]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
9eefe2a2 SR |
2 | /* |
3 | * This file is part of UBIFS. | |
4 | * | |
5 | * Copyright (C) 2006-2008 Nokia Corporation | |
6 | * | |
9eefe2a2 SR |
7 | * Authors: Adrian Hunter |
8 | * Artem Bityutskiy (Битюцкий Артём) | |
9 | */ | |
10 | ||
11 | /* | |
12 | * This file implements functions needed to recover from unclean un-mounts. | |
13 | * When UBIFS is mounted, it checks a flag on the master node to determine if | |
ff94bc40 HS |
14 | * an un-mount was completed successfully. If not, the process of mounting |
15 | * incorporates additional checking and fixing of on-flash data structures. | |
9eefe2a2 SR |
16 | * UBIFS always cleans away all remnants of an unclean un-mount, so that |
17 | * errors do not accumulate. However UBIFS defers recovery if it is mounted | |
18 | * read-only, and the flash is not modified in that case. | |
ff94bc40 HS |
19 | * |
20 | * The general UBIFS approach to the recovery is that it recovers from | |
21 | * corruptions which could be caused by power cuts, but it refuses to recover | |
22 | * from corruption caused by other reasons. And UBIFS tries to distinguish | |
23 | * between these 2 reasons of corruptions and silently recover in the former | |
24 | * case and loudly complain in the latter case. | |
25 | * | |
26 | * UBIFS writes only to erased LEBs, so it writes only to the flash space | |
27 | * containing only 0xFFs. UBIFS also always writes strictly from the beginning | |
28 | * of the LEB to the end. And UBIFS assumes that the underlying flash media | |
29 | * writes in @c->max_write_size bytes at a time. | |
30 | * | |
31 | * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. | |
32 | * I/O unit corresponding to offset X to contain corrupted data, all the | |
33 | * following min. I/O units have to contain empty space (all 0xFFs). If this is | |
34 | * not true, the corruption cannot be the result of a power cut, and UBIFS | |
35 | * refuses to mount. | |
9eefe2a2 SR |
36 | */ |
37 | ||
ff94bc40 HS |
38 | #ifndef __UBOOT__ |
39 | #include <linux/crc32.h> | |
40 | #include <linux/slab.h> | |
3db71108 | 41 | #include <u-boot/crc.h> |
ff94bc40 HS |
42 | #else |
43 | #include <linux/err.h> | |
44 | #endif | |
9eefe2a2 SR |
45 | #include "ubifs.h" |
46 | ||
47 | /** | |
48 | * is_empty - determine whether a buffer is empty (contains all 0xff). | |
49 | * @buf: buffer to clean | |
50 | * @len: length of buffer | |
51 | * | |
52 | * This function returns %1 if the buffer is empty (contains all 0xff) otherwise | |
53 | * %0 is returned. | |
54 | */ | |
55 | static int is_empty(void *buf, int len) | |
56 | { | |
57 | uint8_t *p = buf; | |
58 | int i; | |
59 | ||
60 | for (i = 0; i < len; i++) | |
61 | if (*p++ != 0xff) | |
62 | return 0; | |
63 | return 1; | |
64 | } | |
65 | ||
ff94bc40 HS |
66 | /** |
67 | * first_non_ff - find offset of the first non-0xff byte. | |
68 | * @buf: buffer to search in | |
69 | * @len: length of buffer | |
70 | * | |
71 | * This function returns offset of the first non-0xff byte in @buf or %-1 if | |
72 | * the buffer contains only 0xff bytes. | |
73 | */ | |
74 | static int first_non_ff(void *buf, int len) | |
75 | { | |
76 | uint8_t *p = buf; | |
77 | int i; | |
78 | ||
79 | for (i = 0; i < len; i++) | |
80 | if (*p++ != 0xff) | |
81 | return i; | |
82 | return -1; | |
83 | } | |
84 | ||
9eefe2a2 SR |
85 | /** |
86 | * get_master_node - get the last valid master node allowing for corruption. | |
87 | * @c: UBIFS file-system description object | |
88 | * @lnum: LEB number | |
89 | * @pbuf: buffer containing the LEB read, is returned here | |
90 | * @mst: master node, if found, is returned here | |
91 | * @cor: corruption, if found, is returned here | |
92 | * | |
93 | * This function allocates a buffer, reads the LEB into it, and finds and | |
94 | * returns the last valid master node allowing for one area of corruption. | |
95 | * The corrupt area, if there is one, must be consistent with the assumption | |
96 | * that it is the result of an unclean unmount while the master node was being | |
97 | * written. Under those circumstances, it is valid to use the previously written | |
98 | * master node. | |
99 | * | |
100 | * This function returns %0 on success and a negative error code on failure. | |
101 | */ | |
102 | static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, | |
103 | struct ubifs_mst_node **mst, void **cor) | |
104 | { | |
105 | const int sz = c->mst_node_alsz; | |
106 | int err, offs, len; | |
107 | void *sbuf, *buf; | |
108 | ||
109 | sbuf = vmalloc(c->leb_size); | |
110 | if (!sbuf) | |
111 | return -ENOMEM; | |
112 | ||
ff94bc40 | 113 | err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); |
9eefe2a2 SR |
114 | if (err && err != -EBADMSG) |
115 | goto out_free; | |
116 | ||
117 | /* Find the first position that is definitely not a node */ | |
118 | offs = 0; | |
119 | buf = sbuf; | |
120 | len = c->leb_size; | |
121 | while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { | |
122 | struct ubifs_ch *ch = buf; | |
123 | ||
124 | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) | |
125 | break; | |
126 | offs += sz; | |
127 | buf += sz; | |
128 | len -= sz; | |
129 | } | |
130 | /* See if there was a valid master node before that */ | |
131 | if (offs) { | |
132 | int ret; | |
133 | ||
134 | offs -= sz; | |
135 | buf -= sz; | |
136 | len += sz; | |
137 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | |
138 | if (ret != SCANNED_A_NODE && offs) { | |
139 | /* Could have been corruption so check one place back */ | |
140 | offs -= sz; | |
141 | buf -= sz; | |
142 | len += sz; | |
143 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); | |
144 | if (ret != SCANNED_A_NODE) | |
145 | /* | |
146 | * We accept only one area of corruption because | |
147 | * we are assuming that it was caused while | |
148 | * trying to write a master node. | |
149 | */ | |
150 | goto out_err; | |
151 | } | |
152 | if (ret == SCANNED_A_NODE) { | |
153 | struct ubifs_ch *ch = buf; | |
154 | ||
155 | if (ch->node_type != UBIFS_MST_NODE) | |
156 | goto out_err; | |
157 | dbg_rcvry("found a master node at %d:%d", lnum, offs); | |
158 | *mst = buf; | |
159 | offs += sz; | |
160 | buf += sz; | |
161 | len -= sz; | |
162 | } | |
163 | } | |
164 | /* Check for corruption */ | |
165 | if (offs < c->leb_size) { | |
166 | if (!is_empty(buf, min_t(int, len, sz))) { | |
167 | *cor = buf; | |
168 | dbg_rcvry("found corruption at %d:%d", lnum, offs); | |
169 | } | |
170 | offs += sz; | |
171 | buf += sz; | |
172 | len -= sz; | |
173 | } | |
174 | /* Check remaining empty space */ | |
175 | if (offs < c->leb_size) | |
176 | if (!is_empty(buf, len)) | |
177 | goto out_err; | |
178 | *pbuf = sbuf; | |
179 | return 0; | |
180 | ||
181 | out_err: | |
182 | err = -EINVAL; | |
183 | out_free: | |
184 | vfree(sbuf); | |
185 | *mst = NULL; | |
186 | *cor = NULL; | |
187 | return err; | |
188 | } | |
189 | ||
190 | /** | |
191 | * write_rcvrd_mst_node - write recovered master node. | |
192 | * @c: UBIFS file-system description object | |
193 | * @mst: master node | |
194 | * | |
195 | * This function returns %0 on success and a negative error code on failure. | |
196 | */ | |
197 | static int write_rcvrd_mst_node(struct ubifs_info *c, | |
198 | struct ubifs_mst_node *mst) | |
199 | { | |
200 | int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; | |
201 | __le32 save_flags; | |
202 | ||
203 | dbg_rcvry("recovery"); | |
204 | ||
205 | save_flags = mst->flags; | |
206 | mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); | |
207 | ||
208 | ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); | |
ff94bc40 | 209 | err = ubifs_leb_change(c, lnum, mst, sz); |
9eefe2a2 SR |
210 | if (err) |
211 | goto out; | |
ff94bc40 | 212 | err = ubifs_leb_change(c, lnum + 1, mst, sz); |
9eefe2a2 SR |
213 | if (err) |
214 | goto out; | |
215 | out: | |
216 | mst->flags = save_flags; | |
217 | return err; | |
218 | } | |
219 | ||
220 | /** | |
221 | * ubifs_recover_master_node - recover the master node. | |
222 | * @c: UBIFS file-system description object | |
223 | * | |
224 | * This function recovers the master node from corruption that may occur due to | |
225 | * an unclean unmount. | |
226 | * | |
227 | * This function returns %0 on success and a negative error code on failure. | |
228 | */ | |
229 | int ubifs_recover_master_node(struct ubifs_info *c) | |
230 | { | |
231 | void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; | |
232 | struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; | |
233 | const int sz = c->mst_node_alsz; | |
234 | int err, offs1, offs2; | |
235 | ||
236 | dbg_rcvry("recovery"); | |
237 | ||
238 | err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); | |
239 | if (err) | |
240 | goto out_free; | |
241 | ||
242 | err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); | |
243 | if (err) | |
244 | goto out_free; | |
245 | ||
246 | if (mst1) { | |
247 | offs1 = (void *)mst1 - buf1; | |
248 | if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && | |
249 | (offs1 == 0 && !cor1)) { | |
250 | /* | |
251 | * mst1 was written by recovery at offset 0 with no | |
252 | * corruption. | |
253 | */ | |
254 | dbg_rcvry("recovery recovery"); | |
255 | mst = mst1; | |
256 | } else if (mst2) { | |
257 | offs2 = (void *)mst2 - buf2; | |
258 | if (offs1 == offs2) { | |
259 | /* Same offset, so must be the same */ | |
260 | if (memcmp((void *)mst1 + UBIFS_CH_SZ, | |
261 | (void *)mst2 + UBIFS_CH_SZ, | |
262 | UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) | |
263 | goto out_err; | |
264 | mst = mst1; | |
265 | } else if (offs2 + sz == offs1) { | |
266 | /* 1st LEB was written, 2nd was not */ | |
267 | if (cor1) | |
268 | goto out_err; | |
269 | mst = mst1; | |
ff94bc40 HS |
270 | } else if (offs1 == 0 && |
271 | c->leb_size - offs2 - sz < sz) { | |
9eefe2a2 SR |
272 | /* 1st LEB was unmapped and written, 2nd not */ |
273 | if (cor1) | |
274 | goto out_err; | |
275 | mst = mst1; | |
276 | } else | |
277 | goto out_err; | |
278 | } else { | |
279 | /* | |
280 | * 2nd LEB was unmapped and about to be written, so | |
281 | * there must be only one master node in the first LEB | |
282 | * and no corruption. | |
283 | */ | |
284 | if (offs1 != 0 || cor1) | |
285 | goto out_err; | |
286 | mst = mst1; | |
287 | } | |
288 | } else { | |
289 | if (!mst2) | |
290 | goto out_err; | |
291 | /* | |
292 | * 1st LEB was unmapped and about to be written, so there must | |
293 | * be no room left in 2nd LEB. | |
294 | */ | |
295 | offs2 = (void *)mst2 - buf2; | |
296 | if (offs2 + sz + sz <= c->leb_size) | |
297 | goto out_err; | |
298 | mst = mst2; | |
299 | } | |
300 | ||
0195a7bb | 301 | ubifs_msg(c, "recovered master node from LEB %d", |
9eefe2a2 SR |
302 | (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); |
303 | ||
304 | memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); | |
305 | ||
ff94bc40 | 306 | if (c->ro_mount) { |
9eefe2a2 SR |
307 | /* Read-only mode. Keep a copy for switching to rw mode */ |
308 | c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); | |
309 | if (!c->rcvrd_mst_node) { | |
310 | err = -ENOMEM; | |
311 | goto out_free; | |
312 | } | |
313 | memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); | |
ff94bc40 HS |
314 | |
315 | /* | |
316 | * We had to recover the master node, which means there was an | |
317 | * unclean reboot. However, it is possible that the master node | |
318 | * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. | |
319 | * E.g., consider the following chain of events: | |
320 | * | |
321 | * 1. UBIFS was cleanly unmounted, so the master node is clean | |
322 | * 2. UBIFS is being mounted R/W and starts changing the master | |
323 | * node in the first (%UBIFS_MST_LNUM). A power cut happens, | |
324 | * so this LEB ends up with some amount of garbage at the | |
325 | * end. | |
326 | * 3. UBIFS is being mounted R/O. We reach this place and | |
327 | * recover the master node from the second LEB | |
328 | * (%UBIFS_MST_LNUM + 1). But we cannot update the media | |
329 | * because we are being mounted R/O. We have to defer the | |
330 | * operation. | |
331 | * 4. However, this master node (@c->mst_node) is marked as | |
332 | * clean (since the step 1). And if we just return, the | |
333 | * mount code will be confused and won't recover the master | |
334 | * node when it is re-mounter R/W later. | |
335 | * | |
336 | * Thus, to force the recovery by marking the master node as | |
337 | * dirty. | |
338 | */ | |
339 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | |
340 | #ifndef __UBOOT__ | |
341 | } else { | |
342 | /* Write the recovered master node */ | |
343 | c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; | |
344 | err = write_rcvrd_mst_node(c, c->mst_node); | |
345 | if (err) | |
346 | goto out_free; | |
347 | #endif | |
9eefe2a2 SR |
348 | } |
349 | ||
350 | vfree(buf2); | |
351 | vfree(buf1); | |
352 | ||
353 | return 0; | |
354 | ||
355 | out_err: | |
356 | err = -EINVAL; | |
357 | out_free: | |
0195a7bb | 358 | ubifs_err(c, "failed to recover master node"); |
9eefe2a2 | 359 | if (mst1) { |
0195a7bb | 360 | ubifs_err(c, "dumping first master node"); |
ff94bc40 | 361 | ubifs_dump_node(c, mst1); |
9eefe2a2 SR |
362 | } |
363 | if (mst2) { | |
0195a7bb | 364 | ubifs_err(c, "dumping second master node"); |
ff94bc40 | 365 | ubifs_dump_node(c, mst2); |
9eefe2a2 SR |
366 | } |
367 | vfree(buf2); | |
368 | vfree(buf1); | |
369 | return err; | |
370 | } | |
371 | ||
372 | /** | |
373 | * ubifs_write_rcvrd_mst_node - write the recovered master node. | |
374 | * @c: UBIFS file-system description object | |
375 | * | |
376 | * This function writes the master node that was recovered during mounting in | |
377 | * read-only mode and must now be written because we are remounting rw. | |
378 | * | |
379 | * This function returns %0 on success and a negative error code on failure. | |
380 | */ | |
381 | int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) | |
382 | { | |
383 | int err; | |
384 | ||
385 | if (!c->rcvrd_mst_node) | |
386 | return 0; | |
387 | c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | |
388 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); | |
389 | err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); | |
390 | if (err) | |
391 | return err; | |
392 | kfree(c->rcvrd_mst_node); | |
393 | c->rcvrd_mst_node = NULL; | |
394 | return 0; | |
395 | } | |
396 | ||
397 | /** | |
398 | * is_last_write - determine if an offset was in the last write to a LEB. | |
399 | * @c: UBIFS file-system description object | |
400 | * @buf: buffer to check | |
401 | * @offs: offset to check | |
402 | * | |
403 | * This function returns %1 if @offs was in the last write to the LEB whose data | |
ff94bc40 HS |
404 | * is in @buf, otherwise %0 is returned. The determination is made by checking |
405 | * for subsequent empty space starting from the next @c->max_write_size | |
406 | * boundary. | |
9eefe2a2 SR |
407 | */ |
408 | static int is_last_write(const struct ubifs_info *c, void *buf, int offs) | |
409 | { | |
ff94bc40 | 410 | int empty_offs, check_len; |
9eefe2a2 SR |
411 | uint8_t *p; |
412 | ||
9eefe2a2 | 413 | /* |
ff94bc40 HS |
414 | * Round up to the next @c->max_write_size boundary i.e. @offs is in |
415 | * the last wbuf written. After that should be empty space. | |
9eefe2a2 | 416 | */ |
ff94bc40 | 417 | empty_offs = ALIGN(offs + 1, c->max_write_size); |
9eefe2a2 SR |
418 | check_len = c->leb_size - empty_offs; |
419 | p = buf + empty_offs - offs; | |
ff94bc40 | 420 | return is_empty(p, check_len); |
9eefe2a2 SR |
421 | } |
422 | ||
423 | /** | |
424 | * clean_buf - clean the data from an LEB sitting in a buffer. | |
425 | * @c: UBIFS file-system description object | |
426 | * @buf: buffer to clean | |
427 | * @lnum: LEB number to clean | |
428 | * @offs: offset from which to clean | |
429 | * @len: length of buffer | |
430 | * | |
431 | * This function pads up to the next min_io_size boundary (if there is one) and | |
432 | * sets empty space to all 0xff. @buf, @offs and @len are updated to the next | |
ff94bc40 | 433 | * @c->min_io_size boundary. |
9eefe2a2 SR |
434 | */ |
435 | static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, | |
436 | int *offs, int *len) | |
437 | { | |
438 | int empty_offs, pad_len; | |
439 | ||
440 | lnum = lnum; | |
441 | dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); | |
442 | ||
9eefe2a2 SR |
443 | ubifs_assert(!(*offs & 7)); |
444 | empty_offs = ALIGN(*offs, c->min_io_size); | |
445 | pad_len = empty_offs - *offs; | |
446 | ubifs_pad(c, *buf, pad_len); | |
447 | *offs += pad_len; | |
448 | *buf += pad_len; | |
449 | *len -= pad_len; | |
450 | memset(*buf, 0xff, c->leb_size - empty_offs); | |
451 | } | |
452 | ||
453 | /** | |
454 | * no_more_nodes - determine if there are no more nodes in a buffer. | |
455 | * @c: UBIFS file-system description object | |
456 | * @buf: buffer to check | |
457 | * @len: length of buffer | |
458 | * @lnum: LEB number of the LEB from which @buf was read | |
459 | * @offs: offset from which @buf was read | |
460 | * | |
6356daff AH |
461 | * This function ensures that the corrupted node at @offs is the last thing |
462 | * written to a LEB. This function returns %1 if more data is not found and | |
463 | * %0 if more data is found. | |
9eefe2a2 SR |
464 | */ |
465 | static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, | |
466 | int lnum, int offs) | |
467 | { | |
6356daff AH |
468 | struct ubifs_ch *ch = buf; |
469 | int skip, dlen = le32_to_cpu(ch->len); | |
9eefe2a2 | 470 | |
6356daff | 471 | /* Check for empty space after the corrupt node's common header */ |
ff94bc40 | 472 | skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; |
6356daff AH |
473 | if (is_empty(buf + skip, len - skip)) |
474 | return 1; | |
475 | /* | |
476 | * The area after the common header size is not empty, so the common | |
477 | * header must be intact. Check it. | |
478 | */ | |
479 | if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { | |
480 | dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); | |
481 | return 0; | |
9eefe2a2 | 482 | } |
6356daff | 483 | /* Now we know the corrupt node's length we can skip over it */ |
ff94bc40 | 484 | skip = ALIGN(offs + dlen, c->max_write_size) - offs; |
6356daff AH |
485 | /* After which there should be empty space */ |
486 | if (is_empty(buf + skip, len - skip)) | |
487 | return 1; | |
488 | dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); | |
489 | return 0; | |
9eefe2a2 SR |
490 | } |
491 | ||
492 | /** | |
493 | * fix_unclean_leb - fix an unclean LEB. | |
494 | * @c: UBIFS file-system description object | |
495 | * @sleb: scanned LEB information | |
496 | * @start: offset where scan started | |
497 | */ | |
498 | static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, | |
499 | int start) | |
500 | { | |
501 | int lnum = sleb->lnum, endpt = start; | |
502 | ||
503 | /* Get the end offset of the last node we are keeping */ | |
504 | if (!list_empty(&sleb->nodes)) { | |
505 | struct ubifs_scan_node *snod; | |
506 | ||
507 | snod = list_entry(sleb->nodes.prev, | |
508 | struct ubifs_scan_node, list); | |
509 | endpt = snod->offs + snod->len; | |
510 | } | |
511 | ||
ff94bc40 | 512 | if (c->ro_mount && !c->remounting_rw) { |
9eefe2a2 SR |
513 | /* Add to recovery list */ |
514 | struct ubifs_unclean_leb *ucleb; | |
515 | ||
516 | dbg_rcvry("need to fix LEB %d start %d endpt %d", | |
517 | lnum, start, sleb->endpt); | |
518 | ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); | |
519 | if (!ucleb) | |
520 | return -ENOMEM; | |
521 | ucleb->lnum = lnum; | |
522 | ucleb->endpt = endpt; | |
523 | list_add_tail(&ucleb->list, &c->unclean_leb_list); | |
ff94bc40 HS |
524 | #ifndef __UBOOT__ |
525 | } else { | |
526 | /* Write the fixed LEB back to flash */ | |
527 | int err; | |
528 | ||
529 | dbg_rcvry("fixing LEB %d start %d endpt %d", | |
530 | lnum, start, sleb->endpt); | |
531 | if (endpt == 0) { | |
532 | err = ubifs_leb_unmap(c, lnum); | |
533 | if (err) | |
534 | return err; | |
535 | } else { | |
536 | int len = ALIGN(endpt, c->min_io_size); | |
537 | ||
538 | if (start) { | |
539 | err = ubifs_leb_read(c, lnum, sleb->buf, 0, | |
540 | start, 1); | |
541 | if (err) | |
542 | return err; | |
543 | } | |
544 | /* Pad to min_io_size */ | |
545 | if (len > endpt) { | |
546 | int pad_len = len - ALIGN(endpt, 8); | |
547 | ||
548 | if (pad_len > 0) { | |
549 | void *buf = sleb->buf + len - pad_len; | |
550 | ||
551 | ubifs_pad(c, buf, pad_len); | |
552 | } | |
553 | } | |
554 | err = ubifs_leb_change(c, lnum, sleb->buf, len); | |
555 | if (err) | |
556 | return err; | |
557 | } | |
558 | #endif | |
9eefe2a2 SR |
559 | } |
560 | return 0; | |
561 | } | |
562 | ||
563 | /** | |
ff94bc40 | 564 | * drop_last_group - drop the last group of nodes. |
9eefe2a2 SR |
565 | * @sleb: scanned LEB information |
566 | * @offs: offset of dropped nodes is returned here | |
567 | * | |
ff94bc40 HS |
568 | * This is a helper function for 'ubifs_recover_leb()' which drops the last |
569 | * group of nodes of the scanned LEB. | |
9eefe2a2 | 570 | */ |
ff94bc40 | 571 | static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) |
9eefe2a2 | 572 | { |
9eefe2a2 SR |
573 | while (!list_empty(&sleb->nodes)) { |
574 | struct ubifs_scan_node *snod; | |
575 | struct ubifs_ch *ch; | |
576 | ||
577 | snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, | |
578 | list); | |
579 | ch = snod->node; | |
580 | if (ch->group_type != UBIFS_IN_NODE_GROUP) | |
ff94bc40 HS |
581 | break; |
582 | ||
583 | dbg_rcvry("dropping grouped node at %d:%d", | |
584 | sleb->lnum, snod->offs); | |
585 | *offs = snod->offs; | |
586 | list_del(&snod->list); | |
587 | kfree(snod); | |
588 | sleb->nodes_cnt -= 1; | |
589 | } | |
590 | } | |
591 | ||
592 | /** | |
593 | * drop_last_node - drop the last node. | |
594 | * @sleb: scanned LEB information | |
595 | * @offs: offset of dropped nodes is returned here | |
ff94bc40 HS |
596 | * |
597 | * This is a helper function for 'ubifs_recover_leb()' which drops the last | |
598 | * node of the scanned LEB. | |
599 | */ | |
600 | static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) | |
601 | { | |
602 | struct ubifs_scan_node *snod; | |
603 | ||
604 | if (!list_empty(&sleb->nodes)) { | |
605 | snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, | |
606 | list); | |
607 | ||
608 | dbg_rcvry("dropping last node at %d:%d", | |
609 | sleb->lnum, snod->offs); | |
9eefe2a2 SR |
610 | *offs = snod->offs; |
611 | list_del(&snod->list); | |
612 | kfree(snod); | |
613 | sleb->nodes_cnt -= 1; | |
9eefe2a2 | 614 | } |
9eefe2a2 SR |
615 | } |
616 | ||
617 | /** | |
618 | * ubifs_recover_leb - scan and recover a LEB. | |
619 | * @c: UBIFS file-system description object | |
620 | * @lnum: LEB number | |
621 | * @offs: offset | |
622 | * @sbuf: LEB-sized buffer to use | |
ff94bc40 HS |
623 | * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not |
624 | * belong to any journal head) | |
9eefe2a2 SR |
625 | * |
626 | * This function does a scan of a LEB, but caters for errors that might have | |
627 | * been caused by the unclean unmount from which we are attempting to recover. | |
0195a7bb HS |
628 | * Returns the scanned information on success and a negative error code on |
629 | * failure. | |
9eefe2a2 SR |
630 | */ |
631 | struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, | |
ff94bc40 | 632 | int offs, void *sbuf, int jhead) |
9eefe2a2 | 633 | { |
ff94bc40 HS |
634 | int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; |
635 | int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; | |
9eefe2a2 SR |
636 | struct ubifs_scan_leb *sleb; |
637 | void *buf = sbuf + offs; | |
638 | ||
ff94bc40 | 639 | dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); |
9eefe2a2 SR |
640 | |
641 | sleb = ubifs_start_scan(c, lnum, offs, sbuf); | |
642 | if (IS_ERR(sleb)) | |
643 | return sleb; | |
644 | ||
ff94bc40 | 645 | ubifs_assert(len >= 8); |
9eefe2a2 | 646 | while (len >= 8) { |
9eefe2a2 SR |
647 | dbg_scan("look at LEB %d:%d (%d bytes left)", |
648 | lnum, offs, len); | |
649 | ||
650 | cond_resched(); | |
651 | ||
652 | /* | |
653 | * Scan quietly until there is an error from which we cannot | |
654 | * recover | |
655 | */ | |
ff94bc40 | 656 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
9eefe2a2 SR |
657 | if (ret == SCANNED_A_NODE) { |
658 | /* A valid node, and not a padding node */ | |
659 | struct ubifs_ch *ch = buf; | |
660 | int node_len; | |
661 | ||
662 | err = ubifs_add_snod(c, sleb, buf, offs); | |
663 | if (err) | |
664 | goto error; | |
665 | node_len = ALIGN(le32_to_cpu(ch->len), 8); | |
666 | offs += node_len; | |
667 | buf += node_len; | |
668 | len -= node_len; | |
ff94bc40 | 669 | } else if (ret > 0) { |
9eefe2a2 SR |
670 | /* Padding bytes or a valid padding node */ |
671 | offs += ret; | |
672 | buf += ret; | |
673 | len -= ret; | |
ff94bc40 HS |
674 | } else if (ret == SCANNED_EMPTY_SPACE || |
675 | ret == SCANNED_GARBAGE || | |
676 | ret == SCANNED_A_BAD_PAD_NODE || | |
677 | ret == SCANNED_A_CORRUPT_NODE) { | |
678 | dbg_rcvry("found corruption (%d) at %d:%d", | |
679 | ret, lnum, offs); | |
9eefe2a2 | 680 | break; |
ff94bc40 | 681 | } else { |
0195a7bb | 682 | ubifs_err(c, "unexpected return value %d", ret); |
ff94bc40 HS |
683 | err = -EINVAL; |
684 | goto error; | |
9eefe2a2 | 685 | } |
ff94bc40 | 686 | } |
9eefe2a2 | 687 | |
ff94bc40 HS |
688 | if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { |
689 | if (!is_last_write(c, buf, offs)) | |
690 | goto corrupted_rescan; | |
691 | } else if (ret == SCANNED_A_CORRUPT_NODE) { | |
692 | if (!no_more_nodes(c, buf, len, lnum, offs)) | |
693 | goto corrupted_rescan; | |
694 | } else if (!is_empty(buf, len)) { | |
695 | if (!is_last_write(c, buf, offs)) { | |
696 | int corruption = first_non_ff(buf, len); | |
9eefe2a2 | 697 | |
ff94bc40 HS |
698 | /* |
699 | * See header comment for this file for more | |
700 | * explanations about the reasons we have this check. | |
701 | */ | |
0195a7bb | 702 | ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d", |
ff94bc40 HS |
703 | lnum, offs, corruption); |
704 | /* Make sure we dump interesting non-0xFF data */ | |
705 | offs += corruption; | |
706 | buf += corruption; | |
9eefe2a2 SR |
707 | goto corrupted; |
708 | } | |
709 | } | |
710 | ||
ff94bc40 HS |
711 | min_io_unit = round_down(offs, c->min_io_size); |
712 | if (grouped) | |
713 | /* | |
714 | * If nodes are grouped, always drop the incomplete group at | |
715 | * the end. | |
716 | */ | |
717 | drop_last_group(sleb, &offs); | |
9eefe2a2 | 718 | |
ff94bc40 HS |
719 | if (jhead == GCHD) { |
720 | /* | |
721 | * If this LEB belongs to the GC head then while we are in the | |
722 | * middle of the same min. I/O unit keep dropping nodes. So | |
723 | * basically, what we want is to make sure that the last min. | |
724 | * I/O unit where we saw the corruption is dropped completely | |
725 | * with all the uncorrupted nodes which may possibly sit there. | |
726 | * | |
727 | * In other words, let's name the min. I/O unit where the | |
728 | * corruption starts B, and the previous min. I/O unit A. The | |
729 | * below code tries to deal with a situation when half of B | |
730 | * contains valid nodes or the end of a valid node, and the | |
731 | * second half of B contains corrupted data or garbage. This | |
732 | * means that UBIFS had been writing to B just before the power | |
733 | * cut happened. I do not know how realistic is this scenario | |
734 | * that half of the min. I/O unit had been written successfully | |
735 | * and the other half not, but this is possible in our 'failure | |
736 | * mode emulation' infrastructure at least. | |
737 | * | |
738 | * So what is the problem, why we need to drop those nodes? Why | |
739 | * can't we just clean-up the second half of B by putting a | |
740 | * padding node there? We can, and this works fine with one | |
741 | * exception which was reproduced with power cut emulation | |
742 | * testing and happens extremely rarely. | |
743 | * | |
744 | * Imagine the file-system is full, we run GC which starts | |
745 | * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is | |
746 | * the current GC head LEB). The @c->gc_lnum is -1, which means | |
747 | * that GC will retain LEB X and will try to continue. Imagine | |
748 | * that LEB X is currently the dirtiest LEB, and the amount of | |
749 | * used space in LEB Y is exactly the same as amount of free | |
750 | * space in LEB X. | |
751 | * | |
752 | * And a power cut happens when nodes are moved from LEB X to | |
753 | * LEB Y. We are here trying to recover LEB Y which is the GC | |
754 | * head LEB. We find the min. I/O unit B as described above. | |
755 | * Then we clean-up LEB Y by padding min. I/O unit. And later | |
756 | * 'ubifs_rcvry_gc_commit()' function fails, because it cannot | |
757 | * find a dirty LEB which could be GC'd into LEB Y! Even LEB X | |
758 | * does not match because the amount of valid nodes there does | |
759 | * not fit the free space in LEB Y any more! And this is | |
760 | * because of the padding node which we added to LEB Y. The | |
761 | * user-visible effect of this which I once observed and | |
762 | * analysed is that we cannot mount the file-system with | |
763 | * -ENOSPC error. | |
764 | * | |
765 | * So obviously, to make sure that situation does not happen we | |
766 | * should free min. I/O unit B in LEB Y completely and the last | |
767 | * used min. I/O unit in LEB Y should be A. This is basically | |
768 | * what the below code tries to do. | |
769 | */ | |
770 | while (offs > min_io_unit) | |
771 | drop_last_node(sleb, &offs); | |
9eefe2a2 SR |
772 | } |
773 | ||
ff94bc40 HS |
774 | buf = sbuf + offs; |
775 | len = c->leb_size - offs; | |
9eefe2a2 | 776 | |
ff94bc40 | 777 | clean_buf(c, &buf, lnum, &offs, &len); |
9eefe2a2 SR |
778 | ubifs_end_scan(c, sleb, lnum, offs); |
779 | ||
ff94bc40 HS |
780 | err = fix_unclean_leb(c, sleb, start); |
781 | if (err) | |
782 | goto error; | |
9eefe2a2 SR |
783 | |
784 | return sleb; | |
785 | ||
ff94bc40 HS |
786 | corrupted_rescan: |
787 | /* Re-scan the corrupted data with verbose messages */ | |
0195a7bb | 788 | ubifs_err(c, "corruption %d", ret); |
ff94bc40 | 789 | ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
9eefe2a2 SR |
790 | corrupted: |
791 | ubifs_scanned_corruption(c, lnum, offs, buf); | |
792 | err = -EUCLEAN; | |
793 | error: | |
0195a7bb | 794 | ubifs_err(c, "LEB %d scanning failed", lnum); |
9eefe2a2 SR |
795 | ubifs_scan_destroy(sleb); |
796 | return ERR_PTR(err); | |
797 | } | |
798 | ||
799 | /** | |
800 | * get_cs_sqnum - get commit start sequence number. | |
801 | * @c: UBIFS file-system description object | |
802 | * @lnum: LEB number of commit start node | |
803 | * @offs: offset of commit start node | |
804 | * @cs_sqnum: commit start sequence number is returned here | |
805 | * | |
806 | * This function returns %0 on success and a negative error code on failure. | |
807 | */ | |
808 | static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, | |
809 | unsigned long long *cs_sqnum) | |
810 | { | |
811 | struct ubifs_cs_node *cs_node = NULL; | |
812 | int err, ret; | |
813 | ||
814 | dbg_rcvry("at %d:%d", lnum, offs); | |
815 | cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); | |
816 | if (!cs_node) | |
817 | return -ENOMEM; | |
818 | if (c->leb_size - offs < UBIFS_CS_NODE_SZ) | |
819 | goto out_err; | |
ff94bc40 HS |
820 | err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, |
821 | UBIFS_CS_NODE_SZ, 0); | |
9eefe2a2 SR |
822 | if (err && err != -EBADMSG) |
823 | goto out_free; | |
824 | ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); | |
825 | if (ret != SCANNED_A_NODE) { | |
0195a7bb | 826 | ubifs_err(c, "Not a valid node"); |
9eefe2a2 SR |
827 | goto out_err; |
828 | } | |
829 | if (cs_node->ch.node_type != UBIFS_CS_NODE) { | |
0195a7bb | 830 | ubifs_err(c, "Node a CS node, type is %d", cs_node->ch.node_type); |
9eefe2a2 SR |
831 | goto out_err; |
832 | } | |
833 | if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { | |
0195a7bb | 834 | ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu", |
ff94bc40 HS |
835 | (unsigned long long)le64_to_cpu(cs_node->cmt_no), |
836 | c->cmt_no); | |
9eefe2a2 SR |
837 | goto out_err; |
838 | } | |
839 | *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); | |
840 | dbg_rcvry("commit start sqnum %llu", *cs_sqnum); | |
841 | kfree(cs_node); | |
842 | return 0; | |
843 | ||
844 | out_err: | |
845 | err = -EINVAL; | |
846 | out_free: | |
0195a7bb | 847 | ubifs_err(c, "failed to get CS sqnum"); |
9eefe2a2 SR |
848 | kfree(cs_node); |
849 | return err; | |
850 | } | |
851 | ||
852 | /** | |
853 | * ubifs_recover_log_leb - scan and recover a log LEB. | |
854 | * @c: UBIFS file-system description object | |
855 | * @lnum: LEB number | |
856 | * @offs: offset | |
857 | * @sbuf: LEB-sized buffer to use | |
858 | * | |
859 | * This function does a scan of a LEB, but caters for errors that might have | |
ff94bc40 HS |
860 | * been caused by unclean reboots from which we are attempting to recover |
861 | * (assume that only the last log LEB can be corrupted by an unclean reboot). | |
9eefe2a2 SR |
862 | * |
863 | * This function returns %0 on success and a negative error code on failure. | |
864 | */ | |
865 | struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, | |
866 | int offs, void *sbuf) | |
867 | { | |
868 | struct ubifs_scan_leb *sleb; | |
869 | int next_lnum; | |
870 | ||
871 | dbg_rcvry("LEB %d", lnum); | |
872 | next_lnum = lnum + 1; | |
873 | if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) | |
874 | next_lnum = UBIFS_LOG_LNUM; | |
875 | if (next_lnum != c->ltail_lnum) { | |
876 | /* | |
877 | * We can only recover at the end of the log, so check that the | |
878 | * next log LEB is empty or out of date. | |
879 | */ | |
ff94bc40 | 880 | sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); |
9eefe2a2 SR |
881 | if (IS_ERR(sleb)) |
882 | return sleb; | |
883 | if (sleb->nodes_cnt) { | |
884 | struct ubifs_scan_node *snod; | |
885 | unsigned long long cs_sqnum = c->cs_sqnum; | |
886 | ||
887 | snod = list_entry(sleb->nodes.next, | |
888 | struct ubifs_scan_node, list); | |
889 | if (cs_sqnum == 0) { | |
890 | int err; | |
891 | ||
892 | err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); | |
893 | if (err) { | |
894 | ubifs_scan_destroy(sleb); | |
895 | return ERR_PTR(err); | |
896 | } | |
897 | } | |
898 | if (snod->sqnum > cs_sqnum) { | |
0195a7bb | 899 | ubifs_err(c, "unrecoverable log corruption in LEB %d", |
ff94bc40 | 900 | lnum); |
9eefe2a2 SR |
901 | ubifs_scan_destroy(sleb); |
902 | return ERR_PTR(-EUCLEAN); | |
903 | } | |
904 | } | |
905 | ubifs_scan_destroy(sleb); | |
906 | } | |
ff94bc40 | 907 | return ubifs_recover_leb(c, lnum, offs, sbuf, -1); |
9eefe2a2 SR |
908 | } |
909 | ||
910 | /** | |
911 | * recover_head - recover a head. | |
912 | * @c: UBIFS file-system description object | |
913 | * @lnum: LEB number of head to recover | |
914 | * @offs: offset of head to recover | |
915 | * @sbuf: LEB-sized buffer to use | |
916 | * | |
917 | * This function ensures that there is no data on the flash at a head location. | |
918 | * | |
919 | * This function returns %0 on success and a negative error code on failure. | |
920 | */ | |
ff94bc40 | 921 | static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) |
9eefe2a2 | 922 | { |
ff94bc40 | 923 | int len = c->max_write_size, err; |
9eefe2a2 | 924 | |
9eefe2a2 SR |
925 | if (offs + len > c->leb_size) |
926 | len = c->leb_size - offs; | |
927 | ||
928 | if (!len) | |
929 | return 0; | |
930 | ||
931 | /* Read at the head location and check it is empty flash */ | |
ff94bc40 HS |
932 | err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); |
933 | if (err || !is_empty(sbuf, len)) { | |
9eefe2a2 SR |
934 | dbg_rcvry("cleaning head at %d:%d", lnum, offs); |
935 | if (offs == 0) | |
936 | return ubifs_leb_unmap(c, lnum); | |
ff94bc40 | 937 | err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); |
9eefe2a2 SR |
938 | if (err) |
939 | return err; | |
ff94bc40 | 940 | return ubifs_leb_change(c, lnum, sbuf, offs); |
9eefe2a2 SR |
941 | } |
942 | ||
943 | return 0; | |
944 | } | |
945 | ||
946 | /** | |
947 | * ubifs_recover_inl_heads - recover index and LPT heads. | |
948 | * @c: UBIFS file-system description object | |
949 | * @sbuf: LEB-sized buffer to use | |
950 | * | |
951 | * This function ensures that there is no data on the flash at the index and | |
952 | * LPT head locations. | |
953 | * | |
954 | * This deals with the recovery of a half-completed journal commit. UBIFS is | |
955 | * careful never to overwrite the last version of the index or the LPT. Because | |
956 | * the index and LPT are wandering trees, data from a half-completed commit will | |
957 | * not be referenced anywhere in UBIFS. The data will be either in LEBs that are | |
958 | * assumed to be empty and will be unmapped anyway before use, or in the index | |
959 | * and LPT heads. | |
960 | * | |
961 | * This function returns %0 on success and a negative error code on failure. | |
962 | */ | |
ff94bc40 | 963 | int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) |
9eefe2a2 SR |
964 | { |
965 | int err; | |
966 | ||
ff94bc40 | 967 | ubifs_assert(!c->ro_mount || c->remounting_rw); |
9eefe2a2 SR |
968 | |
969 | dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); | |
970 | err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); | |
971 | if (err) | |
972 | return err; | |
973 | ||
974 | dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); | |
9eefe2a2 | 975 | |
0195a7bb | 976 | return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); |
9eefe2a2 SR |
977 | } |
978 | ||
979 | /** | |
ff94bc40 | 980 | * clean_an_unclean_leb - read and write a LEB to remove corruption. |
9eefe2a2 SR |
981 | * @c: UBIFS file-system description object |
982 | * @ucleb: unclean LEB information | |
983 | * @sbuf: LEB-sized buffer to use | |
984 | * | |
985 | * This function reads a LEB up to a point pre-determined by the mount recovery, | |
986 | * checks the nodes, and writes the result back to the flash, thereby cleaning | |
987 | * off any following corruption, or non-fatal ECC errors. | |
988 | * | |
989 | * This function returns %0 on success and a negative error code on failure. | |
990 | */ | |
ff94bc40 | 991 | static int clean_an_unclean_leb(struct ubifs_info *c, |
9eefe2a2 SR |
992 | struct ubifs_unclean_leb *ucleb, void *sbuf) |
993 | { | |
994 | int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; | |
995 | void *buf = sbuf; | |
996 | ||
997 | dbg_rcvry("LEB %d len %d", lnum, len); | |
998 | ||
999 | if (len == 0) { | |
1000 | /* Nothing to read, just unmap it */ | |
0195a7bb | 1001 | return ubifs_leb_unmap(c, lnum); |
9eefe2a2 SR |
1002 | } |
1003 | ||
ff94bc40 | 1004 | err = ubifs_leb_read(c, lnum, buf, offs, len, 0); |
9eefe2a2 SR |
1005 | if (err && err != -EBADMSG) |
1006 | return err; | |
1007 | ||
1008 | while (len >= 8) { | |
1009 | int ret; | |
1010 | ||
1011 | cond_resched(); | |
1012 | ||
1013 | /* Scan quietly until there is an error */ | |
1014 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); | |
1015 | ||
1016 | if (ret == SCANNED_A_NODE) { | |
1017 | /* A valid node, and not a padding node */ | |
1018 | struct ubifs_ch *ch = buf; | |
1019 | int node_len; | |
1020 | ||
1021 | node_len = ALIGN(le32_to_cpu(ch->len), 8); | |
1022 | offs += node_len; | |
1023 | buf += node_len; | |
1024 | len -= node_len; | |
1025 | continue; | |
1026 | } | |
1027 | ||
1028 | if (ret > 0) { | |
1029 | /* Padding bytes or a valid padding node */ | |
1030 | offs += ret; | |
1031 | buf += ret; | |
1032 | len -= ret; | |
1033 | continue; | |
1034 | } | |
1035 | ||
1036 | if (ret == SCANNED_EMPTY_SPACE) { | |
0195a7bb | 1037 | ubifs_err(c, "unexpected empty space at %d:%d", |
9eefe2a2 SR |
1038 | lnum, offs); |
1039 | return -EUCLEAN; | |
1040 | } | |
1041 | ||
1042 | if (quiet) { | |
1043 | /* Redo the last scan but noisily */ | |
1044 | quiet = 0; | |
1045 | continue; | |
1046 | } | |
1047 | ||
1048 | ubifs_scanned_corruption(c, lnum, offs, buf); | |
1049 | return -EUCLEAN; | |
1050 | } | |
1051 | ||
1052 | /* Pad to min_io_size */ | |
1053 | len = ALIGN(ucleb->endpt, c->min_io_size); | |
1054 | if (len > ucleb->endpt) { | |
1055 | int pad_len = len - ALIGN(ucleb->endpt, 8); | |
1056 | ||
1057 | if (pad_len > 0) { | |
1058 | buf = c->sbuf + len - pad_len; | |
1059 | ubifs_pad(c, buf, pad_len); | |
1060 | } | |
1061 | } | |
1062 | ||
1063 | /* Write back the LEB atomically */ | |
ff94bc40 | 1064 | err = ubifs_leb_change(c, lnum, sbuf, len); |
9eefe2a2 SR |
1065 | if (err) |
1066 | return err; | |
1067 | ||
1068 | dbg_rcvry("cleaned LEB %d", lnum); | |
1069 | ||
1070 | return 0; | |
1071 | } | |
1072 | ||
1073 | /** | |
1074 | * ubifs_clean_lebs - clean LEBs recovered during read-only mount. | |
1075 | * @c: UBIFS file-system description object | |
1076 | * @sbuf: LEB-sized buffer to use | |
1077 | * | |
1078 | * This function cleans a LEB identified during recovery that needs to be | |
1079 | * written but was not because UBIFS was mounted read-only. This happens when | |
1080 | * remounting to read-write mode. | |
1081 | * | |
1082 | * This function returns %0 on success and a negative error code on failure. | |
1083 | */ | |
ff94bc40 | 1084 | int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) |
9eefe2a2 SR |
1085 | { |
1086 | dbg_rcvry("recovery"); | |
1087 | while (!list_empty(&c->unclean_leb_list)) { | |
1088 | struct ubifs_unclean_leb *ucleb; | |
1089 | int err; | |
1090 | ||
1091 | ucleb = list_entry(c->unclean_leb_list.next, | |
1092 | struct ubifs_unclean_leb, list); | |
1093 | err = clean_an_unclean_leb(c, ucleb, sbuf); | |
1094 | if (err) | |
1095 | return err; | |
1096 | list_del(&ucleb->list); | |
1097 | kfree(ucleb); | |
1098 | } | |
1099 | return 0; | |
1100 | } | |
1101 | ||
ff94bc40 HS |
1102 | #ifndef __UBOOT__ |
1103 | /** | |
1104 | * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. | |
1105 | * @c: UBIFS file-system description object | |
1106 | * | |
1107 | * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty | |
1108 | * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns | |
1109 | * zero in case of success and a negative error code in case of failure. | |
1110 | */ | |
1111 | static int grab_empty_leb(struct ubifs_info *c) | |
1112 | { | |
1113 | int lnum, err; | |
1114 | ||
1115 | /* | |
1116 | * Note, it is very important to first search for an empty LEB and then | |
1117 | * run the commit, not vice-versa. The reason is that there might be | |
1118 | * only one empty LEB at the moment, the one which has been the | |
1119 | * @c->gc_lnum just before the power cut happened. During the regular | |
1120 | * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no | |
1121 | * one but GC can grab it. But at this moment this single empty LEB is | |
1122 | * not marked as taken, so if we run commit - what happens? Right, the | |
1123 | * commit will grab it and write the index there. Remember that the | |
1124 | * index always expands as long as there is free space, and it only | |
1125 | * starts consolidating when we run out of space. | |
1126 | * | |
1127 | * IOW, if we run commit now, we might not be able to find a free LEB | |
1128 | * after this. | |
1129 | */ | |
1130 | lnum = ubifs_find_free_leb_for_idx(c); | |
1131 | if (lnum < 0) { | |
0195a7bb | 1132 | ubifs_err(c, "could not find an empty LEB"); |
ff94bc40 HS |
1133 | ubifs_dump_lprops(c); |
1134 | ubifs_dump_budg(c, &c->bi); | |
1135 | return lnum; | |
1136 | } | |
1137 | ||
1138 | /* Reset the index flag */ | |
1139 | err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, | |
1140 | LPROPS_INDEX, 0); | |
1141 | if (err) | |
1142 | return err; | |
1143 | ||
1144 | c->gc_lnum = lnum; | |
1145 | dbg_rcvry("found empty LEB %d, run commit", lnum); | |
1146 | ||
1147 | return ubifs_run_commit(c); | |
1148 | } | |
1149 | ||
1150 | /** | |
1151 | * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. | |
1152 | * @c: UBIFS file-system description object | |
1153 | * | |
1154 | * Out-of-place garbage collection requires always one empty LEB with which to | |
1155 | * start garbage collection. The LEB number is recorded in c->gc_lnum and is | |
1156 | * written to the master node on unmounting. In the case of an unclean unmount | |
1157 | * the value of gc_lnum recorded in the master node is out of date and cannot | |
1158 | * be used. Instead, recovery must allocate an empty LEB for this purpose. | |
1159 | * However, there may not be enough empty space, in which case it must be | |
1160 | * possible to GC the dirtiest LEB into the GC head LEB. | |
1161 | * | |
1162 | * This function also runs the commit which causes the TNC updates from | |
1163 | * size-recovery and orphans to be written to the flash. That is important to | |
1164 | * ensure correct replay order for subsequent mounts. | |
1165 | * | |
1166 | * This function returns %0 on success and a negative error code on failure. | |
1167 | */ | |
1168 | int ubifs_rcvry_gc_commit(struct ubifs_info *c) | |
1169 | { | |
1170 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; | |
1171 | struct ubifs_lprops lp; | |
1172 | int err; | |
1173 | ||
1174 | dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); | |
1175 | ||
1176 | c->gc_lnum = -1; | |
1177 | if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) | |
1178 | return grab_empty_leb(c); | |
1179 | ||
1180 | err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); | |
1181 | if (err) { | |
1182 | if (err != -ENOSPC) | |
1183 | return err; | |
1184 | ||
1185 | dbg_rcvry("could not find a dirty LEB"); | |
1186 | return grab_empty_leb(c); | |
1187 | } | |
1188 | ||
1189 | ubifs_assert(!(lp.flags & LPROPS_INDEX)); | |
1190 | ubifs_assert(lp.free + lp.dirty >= wbuf->offs); | |
1191 | ||
1192 | /* | |
1193 | * We run the commit before garbage collection otherwise subsequent | |
1194 | * mounts will see the GC and orphan deletion in a different order. | |
1195 | */ | |
1196 | dbg_rcvry("committing"); | |
1197 | err = ubifs_run_commit(c); | |
1198 | if (err) | |
1199 | return err; | |
1200 | ||
1201 | dbg_rcvry("GC'ing LEB %d", lp.lnum); | |
1202 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); | |
1203 | err = ubifs_garbage_collect_leb(c, &lp); | |
1204 | if (err >= 0) { | |
1205 | int err2 = ubifs_wbuf_sync_nolock(wbuf); | |
1206 | ||
1207 | if (err2) | |
1208 | err = err2; | |
1209 | } | |
1210 | mutex_unlock(&wbuf->io_mutex); | |
1211 | if (err < 0) { | |
0195a7bb | 1212 | ubifs_err(c, "GC failed, error %d", err); |
ff94bc40 HS |
1213 | if (err == -EAGAIN) |
1214 | err = -EINVAL; | |
1215 | return err; | |
1216 | } | |
1217 | ||
1218 | ubifs_assert(err == LEB_RETAINED); | |
1219 | if (err != LEB_RETAINED) | |
1220 | return -EINVAL; | |
1221 | ||
1222 | err = ubifs_leb_unmap(c, c->gc_lnum); | |
1223 | if (err) | |
1224 | return err; | |
1225 | ||
1226 | dbg_rcvry("allocated LEB %d for GC", lp.lnum); | |
1227 | return 0; | |
1228 | } | |
1229 | #else | |
1230 | int ubifs_rcvry_gc_commit(struct ubifs_info *c) | |
1231 | { | |
1232 | return 0; | |
1233 | } | |
1234 | #endif | |
1235 | ||
9eefe2a2 SR |
1236 | /** |
1237 | * struct size_entry - inode size information for recovery. | |
1238 | * @rb: link in the RB-tree of sizes | |
1239 | * @inum: inode number | |
1240 | * @i_size: size on inode | |
1241 | * @d_size: maximum size based on data nodes | |
1242 | * @exists: indicates whether the inode exists | |
1243 | * @inode: inode if pinned in memory awaiting rw mode to fix it | |
1244 | */ | |
1245 | struct size_entry { | |
1246 | struct rb_node rb; | |
1247 | ino_t inum; | |
1248 | loff_t i_size; | |
1249 | loff_t d_size; | |
1250 | int exists; | |
1251 | struct inode *inode; | |
1252 | }; | |
1253 | ||
1254 | /** | |
1255 | * add_ino - add an entry to the size tree. | |
1256 | * @c: UBIFS file-system description object | |
1257 | * @inum: inode number | |
1258 | * @i_size: size on inode | |
1259 | * @d_size: maximum size based on data nodes | |
1260 | * @exists: indicates whether the inode exists | |
1261 | */ | |
1262 | static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, | |
1263 | loff_t d_size, int exists) | |
1264 | { | |
1265 | struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; | |
1266 | struct size_entry *e; | |
1267 | ||
1268 | while (*p) { | |
1269 | parent = *p; | |
1270 | e = rb_entry(parent, struct size_entry, rb); | |
1271 | if (inum < e->inum) | |
1272 | p = &(*p)->rb_left; | |
1273 | else | |
1274 | p = &(*p)->rb_right; | |
1275 | } | |
1276 | ||
1277 | e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); | |
1278 | if (!e) | |
1279 | return -ENOMEM; | |
1280 | ||
1281 | e->inum = inum; | |
1282 | e->i_size = i_size; | |
1283 | e->d_size = d_size; | |
1284 | e->exists = exists; | |
1285 | ||
1286 | rb_link_node(&e->rb, parent, p); | |
1287 | rb_insert_color(&e->rb, &c->size_tree); | |
1288 | ||
1289 | return 0; | |
1290 | } | |
1291 | ||
1292 | /** | |
1293 | * find_ino - find an entry on the size tree. | |
1294 | * @c: UBIFS file-system description object | |
1295 | * @inum: inode number | |
1296 | */ | |
1297 | static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) | |
1298 | { | |
1299 | struct rb_node *p = c->size_tree.rb_node; | |
1300 | struct size_entry *e; | |
1301 | ||
1302 | while (p) { | |
1303 | e = rb_entry(p, struct size_entry, rb); | |
1304 | if (inum < e->inum) | |
1305 | p = p->rb_left; | |
1306 | else if (inum > e->inum) | |
1307 | p = p->rb_right; | |
1308 | else | |
1309 | return e; | |
1310 | } | |
1311 | return NULL; | |
1312 | } | |
1313 | ||
1314 | /** | |
1315 | * remove_ino - remove an entry from the size tree. | |
1316 | * @c: UBIFS file-system description object | |
1317 | * @inum: inode number | |
1318 | */ | |
1319 | static void remove_ino(struct ubifs_info *c, ino_t inum) | |
1320 | { | |
1321 | struct size_entry *e = find_ino(c, inum); | |
1322 | ||
1323 | if (!e) | |
1324 | return; | |
1325 | rb_erase(&e->rb, &c->size_tree); | |
1326 | kfree(e); | |
1327 | } | |
1328 | ||
ff94bc40 HS |
1329 | /** |
1330 | * ubifs_destroy_size_tree - free resources related to the size tree. | |
1331 | * @c: UBIFS file-system description object | |
1332 | */ | |
1333 | void ubifs_destroy_size_tree(struct ubifs_info *c) | |
1334 | { | |
1335 | struct size_entry *e, *n; | |
1336 | ||
1337 | rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) { | |
1338 | if (e->inode) | |
1339 | iput(e->inode); | |
1340 | kfree(e); | |
1341 | } | |
1342 | ||
1343 | c->size_tree = RB_ROOT; | |
1344 | } | |
1345 | ||
9eefe2a2 SR |
1346 | /** |
1347 | * ubifs_recover_size_accum - accumulate inode sizes for recovery. | |
1348 | * @c: UBIFS file-system description object | |
1349 | * @key: node key | |
1350 | * @deletion: node is for a deletion | |
1351 | * @new_size: inode size | |
1352 | * | |
1353 | * This function has two purposes: | |
1354 | * 1) to ensure there are no data nodes that fall outside the inode size | |
1355 | * 2) to ensure there are no data nodes for inodes that do not exist | |
1356 | * To accomplish those purposes, a rb-tree is constructed containing an entry | |
1357 | * for each inode number in the journal that has not been deleted, and recording | |
1358 | * the size from the inode node, the maximum size of any data node (also altered | |
1359 | * by truncations) and a flag indicating a inode number for which no inode node | |
1360 | * was present in the journal. | |
1361 | * | |
1362 | * Note that there is still the possibility that there are data nodes that have | |
1363 | * been committed that are beyond the inode size, however the only way to find | |
1364 | * them would be to scan the entire index. Alternatively, some provision could | |
1365 | * be made to record the size of inodes at the start of commit, which would seem | |
1366 | * very cumbersome for a scenario that is quite unlikely and the only negative | |
1367 | * consequence of which is wasted space. | |
1368 | * | |
1369 | * This functions returns %0 on success and a negative error code on failure. | |
1370 | */ | |
1371 | int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, | |
1372 | int deletion, loff_t new_size) | |
1373 | { | |
1374 | ino_t inum = key_inum(c, key); | |
1375 | struct size_entry *e; | |
1376 | int err; | |
1377 | ||
1378 | switch (key_type(c, key)) { | |
1379 | case UBIFS_INO_KEY: | |
1380 | if (deletion) | |
1381 | remove_ino(c, inum); | |
1382 | else { | |
1383 | e = find_ino(c, inum); | |
1384 | if (e) { | |
1385 | e->i_size = new_size; | |
1386 | e->exists = 1; | |
1387 | } else { | |
1388 | err = add_ino(c, inum, new_size, 0, 1); | |
1389 | if (err) | |
1390 | return err; | |
1391 | } | |
1392 | } | |
1393 | break; | |
1394 | case UBIFS_DATA_KEY: | |
1395 | e = find_ino(c, inum); | |
1396 | if (e) { | |
1397 | if (new_size > e->d_size) | |
1398 | e->d_size = new_size; | |
1399 | } else { | |
1400 | err = add_ino(c, inum, 0, new_size, 0); | |
1401 | if (err) | |
1402 | return err; | |
1403 | } | |
1404 | break; | |
1405 | case UBIFS_TRUN_KEY: | |
1406 | e = find_ino(c, inum); | |
1407 | if (e) | |
1408 | e->d_size = new_size; | |
1409 | break; | |
1410 | } | |
1411 | return 0; | |
1412 | } | |
1413 | ||
ff94bc40 HS |
1414 | #ifndef __UBOOT__ |
1415 | /** | |
1416 | * fix_size_in_place - fix inode size in place on flash. | |
1417 | * @c: UBIFS file-system description object | |
1418 | * @e: inode size information for recovery | |
1419 | */ | |
1420 | static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) | |
1421 | { | |
1422 | struct ubifs_ino_node *ino = c->sbuf; | |
1423 | unsigned char *p; | |
1424 | union ubifs_key key; | |
1425 | int err, lnum, offs, len; | |
1426 | loff_t i_size; | |
1427 | uint32_t crc; | |
1428 | ||
1429 | /* Locate the inode node LEB number and offset */ | |
1430 | ino_key_init(c, &key, e->inum); | |
1431 | err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); | |
1432 | if (err) | |
1433 | goto out; | |
1434 | /* | |
1435 | * If the size recorded on the inode node is greater than the size that | |
1436 | * was calculated from nodes in the journal then don't change the inode. | |
1437 | */ | |
1438 | i_size = le64_to_cpu(ino->size); | |
1439 | if (i_size >= e->d_size) | |
1440 | return 0; | |
1441 | /* Read the LEB */ | |
1442 | err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); | |
1443 | if (err) | |
1444 | goto out; | |
1445 | /* Change the size field and recalculate the CRC */ | |
1446 | ino = c->sbuf + offs; | |
1447 | ino->size = cpu_to_le64(e->d_size); | |
1448 | len = le32_to_cpu(ino->ch.len); | |
1449 | crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); | |
1450 | ino->ch.crc = cpu_to_le32(crc); | |
1451 | /* Work out where data in the LEB ends and free space begins */ | |
1452 | p = c->sbuf; | |
1453 | len = c->leb_size - 1; | |
1454 | while (p[len] == 0xff) | |
1455 | len -= 1; | |
1456 | len = ALIGN(len + 1, c->min_io_size); | |
1457 | /* Atomically write the fixed LEB back again */ | |
1458 | err = ubifs_leb_change(c, lnum, c->sbuf, len); | |
1459 | if (err) | |
1460 | goto out; | |
1461 | dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", | |
1462 | (unsigned long)e->inum, lnum, offs, i_size, e->d_size); | |
1463 | return 0; | |
1464 | ||
1465 | out: | |
0195a7bb | 1466 | ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d", |
ff94bc40 HS |
1467 | (unsigned long)e->inum, e->i_size, e->d_size, err); |
1468 | return err; | |
1469 | } | |
1470 | #endif | |
1471 | ||
9eefe2a2 SR |
1472 | /** |
1473 | * ubifs_recover_size - recover inode size. | |
1474 | * @c: UBIFS file-system description object | |
1475 | * | |
1476 | * This function attempts to fix inode size discrepancies identified by the | |
1477 | * 'ubifs_recover_size_accum()' function. | |
1478 | * | |
1479 | * This functions returns %0 on success and a negative error code on failure. | |
1480 | */ | |
1481 | int ubifs_recover_size(struct ubifs_info *c) | |
1482 | { | |
1483 | struct rb_node *this = rb_first(&c->size_tree); | |
1484 | ||
1485 | while (this) { | |
1486 | struct size_entry *e; | |
1487 | int err; | |
1488 | ||
1489 | e = rb_entry(this, struct size_entry, rb); | |
1490 | if (!e->exists) { | |
1491 | union ubifs_key key; | |
1492 | ||
1493 | ino_key_init(c, &key, e->inum); | |
1494 | err = ubifs_tnc_lookup(c, &key, c->sbuf); | |
1495 | if (err && err != -ENOENT) | |
1496 | return err; | |
1497 | if (err == -ENOENT) { | |
1498 | /* Remove data nodes that have no inode */ | |
1499 | dbg_rcvry("removing ino %lu", | |
1500 | (unsigned long)e->inum); | |
1501 | err = ubifs_tnc_remove_ino(c, e->inum); | |
1502 | if (err) | |
1503 | return err; | |
1504 | } else { | |
1505 | struct ubifs_ino_node *ino = c->sbuf; | |
1506 | ||
1507 | e->exists = 1; | |
1508 | e->i_size = le64_to_cpu(ino->size); | |
1509 | } | |
1510 | } | |
ff94bc40 | 1511 | |
9eefe2a2 | 1512 | if (e->exists && e->i_size < e->d_size) { |
ff94bc40 | 1513 | if (c->ro_mount) { |
9eefe2a2 SR |
1514 | /* Fix the inode size and pin it in memory */ |
1515 | struct inode *inode; | |
ff94bc40 HS |
1516 | struct ubifs_inode *ui; |
1517 | ||
1518 | ubifs_assert(!e->inode); | |
9eefe2a2 SR |
1519 | |
1520 | inode = ubifs_iget(c->vfs_sb, e->inum); | |
1521 | if (IS_ERR(inode)) | |
1522 | return PTR_ERR(inode); | |
ff94bc40 HS |
1523 | |
1524 | ui = ubifs_inode(inode); | |
9eefe2a2 SR |
1525 | if (inode->i_size < e->d_size) { |
1526 | dbg_rcvry("ino %lu size %lld -> %lld", | |
1527 | (unsigned long)e->inum, | |
ff94bc40 | 1528 | inode->i_size, e->d_size); |
9eefe2a2 | 1529 | inode->i_size = e->d_size; |
ff94bc40 HS |
1530 | ui->ui_size = e->d_size; |
1531 | ui->synced_i_size = e->d_size; | |
9eefe2a2 SR |
1532 | e->inode = inode; |
1533 | this = rb_next(this); | |
1534 | continue; | |
1535 | } | |
1536 | iput(inode); | |
ff94bc40 HS |
1537 | #ifndef __UBOOT__ |
1538 | } else { | |
1539 | /* Fix the size in place */ | |
1540 | err = fix_size_in_place(c, e); | |
1541 | if (err) | |
1542 | return err; | |
1543 | if (e->inode) | |
1544 | iput(e->inode); | |
1545 | #endif | |
9eefe2a2 SR |
1546 | } |
1547 | } | |
ff94bc40 | 1548 | |
9eefe2a2 SR |
1549 | this = rb_next(this); |
1550 | rb_erase(&e->rb, &c->size_tree); | |
1551 | kfree(e); | |
1552 | } | |
ff94bc40 | 1553 | |
9eefe2a2 SR |
1554 | return 0; |
1555 | } |