oob_mode = 0; | |
953 | ||
954 | return ret; | |
955 | } | |
956 | ||
957 | /* | |
958 | * Mark a block bad in NAND. | |
959 | * | |
960 | * This function is a veneer that replaces the function originally installed by | |
961 | * the NAND Flash MTD code. | |
962 | */ | |
963 | static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) | |
964 | { | |
17cb4b8f SW |
965 | struct nand_chip *chip = mtd_to_nand(mtd); |
966 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
0d4e8509 MV |
967 | int ret; |
968 | ||
969 | nand_info->marking_block_bad = 1; | |
970 | ||
971 | ret = nand_info->hooked_block_markbad(mtd, ofs); | |
972 | ||
973 | nand_info->marking_block_bad = 0; | |
974 | ||
975 | return ret; | |
976 | } | |
977 | ||
978 | /* | |
979 | * There are several places in this driver where we have to handle the OOB and | |
980 | * block marks. This is the function where things are the most complicated, so | |
981 | * this is where we try to explain it all. All the other places refer back to | |
982 | * here. | |
983 | * | |
984 | * These are the rules, in order of decreasing importance: | |
985 | * | |
986 | * 1) Nothing the caller does can be allowed to imperil the block mark, so all | |
987 | * write operations take measures to protect it. | |
988 | * | |
989 | * 2) In read operations, the first byte of the OOB we return must reflect the | |
990 | * true state of the block mark, no matter where that block mark appears in | |
991 | * the physical page. | |
992 | * | |
993 | * 3) ECC-based read operations return an OOB full of set bits (since we never | |
994 | * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads | |
995 | * return). | |
996 | * | |
997 | * 4) "Raw" read operations return a direct view of the physical bytes in the | |
998 | * page, using the conventional definition of which bytes are data and which | |
999 | * are OOB. This gives the caller a way to see the actual, physical bytes | |
1000 | * in the page, without the distortions applied by our ECC engine. | |
1001 | * | |
1002 | * What we do for this specific read operation depends on whether we're doing | |
1003 | * "raw" read, or an ECC-based read. | |
1004 | * | |
1005 | * It turns out that knowing whether we want an "ECC-based" or "raw" read is not | |
1006 | * easy. When reading a page, for example, the NAND Flash MTD code calls our | |
1007 | * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an | |
1008 | * ECC-based or raw view of the page is implicit in which function it calls | |
1009 | * (there is a similar pair of ECC-based/raw functions for writing). | |
1010 | * | |
1011 | * Since MTD assumes the OOB is not covered by ECC, there is no pair of | |
1012 | * ECC-based/raw functions for reading or or writing the OOB. The fact that the | |
1013 | * caller wants an ECC-based or raw view of the page is not propagated down to | |
1014 | * this driver. | |
1015 | * | |
1016 | * Since our OOB *is* covered by ECC, we need this information. So, we hook the | |
1017 | * ecc.read_oob and ecc.write_oob function pointers in the owning | |
1018 | * struct mtd_info with our own functions. These hook functions set the | |
1019 | * raw_oob_mode field so that, when control finally arrives here, we'll know | |
1020 | * what to do. | |
1021 | */ | |
1022 | static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, | |
dfe64e2c | 1023 | int page) |
0d4e8509 | 1024 | { |
17cb4b8f | 1025 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
0d4e8509 MV |
1026 | |
1027 | /* | |
1028 | * First, fill in the OOB buffer. If we're doing a raw read, we need to | |
1029 | * get the bytes from the physical page. If we're not doing a raw read, | |
1030 | * we need to fill the buffer with set bits. | |
1031 | */ | |
1032 | if (nand_info->raw_oob_mode) { | |
1033 | /* | |
1034 | * If control arrives here, we're doing a "raw" read. Send the | |
1035 | * command to read the conventional OOB and read it. | |
1036 | */ | |
1037 | nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); | |
1038 | nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); | |
1039 | } else { | |
1040 | /* | |
1041 | * If control arrives here, we're not doing a "raw" read. Fill | |
1042 | * the OOB buffer with set bits and correct the block mark. | |
1043 | */ | |
1044 | memset(nand->oob_poi, 0xff, mtd->oobsize); | |
1045 | ||
1046 | nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); | |
1047 | mxs_nand_read_buf(mtd, nand->oob_poi, 1); | |
1048 | } | |
1049 | ||
1050 | return 0; | |
1051 | ||
1052 | } | |
1053 | ||
1054 | /* | |
1055 | * Write OOB data to NAND. | |
1056 | */ | |
1057 | static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand, | |
1058 | int page) | |
1059 | { | |
17cb4b8f | 1060 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); |
0d4e8509 MV |
1061 | uint8_t block_mark = 0; |
1062 | ||
1063 | /* | |
1064 | * There are fundamental incompatibilities between the i.MX GPMI NFC and | |
1065 | * the NAND Flash MTD model that make it essentially impossible to write | |
1066 | * the out-of-band bytes. | |
1067 | * | |
1068 | * We permit *ONE* exception. If the *intent* of writing the OOB is to | |
1069 | * mark a block bad, we can do that. | |
1070 | */ | |
1071 | ||
1072 | if (!nand_info->marking_block_bad) { | |
1073 | printf("NXS NAND: Writing OOB isn't supported\n"); | |
1074 | return -EIO; | |
1075 | } | |
1076 | ||
1077 | /* Write the block mark. */ | |
1078 | nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); | |
1079 | nand->write_buf(mtd, &block_mark, 1); | |
1080 | nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); | |
1081 | ||
1082 | /* Check if it worked. */ | |
1083 | if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) | |
1084 | return -EIO; | |
1085 | ||
1086 | return 0; | |
1087 | } | |
1088 | ||
1089 | /* | |
1090 | * Claims all blocks are good. | |
1091 | * | |
1092 | * In principle, this function is *only* called when the NAND Flash MTD system | |
1093 | * isn't allowed to keep an in-memory bad block table, so it is forced to ask | |
1094 | * the driver for bad block information. | |
1095 | * | |
1096 | * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so | |
1097 | * this function is *only* called when we take it away. | |
1098 | * | |
1099 | * Thus, this function is only called when we want *all* blocks to look good, | |
1100 | * so it *always* return success. | |
1101 | */ | |
ceee07b6 | 1102 | static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs) |
0d4e8509 MV |
1103 | { |
1104 | return 0; | |
1105 | } | |
1106 | ||
62754450 SA |
1107 | static int mxs_nand_set_geometry(struct mtd_info *mtd, struct bch_geometry *geo) |
1108 | { | |
1109 | struct nand_chip *chip = mtd_to_nand(mtd); | |
1110 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1111 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
1112 | ||
616f03da YL |
1113 | if (chip->ecc_strength_ds > nand_info->max_ecc_strength_supported) { |
1114 | printf("unsupported NAND chip, minimum ecc required %d\n" | |
1115 | , chip->ecc_strength_ds); | |
1116 | return -EINVAL; | |
1117 | } | |
1118 | ||
51cdf83e YL |
1119 | if ((!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0) && |
1120 | mtd->oobsize < 1024) || nand_info->legacy_bch_geometry) { | |
616f03da YL |
1121 | dev_warn(this->dev, "use legacy bch geometry\n"); |
1122 | return mxs_nand_legacy_calc_ecc_layout(geo, mtd); | |
1123 | } | |
62754450 | 1124 | |
616f03da YL |
1125 | if (mtd->oobsize > 1024 || chip->ecc_step_ds < mtd->oobsize) |
1126 | return mxs_nand_calc_ecc_for_large_oob(geo, mtd); | |
62754450 | 1127 | |
616f03da | 1128 | return mxs_nand_calc_ecc_layout_by_info(geo, mtd, |
62754450 | 1129 | chip->ecc_strength_ds, chip->ecc_step_ds); |
62754450 SA |
1130 | |
1131 | return 0; | |
1132 | } | |
1133 | ||
0d4e8509 | 1134 | /* |
0d4e8509 MV |
1135 | * At this point, the physical NAND Flash chips have been identified and |
1136 | * counted, so we know the physical geometry. This enables us to make some | |
1137 | * important configuration decisions. | |
1138 | * | |
62a3b7dd | 1139 | * The return value of this function propagates directly back to this driver's |
5346c31e | 1140 | * board_nand_init(). Anything other than zero will cause this driver to |
0d4e8509 MV |
1141 | * tear everything down and declare failure. |
1142 | */ | |
5346c31e | 1143 | int mxs_nand_setup_ecc(struct mtd_info *mtd) |
0d4e8509 | 1144 | { |
17cb4b8f SW |
1145 | struct nand_chip *nand = mtd_to_nand(mtd); |
1146 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
28897e8d | 1147 | struct bch_geometry *geo = &nand_info->bch_geometry; |
931747e5 | 1148 | struct mxs_bch_regs *bch_regs = nand_info->bch_regs; |
0d4e8509 | 1149 | uint32_t tmp; |
62754450 | 1150 | int ret; |
984df7ad | 1151 | |
9ab5f221 IO |
1152 | nand_info->en_randomizer = 0; |
1153 | nand_info->oobsize = mtd->oobsize; | |
1154 | nand_info->writesize = mtd->writesize; | |
1155 | ||
62754450 | 1156 | ret = mxs_nand_set_geometry(mtd, geo); |
984df7ad SA |
1157 | if (ret) |
1158 | return ret; | |
1159 | ||
0d4e8509 | 1160 | /* Configure BCH and set NFC geometry */ |
fa7a51cb | 1161 | mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); |
0d4e8509 MV |
1162 | |
1163 | /* Configure layout 0 */ | |
28897e8d | 1164 | tmp = (geo->ecc_chunk_count - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; |
0d4e8509 | 1165 | tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; |
28897e8d | 1166 | tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET; |
616f03da | 1167 | tmp |= geo->ecc_chunk0_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; |
28897e8d | 1168 | tmp |= (geo->gf_len == 14 ? 1 : 0) << |
63b29d80 | 1169 | BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; |
0d4e8509 | 1170 | writel(tmp, &bch_regs->hw_bch_flash0layout0); |
9ab5f221 | 1171 | nand_info->bch_flash0layout0 = tmp; |
0d4e8509 MV |
1172 | |
1173 | tmp = (mtd->writesize + mtd->oobsize) | |
1174 | << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; | |
28897e8d | 1175 | tmp |= (geo->ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET; |
616f03da | 1176 | tmp |= geo->ecc_chunkn_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; |
28897e8d | 1177 | tmp |= (geo->gf_len == 14 ? 1 : 0) << |
63b29d80 | 1178 | BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; |
0d4e8509 | 1179 | writel(tmp, &bch_regs->hw_bch_flash0layout1); |
9ab5f221 | 1180 | nand_info->bch_flash0layout1 = tmp; |
0d4e8509 | 1181 | |
29f40c07 PF |
1182 | /* Set erase threshold to ecc strength for mx6ul, mx6qp and mx7 */ |
1183 | if (is_mx6dqp() || is_mx7() || | |
39320e72 | 1184 | is_mx6ul() || is_imx8() || is_imx8m()) |
29f40c07 PF |
1185 | writel(BCH_MODE_ERASE_THRESHOLD(geo->ecc_strength), |
1186 | &bch_regs->hw_bch_mode); | |
1187 | ||
0d4e8509 MV |
1188 | /* Set *all* chip selects to use layout 0 */ |
1189 | writel(0, &bch_regs->hw_bch_layoutselect); | |
1190 | ||
1191 | /* Enable BCH complete interrupt */ | |
1192 | writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); | |
1193 | ||
1194 | /* Hook some operations at the MTD level. */ | |
dfe64e2c SL |
1195 | if (mtd->_read_oob != mxs_nand_hook_read_oob) { |
1196 | nand_info->hooked_read_oob = mtd->_read_oob; | |
1197 | mtd->_read_oob = mxs_nand_hook_read_oob; | |
0d4e8509 MV |
1198 | } |
1199 | ||
dfe64e2c SL |
1200 | if (mtd->_write_oob != mxs_nand_hook_write_oob) { |
1201 | nand_info->hooked_write_oob = mtd->_write_oob; | |
1202 | mtd->_write_oob = mxs_nand_hook_write_oob; | |
0d4e8509 MV |
1203 | } |
1204 | ||
dfe64e2c SL |
1205 | if (mtd->_block_markbad != mxs_nand_hook_block_markbad) { |
1206 | nand_info->hooked_block_markbad = mtd->_block_markbad; | |
1207 | mtd->_block_markbad = mxs_nand_hook_block_markbad; | |
0d4e8509 MV |
1208 | } |
1209 | ||
5346c31e | 1210 | return 0; |
0d4e8509 MV |
1211 | } |
1212 | ||
1213 | /* | |
1214 | * Allocate DMA buffers | |
1215 | */ | |
1216 | int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) | |
1217 | { | |
1218 | uint8_t *buf; | |
1219 | const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; | |
1220 | ||
6b9408ed MV |
1221 | nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT); |
1222 | ||
0d4e8509 | 1223 | /* DMA buffers */ |
6b9408ed | 1224 | buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size); |
0d4e8509 MV |
1225 | if (!buf) { |
1226 | printf("MXS NAND: Error allocating DMA buffers\n"); | |
1227 | return -ENOMEM; | |
1228 | } | |
1229 | ||
6b9408ed | 1230 | memset(buf, 0, nand_info->data_buf_size); |
0d4e8509 MV |
1231 | |
1232 | nand_info->data_buf = buf; | |
1233 | nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; | |
0d4e8509 MV |
1234 | /* Command buffers */ |
1235 | nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, | |
1236 | MXS_NAND_COMMAND_BUFFER_SIZE); | |
1237 | if (!nand_info->cmd_buf) { | |
1238 | free(buf); | |
1239 | printf("MXS NAND: Error allocating command buffers\n"); | |
1240 | return -ENOMEM; | |
1241 | } | |
1242 | memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); | |
1243 | nand_info->cmd_queue_len = 0; | |
1244 | ||
1245 | return 0; | |
1246 | } | |
1247 | ||
1248 | /* | |
1249 | * Initializes the NFC hardware. | |
1250 | */ | |
5645df9e | 1251 | static int mxs_nand_init_dma(struct mxs_nand_info *info) |
0d4e8509 | 1252 | { |
549d7c0e | 1253 | int i = 0, j, ret = 0; |
0d4e8509 MV |
1254 | |
1255 | info->desc = malloc(sizeof(struct mxs_dma_desc *) * | |
1256 | MXS_NAND_DMA_DESCRIPTOR_COUNT); | |
549d7c0e PF |
1257 | if (!info->desc) { |
1258 | ret = -ENOMEM; | |
0d4e8509 | 1259 | goto err1; |
549d7c0e | 1260 | } |
0d4e8509 MV |
1261 | |
1262 | /* Allocate the DMA descriptors. */ | |
1263 | for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { | |
1264 | info->desc[i] = mxs_dma_desc_alloc(); | |
549d7c0e PF |
1265 | if (!info->desc[i]) { |
1266 | ret = -ENOMEM; | |
0d4e8509 | 1267 | goto err2; |
549d7c0e | 1268 | } |
0d4e8509 MV |
1269 | } |
1270 | ||
1271 | /* Init the DMA controller. */ | |
a1d1fdc9 | 1272 | mxs_dma_init(); |
96666a39 MV |
1273 | for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0; |
1274 | j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) { | |
549d7c0e PF |
1275 | ret = mxs_dma_init_channel(j); |
1276 | if (ret) | |
96666a39 MV |
1277 | goto err3; |
1278 | } | |
0d4e8509 MV |
1279 | |
1280 | /* Reset the GPMI block. */ | |
931747e5 SA |
1281 | mxs_reset_block(&info->gpmi_regs->hw_gpmi_ctrl0_reg); |
1282 | mxs_reset_block(&info->bch_regs->hw_bch_ctrl_reg); | |
0d4e8509 MV |
1283 | |
1284 | /* | |
1285 | * Choose NAND mode, set IRQ polarity, disable write protection and | |
1286 | * select BCH ECC. | |
1287 | */ | |
931747e5 | 1288 | clrsetbits_le32(&info->gpmi_regs->hw_gpmi_ctrl1, |
0d4e8509 MV |
1289 | GPMI_CTRL1_GPMI_MODE, |
1290 | GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | | |
1291 | GPMI_CTRL1_BCH_MODE); | |
1292 | ||
1293 | return 0; | |
1294 | ||
96666a39 | 1295 | err3: |
549d7c0e | 1296 | for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--) |
96666a39 | 1297 | mxs_dma_release(j); |
0d4e8509 | 1298 | err2: |
0d4e8509 MV |
1299 | for (--i; i >= 0; i--) |
1300 | mxs_dma_desc_free(info->desc[i]); | |
549d7c0e PF |
1301 | free(info->desc); |
1302 | err1: | |
1303 | if (ret == -ENOMEM) | |
1304 | printf("MXS NAND: Unable to allocate DMA descriptors\n"); | |
1305 | return ret; | |
0d4e8509 MV |
1306 | } |
1307 | ||
9345943b SA |
1308 | int mxs_nand_init_spl(struct nand_chip *nand) |
1309 | { | |
1310 | struct mxs_nand_info *nand_info; | |
1311 | int err; | |
1312 | ||
1313 | nand_info = malloc(sizeof(struct mxs_nand_info)); | |
1314 | if (!nand_info) { | |
1315 | printf("MXS NAND: Failed to allocate private data\n"); | |
1316 | return -ENOMEM; | |
1317 | } | |
1318 | memset(nand_info, 0, sizeof(struct mxs_nand_info)); | |
1319 | ||
931747e5 SA |
1320 | nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE; |
1321 | nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; | |
5ae585ba | 1322 | |
39320e72 | 1323 | if (is_mx6sx() || is_mx7() || is_imx8() || is_imx8m()) |
5ae585ba AF |
1324 | nand_info->max_ecc_strength_supported = 62; |
1325 | else | |
1326 | nand_info->max_ecc_strength_supported = 40; | |
1327 | ||
9345943b SA |
1328 | err = mxs_nand_alloc_buffers(nand_info); |
1329 | if (err) | |
1330 | return err; | |
1331 | ||
0d4e9d8b | 1332 | err = mxs_nand_init_dma(nand_info); |
9345943b SA |
1333 | if (err) |
1334 | return err; | |
1335 | ||
1336 | nand_set_controller_data(nand, nand_info); | |
1337 | ||
1338 | nand->options |= NAND_NO_SUBPAGE_WRITE; | |
1339 | ||
1340 | nand->cmd_ctrl = mxs_nand_cmd_ctrl; | |
1341 | nand->dev_ready = mxs_nand_device_ready; | |
1342 | nand->select_chip = mxs_nand_select_chip; | |
9345943b SA |
1343 | |
1344 | nand->read_byte = mxs_nand_read_byte; | |
1345 | nand->read_buf = mxs_nand_read_buf; | |
1346 | ||
1347 | nand->ecc.read_page = mxs_nand_ecc_read_page; | |
1348 | ||
1349 | nand->ecc.mode = NAND_ECC_HW; | |
9345943b SA |
1350 | |
1351 | return 0; | |
1352 | } | |
1353 | ||
68748340 | 1354 | int mxs_nand_init_ctrl(struct mxs_nand_info *nand_info) |
0d4e8509 | 1355 | { |
5346c31e | 1356 | struct mtd_info *mtd; |
5346c31e | 1357 | struct nand_chip *nand; |
0d4e8509 MV |
1358 | int err; |
1359 | ||
5346c31e SA |
1360 | nand = &nand_info->chip; |
1361 | mtd = nand_to_mtd(nand); | |
0d4e8509 MV |
1362 | err = mxs_nand_alloc_buffers(nand_info); |
1363 | if (err) | |
3b1328a0 | 1364 | return err; |
0d4e8509 | 1365 | |
0d4e9d8b | 1366 | err = mxs_nand_init_dma(nand_info); |
0d4e8509 | 1367 | if (err) |
3b1328a0 | 1368 | goto err_free_buffers; |
0d4e8509 MV |
1369 | |
1370 | memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); | |
1371 | ||
dc0b69fa SA |
1372 | #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
1373 | nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; | |
1374 | #endif | |
1375 | ||
17cb4b8f | 1376 | nand_set_controller_data(nand, nand_info); |
0d4e8509 MV |
1377 | nand->options |= NAND_NO_SUBPAGE_WRITE; |
1378 | ||
f75e83bf SA |
1379 | if (nand_info->dev) |
1380 | nand->flash_node = dev_of_offset(nand_info->dev); | |
1381 | ||
0d4e8509 MV |
1382 | nand->cmd_ctrl = mxs_nand_cmd_ctrl; |
1383 | ||
1384 | nand->dev_ready = mxs_nand_device_ready; | |
1385 | nand->select_chip = mxs_nand_select_chip; | |
1386 | nand->block_bad = mxs_nand_block_bad; | |
0d4e8509 MV |
1387 | |
1388 | nand->read_byte = mxs_nand_read_byte; | |
1389 | ||
1390 | nand->read_buf = mxs_nand_read_buf; | |
1391 | nand->write_buf = mxs_nand_write_buf; | |
1392 | ||
5346c31e SA |
1393 | /* first scan to find the device and get the page size */ |
1394 | if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) | |
3b1328a0 | 1395 | goto err_free_buffers; |
5346c31e SA |
1396 | |
1397 | if (mxs_nand_setup_ecc(mtd)) | |
3b1328a0 | 1398 | goto err_free_buffers; |
5346c31e | 1399 | |
0d4e8509 MV |
1400 | nand->ecc.read_page = mxs_nand_ecc_read_page; |
1401 | nand->ecc.write_page = mxs_nand_ecc_write_page; | |
1402 | nand->ecc.read_oob = mxs_nand_ecc_read_oob; | |
1403 | nand->ecc.write_oob = mxs_nand_ecc_write_oob; | |
1404 | ||
1405 | nand->ecc.layout = &fake_ecc_layout; | |
1406 | nand->ecc.mode = NAND_ECC_HW; | |
616f03da | 1407 | nand->ecc.size = nand_info->bch_geometry.ecc_chunkn_size; |
5c69dd07 | 1408 | nand->ecc.strength = nand_info->bch_geometry.ecc_strength; |
0d4e8509 | 1409 | |
5346c31e SA |
1410 | /* second phase scan */ |
1411 | err = nand_scan_tail(mtd); | |
1412 | if (err) | |
3b1328a0 | 1413 | goto err_free_buffers; |
5346c31e SA |
1414 | |
1415 | err = nand_register(0, mtd); | |
1416 | if (err) | |
3b1328a0 | 1417 | goto err_free_buffers; |
5346c31e | 1418 | |
3b1328a0 | 1419 | return 0; |
0d4e8509 | 1420 | |
3b1328a0 | 1421 | err_free_buffers: |
0d4e8509 MV |
1422 | free(nand_info->data_buf); |
1423 | free(nand_info->cmd_buf); | |
3b1328a0 SA |
1424 | |
1425 | return err; | |
1426 | } | |
1427 | ||
f75e83bf | 1428 | #ifndef CONFIG_NAND_MXS_DT |
3b1328a0 SA |
1429 | void board_nand_init(void) |
1430 | { | |
1431 | struct mxs_nand_info *nand_info; | |
1432 | ||
1433 | nand_info = malloc(sizeof(struct mxs_nand_info)); | |
1434 | if (!nand_info) { | |
1435 | printf("MXS NAND: Failed to allocate private data\n"); | |
1436 | return; | |
1437 | } | |
1438 | memset(nand_info, 0, sizeof(struct mxs_nand_info)); | |
1439 | ||
1440 | nand_info->gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE; | |
1441 | nand_info->bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; | |
1442 | ||
502bdc6b SA |
1443 | /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */ |
1444 | if (is_mx6sx() || is_mx7()) | |
1445 | nand_info->max_ecc_strength_supported = 62; | |
1446 | else | |
1447 | nand_info->max_ecc_strength_supported = 40; | |
1448 | ||
1449 | #ifdef CONFIG_NAND_MXS_USE_MINIMUM_ECC | |
1450 | nand_info->use_minimum_ecc = true; | |
1451 | #endif | |
1452 | ||
68748340 | 1453 | if (mxs_nand_init_ctrl(nand_info) < 0) |
3b1328a0 SA |
1454 | goto err; |
1455 | ||
5346c31e | 1456 | return; |
3b1328a0 SA |
1457 | |
1458 | err: | |
1459 | free(nand_info); | |
0d4e8509 | 1460 | } |
f75e83bf | 1461 | #endif |
9ab5f221 IO |
1462 | |
1463 | /* | |
1464 | * Read NAND layout for FCB block generation. | |
1465 | */ | |
1466 | void mxs_nand_get_layout(struct mtd_info *mtd, struct mxs_nand_layout *l) | |
1467 | { | |
1468 | struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; | |
1469 | u32 tmp; | |
1470 | ||
1471 | tmp = readl(&bch_regs->hw_bch_flash0layout0); | |
1472 | l->nblocks = (tmp & BCH_FLASHLAYOUT0_NBLOCKS_MASK) >> | |
1473 | BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; | |
1474 | l->meta_size = (tmp & BCH_FLASHLAYOUT0_META_SIZE_MASK) >> | |
1475 | BCH_FLASHLAYOUT0_META_SIZE_OFFSET; | |
1476 | ||
1477 | tmp = readl(&bch_regs->hw_bch_flash0layout1); | |
1478 | l->data0_size = 4 * ((tmp & BCH_FLASHLAYOUT0_DATA0_SIZE_MASK) >> | |
1479 | BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET); | |
1480 | l->ecc0 = (tmp & BCH_FLASHLAYOUT0_ECC0_MASK) >> | |
1481 | BCH_FLASHLAYOUT0_ECC0_OFFSET; | |
1482 | l->datan_size = 4 * ((tmp & BCH_FLASHLAYOUT1_DATAN_SIZE_MASK) >> | |
1483 | BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET); | |
1484 | l->eccn = (tmp & BCH_FLASHLAYOUT1_ECCN_MASK) >> | |
1485 | BCH_FLASHLAYOUT1_ECCN_OFFSET; | |
17282f45 HX |
1486 | l->gf_len = (tmp & BCH_FLASHLAYOUT1_GF13_0_GF14_1_MASK) >> |
1487 | BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; | |
9ab5f221 IO |
1488 | } |
1489 | ||
1490 | /* | |
1491 | * Set BCH to specific layout used by ROM bootloader to read FCB. | |
1492 | */ | |
bf9382ad | 1493 | void mxs_nand_mode_fcb_62bit(struct mtd_info *mtd) |
9ab5f221 IO |
1494 | { |
1495 | u32 tmp; | |
1496 | struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; | |
1497 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1498 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
1499 | ||
1500 | nand_info->en_randomizer = 1; | |
1501 | ||
1502 | mtd->writesize = 1024; | |
1503 | mtd->oobsize = 1862 - 1024; | |
1504 | ||
1505 | /* 8 ecc_chunks_*/ | |
1506 | tmp = 7 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; | |
1507 | /* 32 bytes for metadata */ | |
1508 | tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; | |
1509 | /* using ECC62 level to be performed */ | |
1510 | tmp |= 0x1F << BCH_FLASHLAYOUT0_ECC0_OFFSET; | |
1511 | /* 0x20 * 4 bytes of the data0 block */ | |
1512 | tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET; | |
1513 | tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; | |
1514 | writel(tmp, &bch_regs->hw_bch_flash0layout0); | |
1515 | ||
1516 | /* 1024 for data + 838 for OOB */ | |
1517 | tmp = 1862 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; | |
1518 | /* using ECC62 level to be performed */ | |
1519 | tmp |= 0x1F << BCH_FLASHLAYOUT1_ECCN_OFFSET; | |
1520 | /* 0x20 * 4 bytes of the data0 block */ | |
1521 | tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET; | |
1522 | tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; | |
1523 | writel(tmp, &bch_regs->hw_bch_flash0layout1); | |
1524 | } | |
1525 | ||
bf9382ad HX |
1526 | /* |
1527 | * Set BCH to specific layout used by ROM bootloader to read FCB. | |
1528 | */ | |
1529 | void mxs_nand_mode_fcb_40bit(struct mtd_info *mtd) | |
1530 | { | |
1531 | u32 tmp; | |
1532 | struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; | |
1533 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1534 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
1535 | ||
1536 | /* no randomizer in this setting*/ | |
1537 | nand_info->en_randomizer = 0; | |
1538 | ||
1539 | mtd->writesize = 1024; | |
1540 | mtd->oobsize = 1576 - 1024; | |
1541 | ||
1542 | /* 8 ecc_chunks_*/ | |
1543 | tmp = 7 << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; | |
1544 | /* 32 bytes for metadata */ | |
1545 | tmp |= 32 << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; | |
1546 | /* using ECC40 level to be performed */ | |
1547 | tmp |= 0x14 << BCH_FLASHLAYOUT0_ECC0_OFFSET; | |
1548 | /* 0x20 * 4 bytes of the data0 block */ | |
1549 | tmp |= 0x20 << BCH_FLASHLAYOUT0_DATA0_SIZE_OFFSET; | |
1550 | tmp |= 0 << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; | |
1551 | writel(tmp, &bch_regs->hw_bch_flash0layout0); | |
1552 | ||
1553 | /* 1024 for data + 552 for OOB */ | |
1554 | tmp = 1576 << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; | |
1555 | /* using ECC40 level to be performed */ | |
1556 | tmp |= 0x14 << BCH_FLASHLAYOUT1_ECCN_OFFSET; | |
1557 | /* 0x20 * 4 bytes of the data0 block */ | |
1558 | tmp |= 0x20 << BCH_FLASHLAYOUT1_DATAN_SIZE_OFFSET; | |
1559 | tmp |= 0 << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; | |
1560 | writel(tmp, &bch_regs->hw_bch_flash0layout1); | |
1561 | } | |
1562 | ||
9ab5f221 IO |
1563 | /* |
1564 | * Restore BCH to normal settings. | |
1565 | */ | |
1566 | void mxs_nand_mode_normal(struct mtd_info *mtd) | |
1567 | { | |
1568 | struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; | |
1569 | struct nand_chip *nand = mtd_to_nand(mtd); | |
1570 | struct mxs_nand_info *nand_info = nand_get_controller_data(nand); | |
1571 | ||
1572 | nand_info->en_randomizer = 0; | |
1573 | ||
1574 | mtd->writesize = nand_info->writesize; | |
1575 | mtd->oobsize = nand_info->oobsize; | |
1576 | ||
1577 | writel(nand_info->bch_flash0layout0, &bch_regs->hw_bch_flash0layout0); | |
1578 | writel(nand_info->bch_flash0layout1, &bch_regs->hw_bch_flash0layout1); | |
1579 | } | |
1580 | ||
1581 | uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) | |
1582 | { | |
1583 | struct nand_chip *chip = mtd_to_nand(mtd); | |
1584 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
1585 | struct bch_geometry *geo = &nand_info->bch_geometry; | |
1586 | ||
1587 | return geo->block_mark_byte_offset; | |
1588 | } | |
1589 | ||
1590 | uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) | |
1591 | { | |
1592 | struct nand_chip *chip = mtd_to_nand(mtd); | |
1593 | struct mxs_nand_info *nand_info = nand_get_controller_data(chip); | |
1594 | struct bch_geometry *geo = &nand_info->bch_geometry; | |
1595 | ||
1596 | return geo->block_mark_bit_offset; | |
1597 | } |