]> Git Repo - u-boot.git/blame - test/dm/core.c
dm: core: Allow getting some basic stats
[u-boot.git] / test / dm / core.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
2e7d35d2
SG
2/*
3 * Tests for the core driver model code
4 *
5 * Copyright (c) 2013 Google, Inc
2e7d35d2
SG
6 */
7
8#include <common.h>
9#include <errno.h>
10#include <dm.h>
11#include <fdtdec.h>
f7ae49fc 12#include <log.h>
2e7d35d2 13#include <malloc.h>
401d1c4f 14#include <asm/global_data.h>
2e7d35d2
SG
15#include <dm/device-internal.h>
16#include <dm/root.h>
2e7d35d2
SG
17#include <dm/util.h>
18#include <dm/test.h>
19#include <dm/uclass-internal.h>
0e1fad43 20#include <test/test.h>
e721b882 21#include <test/ut.h>
2e7d35d2
SG
22
23DECLARE_GLOBAL_DATA_PTR;
24
25enum {
26 TEST_INTVAL1 = 0,
27 TEST_INTVAL2 = 3,
28 TEST_INTVAL3 = 6,
29 TEST_INTVAL_MANUAL = 101112,
00606d7e 30 TEST_INTVAL_PRE_RELOC = 7,
2e7d35d2
SG
31};
32
33static const struct dm_test_pdata test_pdata[] = {
34 { .ping_add = TEST_INTVAL1, },
35 { .ping_add = TEST_INTVAL2, },
36 { .ping_add = TEST_INTVAL3, },
37};
38
39static const struct dm_test_pdata test_pdata_manual = {
40 .ping_add = TEST_INTVAL_MANUAL,
41};
42
00606d7e
SG
43static const struct dm_test_pdata test_pdata_pre_reloc = {
44 .ping_add = TEST_INTVAL_PRE_RELOC,
45};
46
20e442ab 47U_BOOT_DRVINFO(dm_test_info1) = {
2e7d35d2 48 .name = "test_drv",
caa4daa2 49 .plat = &test_pdata[0],
2e7d35d2
SG
50};
51
20e442ab 52U_BOOT_DRVINFO(dm_test_info2) = {
2e7d35d2 53 .name = "test_drv",
caa4daa2 54 .plat = &test_pdata[1],
2e7d35d2
SG
55};
56
20e442ab 57U_BOOT_DRVINFO(dm_test_info3) = {
2e7d35d2 58 .name = "test_drv",
caa4daa2 59 .plat = &test_pdata[2],
2e7d35d2
SG
60};
61
62static struct driver_info driver_info_manual = {
63 .name = "test_manual_drv",
caa4daa2 64 .plat = &test_pdata_manual,
2e7d35d2
SG
65};
66
00606d7e
SG
67static struct driver_info driver_info_pre_reloc = {
68 .name = "test_pre_reloc_drv",
caa4daa2 69 .plat = &test_pdata_pre_reloc,
00606d7e
SG
70};
71
24f927c5
SR
72static struct driver_info driver_info_act_dma = {
73 .name = "test_act_dma_drv",
74};
75
cc6f4c8f
MV
76static struct driver_info driver_info_vital_clk = {
77 .name = "test_vital_clk_drv",
78};
79
80static struct driver_info driver_info_act_dma_vital_clk = {
81 .name = "test_act_dma_vital_clk_drv",
82};
83
e721b882 84void dm_leak_check_start(struct unit_test_state *uts)
756ac0bb 85{
e721b882
JH
86 uts->start = mallinfo();
87 if (!uts->start.uordblks)
756ac0bb
SG
88 puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
89}
90
e721b882 91int dm_leak_check_end(struct unit_test_state *uts)
756ac0bb
SG
92{
93 struct mallinfo end;
cbfc2ff9 94 int id, diff;
756ac0bb
SG
95
96 /* Don't delete the root class, since we started with that */
97 for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
98 struct uclass *uc;
99
100 uc = uclass_find(id);
101 if (!uc)
102 continue;
103 ut_assertok(uclass_destroy(uc));
104 }
105
106 end = mallinfo();
cbfc2ff9
SG
107 diff = end.uordblks - uts->start.uordblks;
108 if (diff > 0)
109 printf("Leak: lost %#xd bytes\n", diff);
110 else if (diff < 0)
111 printf("Leak: gained %#xd bytes\n", -diff);
e721b882 112 ut_asserteq(uts->start.uordblks, end.uordblks);
756ac0bb
SG
113
114 return 0;
115}
116
caa4daa2 117/* Test that binding with plat occurs correctly */
e721b882 118static int dm_test_autobind(struct unit_test_state *uts)
2e7d35d2 119{
54c5d08a 120 struct udevice *dev;
2e7d35d2
SG
121
122 /*
123 * We should have a single class (UCLASS_ROOT) and a single root
124 * device with no children.
125 */
4a467c6d 126 ut_assert(uts->root);
8a715530 127 ut_asserteq(1, list_count_items(gd->uclass_root));
2e7d35d2
SG
128 ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
129 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
130
8a8d24bd 131 ut_assertok(dm_scan_plat(false));
2e7d35d2
SG
132
133 /* We should have our test class now at least, plus more children */
8a715530 134 ut_assert(1 < list_count_items(gd->uclass_root));
2e7d35d2
SG
135 ut_assert(0 < list_count_items(&gd->dm_root->child_head));
136
137 /* Our 3 dm_test_infox children should be bound to the test uclass */
138 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
139
140 /* No devices should be probed */
141 list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
73466df3 142 ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
2e7d35d2
SG
143
144 /* Our test driver should have been bound 3 times */
145 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
146
147 return 0;
148}
149DM_TEST(dm_test_autobind, 0);
150
caa4daa2 151/* Test that binding with uclass plat allocation occurs correctly */
e721b882 152static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
754e71e8
PM
153{
154 struct dm_test_perdev_uc_pdata *uc_pdata;
155 struct udevice *dev;
156 struct uclass *uc;
157
158 ut_assertok(uclass_get(UCLASS_TEST, &uc));
159 ut_assert(uc);
160
161 /**
162 * Test if test uclass driver requires allocation for the uclass
caa4daa2 163 * platform data and then check the dev->uclass_plat pointer.
754e71e8 164 */
caa4daa2 165 ut_assert(uc->uc_drv->per_device_plat_auto);
754e71e8
PM
166
167 for (uclass_find_first_device(UCLASS_TEST, &dev);
168 dev;
169 uclass_find_next_device(&dev)) {
331caeaf 170 ut_assertnonnull(dev);
754e71e8 171
caa4daa2 172 uc_pdata = dev_get_uclass_plat(dev);
754e71e8
PM
173 ut_assert(uc_pdata);
174 }
175
176 return 0;
177}
e180c2b1 178DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
754e71e8 179
9f6ae6de
KVA
180/* compare node names ignoring the unit address */
181static int dm_test_compare_node_name(struct unit_test_state *uts)
182{
183 ofnode node;
184
185 node = ofnode_path("/mmio-bus@0");
186 ut_assert(ofnode_valid(node));
187 ut_assert(ofnode_name_eq(node, "mmio-bus"));
188
189 return 0;
190}
191
192DM_TEST(dm_test_compare_node_name, UT_TESTF_SCAN_PDATA);
193
caa4daa2 194/* Test that binding with uclass plat setting occurs correctly */
e721b882 195static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
754e71e8
PM
196{
197 struct dm_test_perdev_uc_pdata *uc_pdata;
198 struct udevice *dev;
199
200 /**
201 * In the test_postbind() method of test uclass driver, the uclass
202 * platform data should be set to three test int values - test it.
203 */
204 for (uclass_find_first_device(UCLASS_TEST, &dev);
205 dev;
206 uclass_find_next_device(&dev)) {
331caeaf 207 ut_assertnonnull(dev);
754e71e8 208
caa4daa2 209 uc_pdata = dev_get_uclass_plat(dev);
754e71e8
PM
210 ut_assert(uc_pdata);
211 ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
212 ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
213 ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
214 }
215
216 return 0;
217}
e180c2b1 218DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
754e71e8 219
2e7d35d2 220/* Test that autoprobe finds all the expected devices */
e721b882 221static int dm_test_autoprobe(struct unit_test_state *uts)
2e7d35d2
SG
222{
223 int expected_base_add;
54c5d08a 224 struct udevice *dev;
2e7d35d2
SG
225 struct uclass *uc;
226 int i;
227
228 ut_assertok(uclass_get(UCLASS_TEST, &uc));
229 ut_assert(uc);
230
231 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
02c07b37 232 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
2e7d35d2
SG
233 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
234
235 /* The root device should not be activated until needed */
4a467c6d 236 ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
2e7d35d2
SG
237
238 /*
239 * We should be able to find the three test devices, and they should
240 * all be activated as they are used (lazy activation, required by
241 * U-Boot)
242 */
243 for (i = 0; i < 3; i++) {
244 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
245 ut_assert(dev);
73466df3 246 ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
2e7d35d2
SG
247 "Driver %d/%s already activated", i, dev->name);
248
249 /* This should activate it */
250 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
251 ut_assert(dev);
73466df3 252 ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
2e7d35d2
SG
253
254 /* Activating a device should activate the root device */
255 if (!i)
4a467c6d 256 ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
2e7d35d2
SG
257 }
258
02c07b37
SG
259 /*
260 * Our 3 dm_test_info children should be passed to pre_probe and
261 * post_probe
262 */
2e7d35d2 263 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
02c07b37 264 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
2e7d35d2
SG
265
266 /* Also we can check the per-device data */
267 expected_base_add = 0;
268 for (i = 0; i < 3; i++) {
269 struct dm_test_uclass_perdev_priv *priv;
270 struct dm_test_pdata *pdata;
271
272 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
273 ut_assert(dev);
274
e564f054 275 priv = dev_get_uclass_priv(dev);
2e7d35d2
SG
276 ut_assert(priv);
277 ut_asserteq(expected_base_add, priv->base_add);
278
0fd3d911 279 pdata = dev_get_plat(dev);
2e7d35d2
SG
280 expected_base_add += pdata->ping_add;
281 }
282
283 return 0;
284}
e180c2b1 285DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
2e7d35d2 286
caa4daa2 287/* Check that we see the correct plat in each device */
8a8d24bd 288static int dm_test_plat(struct unit_test_state *uts)
2e7d35d2
SG
289{
290 const struct dm_test_pdata *pdata;
54c5d08a 291 struct udevice *dev;
2e7d35d2
SG
292 int i;
293
294 for (i = 0; i < 3; i++) {
295 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
296 ut_assert(dev);
0fd3d911 297 pdata = dev_get_plat(dev);
2e7d35d2
SG
298 ut_assert(pdata->ping_add == test_pdata[i].ping_add);
299 }
300
301 return 0;
302}
8a8d24bd 303DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
2e7d35d2
SG
304
305/* Test that we can bind, probe, remove, unbind a driver */
e721b882 306static int dm_test_lifecycle(struct unit_test_state *uts)
2e7d35d2
SG
307{
308 int op_count[DM_TEST_OP_COUNT];
54c5d08a 309 struct udevice *dev, *test_dev;
6476c4d9
SG
310 int start_dev_count, start_uc_count;
311 int dev_count, uc_count;
2e7d35d2
SG
312 int pingret;
313 int ret;
314
315 memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
316
6476c4d9
SG
317 dm_get_stats(&start_dev_count, &start_uc_count);
318
4a467c6d 319 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
2e7d35d2
SG
320 &dev));
321 ut_assert(dev);
322 ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
323 == op_count[DM_TEST_OP_BIND] + 1);
0fd3d911 324 ut_assert(!dev_get_priv(dev));
2e7d35d2 325
6476c4d9
SG
326 /* We should have one more device */
327 dm_get_stats(&dev_count, &uc_count);
328 ut_asserteq(start_dev_count + 1, dev_count);
329 ut_asserteq(start_uc_count, uc_count);
330
2e7d35d2 331 /* Probe the device - it should fail allocating private data */
4a467c6d 332 uts->force_fail_alloc = 1;
2e7d35d2
SG
333 ret = device_probe(dev);
334 ut_assert(ret == -ENOMEM);
335 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
336 == op_count[DM_TEST_OP_PROBE] + 1);
0fd3d911 337 ut_assert(!dev_get_priv(dev));
2e7d35d2
SG
338
339 /* Try again without the alloc failure */
4a467c6d 340 uts->force_fail_alloc = 0;
2e7d35d2
SG
341 ut_assertok(device_probe(dev));
342 ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
343 == op_count[DM_TEST_OP_PROBE] + 2);
0fd3d911 344 ut_assert(dev_get_priv(dev));
2e7d35d2
SG
345
346 /* This should be device 3 in the uclass */
347 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
348 ut_assert(dev == test_dev);
349
350 /* Try ping */
351 ut_assertok(test_ping(dev, 100, &pingret));
352 ut_assert(pingret == 102);
353
354 /* Now remove device 3 */
355 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
706865af 356 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
2e7d35d2
SG
357 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
358
359 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
360 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
361 ut_assertok(device_unbind(dev));
362 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
363 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
364
6476c4d9
SG
365 /* We should have one less device */
366 dm_get_stats(&dev_count, &uc_count);
367 ut_asserteq(start_dev_count, dev_count);
368 ut_asserteq(start_uc_count, uc_count);
369
2e7d35d2
SG
370 return 0;
371}
e180c2b1 372DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
2e7d35d2
SG
373
374/* Test that we can bind/unbind and the lists update correctly */
e721b882 375static int dm_test_ordering(struct unit_test_state *uts)
2e7d35d2 376{
54c5d08a 377 struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
2e7d35d2
SG
378 int pingret;
379
4a467c6d 380 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
2e7d35d2
SG
381 &dev));
382 ut_assert(dev);
383
384 /* Bind two new devices (numbers 4 and 5) */
4a467c6d 385 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
2e7d35d2
SG
386 &dev_penultimate));
387 ut_assert(dev_penultimate);
4a467c6d 388 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
2e7d35d2
SG
389 &dev_last));
390 ut_assert(dev_last);
391
392 /* Now remove device 3 */
706865af 393 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
2e7d35d2
SG
394 ut_assertok(device_unbind(dev));
395
396 /* The device numbering should have shifted down one */
397 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
398 ut_assert(dev_penultimate == test_dev);
399 ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
400 ut_assert(dev_last == test_dev);
401
402 /* Add back the original device 3, now in position 5 */
4a467c6d 403 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
00606d7e 404 &dev));
2e7d35d2
SG
405 ut_assert(dev);
406
407 /* Try ping */
408 ut_assertok(test_ping(dev, 100, &pingret));
409 ut_assert(pingret == 102);
410
411 /* Remove 3 and 4 */
706865af 412 ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
2e7d35d2 413 ut_assertok(device_unbind(dev_penultimate));
706865af 414 ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
2e7d35d2
SG
415 ut_assertok(device_unbind(dev_last));
416
417 /* Our device should now be in position 3 */
418 ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
419 ut_assert(dev == test_dev);
420
421 /* Now remove device 3 */
706865af 422 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
2e7d35d2
SG
423 ut_assertok(device_unbind(dev));
424
425 return 0;
426}
e180c2b1 427DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
2e7d35d2
SG
428
429/* Check that we can perform operations on a device (do a ping) */
e721b882 430int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
2e7d35d2
SG
431 uint32_t base, struct dm_test_priv *priv)
432{
433 int expected;
434 int pingret;
435
caa4daa2 436 /* Getting the child device should allocate plat / priv */
2e7d35d2 437 ut_assertok(testfdt_ping(dev, 10, &pingret));
0fd3d911
SG
438 ut_assert(dev_get_priv(dev));
439 ut_assert(dev_get_plat(dev));
2e7d35d2
SG
440
441 expected = 10 + base;
442 ut_asserteq(expected, pingret);
443
444 /* Do another ping */
445 ut_assertok(testfdt_ping(dev, 20, &pingret));
446 expected = 20 + base;
447 ut_asserteq(expected, pingret);
448
449 /* Now check the ping_total */
0fd3d911 450 priv = dev_get_priv(dev);
2e7d35d2
SG
451 ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
452 priv->ping_total);
453
454 return 0;
455}
456
457/* Check that we can perform operations on devices */
e721b882 458static int dm_test_operations(struct unit_test_state *uts)
2e7d35d2 459{
54c5d08a 460 struct udevice *dev;
2e7d35d2
SG
461 int i;
462
463 /*
464 * Now check that the ping adds are what we expect. This is using the
465 * ping-add property in each node.
466 */
467 for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
468 uint32_t base;
469
470 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
471
472 /*
473 * Get the 'reg' property, which tells us what the ping add
caa4daa2 474 * should be. We don't use the plat because we want
2e7d35d2
SG
475 * to test the code that sets that up (testfdt_drv_probe()).
476 */
477 base = test_pdata[i].ping_add;
478 debug("dev=%d, base=%d\n", i, base);
479
0fd3d911 480 ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
2e7d35d2
SG
481 }
482
483 return 0;
484}
e180c2b1 485DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
2e7d35d2
SG
486
487/* Remove all drivers and check that things work */
e721b882 488static int dm_test_remove(struct unit_test_state *uts)
2e7d35d2 489{
54c5d08a 490 struct udevice *dev;
2e7d35d2
SG
491 int i;
492
493 for (i = 0; i < 3; i++) {
494 ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
495 ut_assert(dev);
73466df3 496 ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
2e7d35d2 497 "Driver %d/%s not activated", i, dev->name);
706865af 498 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
73466df3 499 ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
2e7d35d2
SG
500 "Driver %d/%s should have deactivated", i,
501 dev->name);
0fd3d911 502 ut_assert(!dev_get_priv(dev));
2e7d35d2
SG
503 }
504
505 return 0;
506}
e180c2b1 507DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
2e7d35d2
SG
508
509/* Remove and recreate everything, check for memory leaks */
e721b882 510static int dm_test_leak(struct unit_test_state *uts)
2e7d35d2
SG
511{
512 int i;
513
514 for (i = 0; i < 2; i++) {
54c5d08a 515 struct udevice *dev;
2e7d35d2
SG
516 int ret;
517 int id;
518
e721b882 519 dm_leak_check_start(uts);
2e7d35d2 520
8a8d24bd 521 ut_assertok(dm_scan_plat(false));
725e4fce 522 ut_assertok(dm_scan_fdt(false));
2e7d35d2
SG
523
524 /* Scanning the uclass is enough to probe all the devices */
525 for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
526 for (ret = uclass_first_device(UCLASS_TEST, &dev);
527 dev;
528 ret = uclass_next_device(&dev))
529 ;
530 ut_assertok(ret);
531 }
532
e721b882 533 ut_assertok(dm_leak_check_end(uts));
2e7d35d2
SG
534 }
535
536 return 0;
537}
538DM_TEST(dm_test_leak, 0);
539
540/* Test uclass init/destroy methods */
e721b882 541static int dm_test_uclass(struct unit_test_state *uts)
2e7d35d2 542{
6476c4d9 543 int dev_count, uc_count;
2e7d35d2
SG
544 struct uclass *uc;
545
6476c4d9
SG
546 /* We should have just the root device and uclass */
547 dm_get_stats(&dev_count, &uc_count);
548 ut_asserteq(1, dev_count);
549 ut_asserteq(1, uc_count);
550
2e7d35d2
SG
551 ut_assertok(uclass_get(UCLASS_TEST, &uc));
552 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
553 ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
0fd3d911 554 ut_assert(uclass_get_priv(uc));
2e7d35d2 555
6476c4d9
SG
556 dm_get_stats(&dev_count, &uc_count);
557 ut_asserteq(1, dev_count);
558 ut_asserteq(2, uc_count);
559
2e7d35d2
SG
560 ut_assertok(uclass_destroy(uc));
561 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
562 ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
563
6476c4d9
SG
564 dm_get_stats(&dev_count, &uc_count);
565 ut_asserteq(1, dev_count);
566 ut_asserteq(1, uc_count);
567
2e7d35d2
SG
568 return 0;
569}
570DM_TEST(dm_test_uclass, 0);
571
572/**
573 * create_children() - Create children of a parent node
574 *
575 * @dms: Test system state
576 * @parent: Parent device
577 * @count: Number of children to create
578 * @key: Key value to put in first child. Subsequence children
579 * receive an incrementing value
580 * @child: If not NULL, then the child device pointers are written into
581 * this array.
582 * @return 0 if OK, -ve on error
583 */
e721b882 584static int create_children(struct unit_test_state *uts, struct udevice *parent,
54c5d08a 585 int count, int key, struct udevice *child[])
2e7d35d2 586{
54c5d08a 587 struct udevice *dev;
2e7d35d2
SG
588 int i;
589
590 for (i = 0; i < count; i++) {
591 struct dm_test_pdata *pdata;
592
00606d7e
SG
593 ut_assertok(device_bind_by_name(parent, false,
594 &driver_info_manual, &dev));
2e7d35d2
SG
595 pdata = calloc(1, sizeof(*pdata));
596 pdata->ping_add = key + i;
0fd3d911 597 dev_set_plat(dev, pdata);
2e7d35d2
SG
598 if (child)
599 child[i] = dev;
600 }
601
602 return 0;
603}
604
605#define NODE_COUNT 10
606
e721b882 607static int dm_test_children(struct unit_test_state *uts)
2e7d35d2 608{
54c5d08a
HS
609 struct udevice *top[NODE_COUNT];
610 struct udevice *child[NODE_COUNT];
611 struct udevice *grandchild[NODE_COUNT];
612 struct udevice *dev;
2e7d35d2
SG
613 int total;
614 int ret;
615 int i;
616
617 /* We don't care about the numbering for this test */
4a467c6d 618 uts->skip_post_probe = 1;
2e7d35d2
SG
619
620 ut_assert(NODE_COUNT > 5);
621
622 /* First create 10 top-level children */
4a467c6d 623 ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
2e7d35d2
SG
624
625 /* Now a few have their own children */
e721b882
JH
626 ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
627 ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
2e7d35d2
SG
628
629 /* And grandchildren */
630 for (i = 0; i < NODE_COUNT; i++)
e721b882 631 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
2e7d35d2
SG
632 i == 2 ? grandchild : NULL));
633
634 /* Check total number of devices */
635 total = NODE_COUNT * (3 + NODE_COUNT);
636 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
637
638 /* Try probing one of the grandchildren */
639 ut_assertok(uclass_get_device(UCLASS_TEST,
640 NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
641 ut_asserteq_ptr(grandchild[0], dev);
642
643 /*
644 * This should have probed the child and top node also, for a total
645 * of 3 nodes.
646 */
647 ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
648
649 /* Probe the other grandchildren */
650 for (i = 1; i < NODE_COUNT; i++)
651 ut_assertok(device_probe(grandchild[i]));
652
653 ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
654
655 /* Probe everything */
656 for (ret = uclass_first_device(UCLASS_TEST, &dev);
657 dev;
658 ret = uclass_next_device(&dev))
659 ;
660 ut_assertok(ret);
661
662 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
663
664 /* Remove a top-level child and check that the children are removed */
706865af 665 ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
2e7d35d2
SG
666 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
667 dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
668
669 /* Try one with grandchildren */
670 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
671 ut_asserteq_ptr(dev, top[5]);
706865af 672 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
2e7d35d2
SG
673 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
674 dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
675
676 /* Try the same with unbind */
677 ut_assertok(device_unbind(top[2]));
678 ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
679 dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
680
681 /* Try one with grandchildren */
682 ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
683 ut_asserteq_ptr(dev, top[6]);
684 ut_assertok(device_unbind(top[5]));
685 ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
686 dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
687
688 return 0;
689}
690DM_TEST(dm_test_children, 0);
00606d7e 691
cfecbaf4
CB
692static int dm_test_device_reparent(struct unit_test_state *uts)
693{
cfecbaf4
CB
694 struct udevice *top[NODE_COUNT];
695 struct udevice *child[NODE_COUNT];
696 struct udevice *grandchild[NODE_COUNT];
697 struct udevice *dev;
698 int total;
699 int ret;
700 int i;
701
702 /* We don't care about the numbering for this test */
4a467c6d 703 uts->skip_post_probe = 1;
cfecbaf4
CB
704
705 ut_assert(NODE_COUNT > 5);
706
707 /* First create 10 top-level children */
4a467c6d 708 ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
cfecbaf4
CB
709
710 /* Now a few have their own children */
711 ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
712 ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
713
714 /* And grandchildren */
715 for (i = 0; i < NODE_COUNT; i++)
716 ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
717 i == 2 ? grandchild : NULL));
718
719 /* Check total number of devices */
720 total = NODE_COUNT * (3 + NODE_COUNT);
721 ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
722
723 /* Probe everything */
724 for (i = 0; i < total; i++)
725 ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
726
727 /* Re-parent top-level children with no grandchildren. */
728 ut_assertok(device_reparent(top[3], top[0]));
729 /* try to get devices */
730 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
731 dev;
732 ret = uclass_find_next_device(&dev)) {
733 ut_assert(!ret);
734 ut_assertnonnull(dev);
735 }
736
737 ut_assertok(device_reparent(top[4], top[0]));
738 /* try to get devices */
739 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
740 dev;
741 ret = uclass_find_next_device(&dev)) {
742 ut_assert(!ret);
743 ut_assertnonnull(dev);
744 }
745
746 /* Re-parent top-level children with grandchildren. */
747 ut_assertok(device_reparent(top[2], top[0]));
748 /* try to get devices */
749 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
750 dev;
751 ret = uclass_find_next_device(&dev)) {
752 ut_assert(!ret);
753 ut_assertnonnull(dev);
754 }
755
756 ut_assertok(device_reparent(top[5], top[2]));
757 /* try to get devices */
758 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
759 dev;
760 ret = uclass_find_next_device(&dev)) {
761 ut_assert(!ret);
762 ut_assertnonnull(dev);
763 }
764
765 /* Re-parent grandchildren. */
766 ut_assertok(device_reparent(grandchild[0], top[1]));
767 /* try to get devices */
768 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
769 dev;
770 ret = uclass_find_next_device(&dev)) {
771 ut_assert(!ret);
772 ut_assertnonnull(dev);
773 }
774
775 ut_assertok(device_reparent(grandchild[1], top[1]));
776 /* try to get devices */
777 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
778 dev;
779 ret = uclass_find_next_device(&dev)) {
780 ut_assert(!ret);
781 ut_assertnonnull(dev);
782 }
783
784 /* Remove re-pareneted devices. */
785 ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
786 /* try to get devices */
787 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
788 dev;
789 ret = uclass_find_next_device(&dev)) {
790 ut_assert(!ret);
791 ut_assertnonnull(dev);
792 }
793
794 ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
795 /* try to get devices */
796 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
797 dev;
798 ret = uclass_find_next_device(&dev)) {
799 ut_assert(!ret);
800 ut_assertnonnull(dev);
801 }
802
803 ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
804 /* try to get devices */
805 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
806 dev;
807 ret = uclass_find_next_device(&dev)) {
808 ut_assert(!ret);
809 ut_assertnonnull(dev);
810 }
811
812 ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
813 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
814 dev;
815 ret = uclass_find_next_device(&dev)) {
816 ut_assert(!ret);
817 ut_assertnonnull(dev);
818 }
819
820 ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
821 /* try to get devices */
822 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
823 dev;
824 ret = uclass_find_next_device(&dev)) {
825 ut_assert(!ret);
826 ut_assertnonnull(dev);
827 }
828
829 ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
830 /* try to get devices */
831 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
832 dev;
833 ret = uclass_find_next_device(&dev)) {
834 ut_assert(!ret);
835 ut_assertnonnull(dev);
836 }
837
838 /* Try the same with unbind */
839 ut_assertok(device_unbind(top[3]));
840 ut_assertok(device_unbind(top[4]));
841 ut_assertok(device_unbind(top[5]));
842 ut_assertok(device_unbind(top[2]));
843
844 ut_assertok(device_unbind(grandchild[0]));
845 ut_assertok(device_unbind(grandchild[1]));
846
847 return 0;
848}
849DM_TEST(dm_test_device_reparent, 0);
850
00606d7e 851/* Test that pre-relocation devices work as expected */
e721b882 852static int dm_test_pre_reloc(struct unit_test_state *uts)
00606d7e
SG
853{
854 struct udevice *dev;
855
856 /* The normal driver should refuse to bind before relocation */
4a467c6d 857 ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
00606d7e
SG
858 &driver_info_manual, &dev));
859
860 /* But this one is marked pre-reloc */
4a467c6d 861 ut_assertok(device_bind_by_name(uts->root, true,
00606d7e
SG
862 &driver_info_pre_reloc, &dev));
863
864 return 0;
865}
866DM_TEST(dm_test_pre_reloc, 0);
c910e2e2 867
24f927c5
SR
868/*
869 * Test that removal of devices, either via the "normal" device_remove()
870 * API or via the device driver selective flag works as expected
871 */
872static int dm_test_remove_active_dma(struct unit_test_state *uts)
873{
24f927c5
SR
874 struct udevice *dev;
875
4a467c6d 876 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
24f927c5
SR
877 &dev));
878 ut_assert(dev);
879
880 /* Probe the device */
881 ut_assertok(device_probe(dev));
882
883 /* Test if device is active right now */
884 ut_asserteq(true, device_active(dev));
885
886 /* Remove the device via selective remove flag */
887 dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
888
889 /* Test if device is inactive right now */
890 ut_asserteq(false, device_active(dev));
891
892 /* Probe the device again */
893 ut_assertok(device_probe(dev));
894
895 /* Test if device is active right now */
896 ut_asserteq(true, device_active(dev));
897
898 /* Remove the device via "normal" remove API */
899 ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
900
901 /* Test if device is inactive right now */
902 ut_asserteq(false, device_active(dev));
903
904 /*
905 * Test if a device without the active DMA flags is not removed upon
906 * the active DMA remove call
907 */
908 ut_assertok(device_unbind(dev));
4a467c6d 909 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
24f927c5
SR
910 &dev));
911 ut_assert(dev);
912
913 /* Probe the device */
914 ut_assertok(device_probe(dev));
915
916 /* Test if device is active right now */
917 ut_asserteq(true, device_active(dev));
918
919 /* Remove the device via selective remove flag */
920 dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
921
922 /* Test if device is still active right now */
923 ut_asserteq(true, device_active(dev));
924
925 return 0;
926}
927DM_TEST(dm_test_remove_active_dma, 0);
928
cc6f4c8f
MV
929/* Test removal of 'vital' devices */
930static int dm_test_remove_vital(struct unit_test_state *uts)
931{
cc6f4c8f
MV
932 struct udevice *normal, *dma, *vital, *dma_vital;
933
934 /* Skip the behaviour in test_post_probe() */
4a467c6d 935 uts->skip_post_probe = 1;
cc6f4c8f 936
4a467c6d 937 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
cc6f4c8f
MV
938 &normal));
939 ut_assertnonnull(normal);
940
4a467c6d 941 ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
cc6f4c8f
MV
942 &dma));
943 ut_assertnonnull(dma);
944
4a467c6d 945 ut_assertok(device_bind_by_name(uts->root, false,
cc6f4c8f
MV
946 &driver_info_vital_clk, &vital));
947 ut_assertnonnull(vital);
948
4a467c6d 949 ut_assertok(device_bind_by_name(uts->root, false,
cc6f4c8f
MV
950 &driver_info_act_dma_vital_clk,
951 &dma_vital));
952 ut_assertnonnull(dma_vital);
953
954 /* Probe the devices */
955 ut_assertok(device_probe(normal));
956 ut_assertok(device_probe(dma));
957 ut_assertok(device_probe(vital));
958 ut_assertok(device_probe(dma_vital));
959
960 /* Check that devices are active right now */
961 ut_asserteq(true, device_active(normal));
962 ut_asserteq(true, device_active(dma));
963 ut_asserteq(true, device_active(vital));
964 ut_asserteq(true, device_active(dma_vital));
965
966 /* Remove active devices via selective remove flag */
967 dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
968
969 /*
970 * Check that this only has an effect on the dma device, since two
971 * devices are vital and the third does not have active DMA
972 */
973 ut_asserteq(true, device_active(normal));
974 ut_asserteq(false, device_active(dma));
975 ut_asserteq(true, device_active(vital));
976 ut_asserteq(true, device_active(dma_vital));
977
978 /* Remove active devices via selective remove flag */
979 ut_assertok(device_probe(dma));
980 dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
981
982 /* This should have affected both active-dma devices */
983 ut_asserteq(true, device_active(normal));
984 ut_asserteq(false, device_active(dma));
985 ut_asserteq(true, device_active(vital));
986 ut_asserteq(false, device_active(dma_vital));
987
988 /* Remove non-vital devices */
989 ut_assertok(device_probe(dma));
990 ut_assertok(device_probe(dma_vital));
991 dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
992
993 /* This should have affected only non-vital devices */
994 ut_asserteq(false, device_active(normal));
995 ut_asserteq(false, device_active(dma));
996 ut_asserteq(true, device_active(vital));
997 ut_asserteq(true, device_active(dma_vital));
998
999 /* Remove vital devices via normal remove flag */
1000 ut_assertok(device_probe(normal));
1001 ut_assertok(device_probe(dma));
1002 dm_remove_devices_flags(DM_REMOVE_NORMAL);
1003
1004 /* Check that all devices are inactive right now */
1005 ut_asserteq(false, device_active(normal));
1006 ut_asserteq(false, device_active(dma));
1007 ut_asserteq(false, device_active(vital));
1008 ut_asserteq(false, device_active(dma_vital));
1009
1010 return 0;
1011}
1012DM_TEST(dm_test_remove_vital, 0);
1013
e721b882 1014static int dm_test_uclass_before_ready(struct unit_test_state *uts)
c910e2e2
SG
1015{
1016 struct uclass *uc;
1017
1018 ut_assertok(uclass_get(UCLASS_TEST, &uc));
1019
f9fd4558
SG
1020 gd->dm_root = NULL;
1021 gd->dm_root_f = NULL;
1022 memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
1023
c910e2e2 1024 ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
1e9ced28 1025 ut_asserteq(-EDEADLK, uclass_get(UCLASS_TEST, &uc));
c910e2e2
SG
1026
1027 return 0;
1028}
c910e2e2 1029DM_TEST(dm_test_uclass_before_ready, 0);
b3670531 1030
e721b882 1031static int dm_test_uclass_devices_find(struct unit_test_state *uts)
9e85f13d
PM
1032{
1033 struct udevice *dev;
1034 int ret;
1035
1036 for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
1037 dev;
1038 ret = uclass_find_next_device(&dev)) {
1039 ut_assert(!ret);
331caeaf 1040 ut_assertnonnull(dev);
9e85f13d
PM
1041 }
1042
4805a7af 1043 ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
331caeaf 1044 ut_assertnull(dev);
f3885649 1045
9e85f13d
PM
1046 return 0;
1047}
e180c2b1 1048DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
9e85f13d 1049
e721b882 1050static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
6e0c4880
PM
1051{
1052 struct udevice *finddev;
1053 struct udevice *testdev;
1054 int findret, ret;
1055
1056 /*
1057 * For each test device found in fdt like: "a-test", "b-test", etc.,
1058 * use its name and try to find it by uclass_find_device_by_name().
1059 * Then, on success check if:
1060 * - current 'testdev' name is equal to the returned 'finddev' name
1061 * - current 'testdev' pointer is equal to the returned 'finddev'
1062 *
1063 * We assume that, each uclass's device name is unique, so if not, then
1064 * this will fail on checking condition: testdev == finddev, since the
1065 * uclass_find_device_by_name(), returns the first device by given name.
1066 */
1067 for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
1068 testdev;
1069 ret = uclass_find_next_device(&testdev)) {
1070 ut_assertok(ret);
331caeaf 1071 ut_assertnonnull(testdev);
6e0c4880
PM
1072
1073 findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
1074 testdev->name,
1075 &finddev);
1076
1077 ut_assertok(findret);
1078 ut_assert(testdev);
1079 ut_asserteq_str(testdev->name, finddev->name);
1080 ut_asserteq_ptr(testdev, finddev);
1081 }
1082
1083 return 0;
1084}
e180c2b1 1085DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
6e0c4880 1086
e721b882 1087static int dm_test_uclass_devices_get(struct unit_test_state *uts)
9e85f13d
PM
1088{
1089 struct udevice *dev;
1090 int ret;
1091
1092 for (ret = uclass_first_device(UCLASS_TEST, &dev);
1093 dev;
1094 ret = uclass_next_device(&dev)) {
1095 ut_assert(!ret);
1096 ut_assert(dev);
1097 ut_assert(device_active(dev));
1098 }
1099
1100 return 0;
1101}
e180c2b1 1102DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
9e85f13d 1103
e721b882 1104static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
6e0c4880
PM
1105{
1106 struct udevice *finddev;
1107 struct udevice *testdev;
1108 int ret, findret;
1109
1110 /*
1111 * For each test device found in fdt like: "a-test", "b-test", etc.,
1112 * use its name and try to get it by uclass_get_device_by_name().
1113 * On success check if:
1114 * - returned finddev' is active
1115 * - current 'testdev' name is equal to the returned 'finddev' name
1116 * - current 'testdev' pointer is equal to the returned 'finddev'
1117 *
1118 * We asserts that the 'testdev' is active on each loop entry, so we
1119 * could be sure that the 'finddev' is activated too, but for sure
1120 * we check it again.
1121 *
1122 * We assume that, each uclass's device name is unique, so if not, then
1123 * this will fail on checking condition: testdev == finddev, since the
1124 * uclass_get_device_by_name(), returns the first device by given name.
1125 */
1126 for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
1127 testdev;
1128 ret = uclass_next_device(&testdev)) {
1129 ut_assertok(ret);
1130 ut_assert(testdev);
1131 ut_assert(device_active(testdev));
1132
1133 findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
1134 testdev->name,
1135 &finddev);
1136
1137 ut_assertok(findret);
1138 ut_assert(finddev);
1139 ut_assert(device_active(finddev));
1140 ut_asserteq_str(testdev->name, finddev->name);
1141 ut_asserteq_ptr(testdev, finddev);
1142 }
1143
1144 return 0;
1145}
e180c2b1 1146DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
6e0c4880 1147
e721b882 1148static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
b3670531
SG
1149{
1150 struct udevice *dev;
1151
1152 ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
1153 ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
1154
1155 return 0;
1156}
e180c2b1 1157DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
6e43d1b1
SG
1158
1159static int dm_test_uclass_names(struct unit_test_state *uts)
1160{
1161 ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
1162 ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
1163
1164 return 0;
1165}
e180c2b1 1166DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
cdb6aa0a
SG
1167
1168static int dm_test_inactive_child(struct unit_test_state *uts)
1169{
cdb6aa0a
SG
1170 struct udevice *parent, *dev1, *dev2;
1171
1172 /* Skip the behaviour in test_post_probe() */
4a467c6d 1173 uts->skip_post_probe = 1;
cdb6aa0a
SG
1174
1175 ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
1176
1177 /*
1178 * Create a child but do not activate it. Calling the function again
1179 * should return the same child.
1180 */
1181 ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1182 UCLASS_TEST, &dev1));
65e25bea 1183 ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
734206dd 1184 "test_child", 0, ofnode_null(), &dev1));
cdb6aa0a
SG
1185
1186 ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
1187 &dev2));
1188 ut_asserteq_ptr(dev1, dev2);
1189
1190 ut_assertok(device_probe(dev1));
1191 ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1192 UCLASS_TEST, &dev2));
1193
1194 return 0;
1195}
e180c2b1 1196DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
1c55b229
SG
1197
1198/* Make sure all bound devices have a sequence number */
1199static int dm_test_all_have_seq(struct unit_test_state *uts)
1200{
1201 struct udevice *dev;
1202 struct uclass *uc;
1203
8a715530 1204 list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1c55b229 1205 list_for_each_entry(dev, &uc->dev_head, uclass_node) {
2462139f 1206 if (dev->seq_ == -1)
1c55b229 1207 printf("Device '%s' has no seq (%d)\n",
2462139f
SG
1208 dev->name, dev->seq_);
1209 ut_assert(dev->seq_ != -1);
1c55b229
SG
1210 }
1211 }
1212
1213 return 0;
1214}
1215DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
e8801876 1216
bf8188e4 1217#if CONFIG_IS_ENABLED(DM_DMA)
e8801876
NSJ
1218static int dm_test_dma_offset(struct unit_test_state *uts)
1219{
1220 struct udevice *dev;
1221 ofnode node;
1222
1223 /* Make sure the bus's dma-ranges aren't taken into account here */
1224 node = ofnode_path("/mmio-bus@0");
1225 ut_assert(ofnode_valid(node));
1226 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1227 ut_asserteq_64(0, dev->dma_offset);
1228
1229 /* Device behind a bus with dma-ranges */
1230 node = ofnode_path("/mmio-bus@0/subnode@0");
1231 ut_assert(ofnode_valid(node));
1232 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1233 ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
1234
1235 /* This one has no dma-ranges */
1236 node = ofnode_path("/mmio-bus@1");
1237 ut_assert(ofnode_valid(node));
1238 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1239 node = ofnode_path("/mmio-bus@1/subnode@0");
1240 ut_assert(ofnode_valid(node));
1241 ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1242 ut_asserteq_64(0, dev->dma_offset);
1243
1244 return 0;
1245}
1246DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
bf8188e4 1247#endif
6476c4d9
SG
1248
1249/* Test dm_get_stats() */
1250static int dm_test_get_stats(struct unit_test_state *uts)
1251{
1252 int dev_count, uc_count;
1253
1254 dm_get_stats(&dev_count, &uc_count);
1255 ut_assert(dev_count > 50);
1256 ut_assert(uc_count > 30);
1257
1258 return 0;
1259}
1260DM_TEST(dm_test_get_stats, UT_TESTF_SCAN_FDT);
This page took 0.46557 seconds and 4 git commands to generate.