]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
2d262c48 KP |
2 | /* |
3 | * Copyright (c) International Business Machines Corp., 2006 | |
4 | * Copyright (c) Nokia Corporation, 2006, 2007 | |
2d262c48 KP |
5 | * |
6 | * Author: Artem Bityutskiy (Битюцкий Артём) | |
7 | */ | |
8 | ||
9 | /* | |
ff94bc40 | 10 | * UBI input/output sub-system. |
2d262c48 | 11 | * |
ff94bc40 HS |
12 | * This sub-system provides a uniform way to work with all kinds of the |
13 | * underlying MTD devices. It also implements handy functions for reading and | |
14 | * writing UBI headers. | |
2d262c48 KP |
15 | * |
16 | * We are trying to have a paranoid mindset and not to trust to what we read | |
ff94bc40 HS |
17 | * from the flash media in order to be more secure and robust. So this |
18 | * sub-system validates every single header it reads from the flash media. | |
2d262c48 KP |
19 | * |
20 | * Some words about how the eraseblock headers are stored. | |
21 | * | |
22 | * The erase counter header is always stored at offset zero. By default, the | |
23 | * VID header is stored after the EC header at the closest aligned offset | |
24 | * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID | |
25 | * header at the closest aligned offset. But this default layout may be | |
26 | * changed. For example, for different reasons (e.g., optimization) UBI may be | |
27 | * asked to put the VID header at further offset, and even at an unaligned | |
28 | * offset. Of course, if the offset of the VID header is unaligned, UBI adds | |
29 | * proper padding in front of it. Data offset may also be changed but it has to | |
30 | * be aligned. | |
31 | * | |
32 | * About minimal I/O units. In general, UBI assumes flash device model where | |
33 | * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1, | |
34 | * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the | |
35 | * @ubi->mtd->writesize field. But as an exception, UBI admits of using another | |
36 | * (smaller) minimal I/O unit size for EC and VID headers to make it possible | |
37 | * to do different optimizations. | |
38 | * | |
39 | * This is extremely useful in case of NAND flashes which admit of several | |
40 | * write operations to one NAND page. In this case UBI can fit EC and VID | |
41 | * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal | |
42 | * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still | |
43 | * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI | |
44 | * users. | |
45 | * | |
46 | * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so | |
47 | * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID | |
48 | * headers. | |
49 | * | |
50 | * Q: why not just to treat sub-page as a minimal I/O unit of this flash | |
51 | * device, e.g., make @ubi->min_io_size = 512 in the example above? | |
52 | * | |
53 | * A: because when writing a sub-page, MTD still writes a full 2K page but the | |
ff94bc40 HS |
54 | * bytes which are not relevant to the sub-page are 0xFF. So, basically, |
55 | * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page. | |
56 | * Thus, we prefer to use sub-pages only for EC and VID headers. | |
2d262c48 KP |
57 | * |
58 | * As it was noted above, the VID header may start at a non-aligned offset. | |
59 | * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page, | |
60 | * the VID header may reside at offset 1984 which is the last 64 bytes of the | |
61 | * last sub-page (EC header is always at offset zero). This causes some | |
62 | * difficulties when reading and writing VID headers. | |
63 | * | |
64 | * Suppose we have a 64-byte buffer and we read a VID header at it. We change | |
65 | * the data and want to write this VID header out. As we can only write in | |
66 | * 512-byte chunks, we have to allocate one more buffer and copy our VID header | |
67 | * to offset 448 of this buffer. | |
68 | * | |
ff94bc40 HS |
69 | * The I/O sub-system does the following trick in order to avoid this extra |
70 | * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID | |
71 | * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer. | |
72 | * When the VID header is being written out, it shifts the VID header pointer | |
73 | * back and writes the whole sub-page. | |
2d262c48 KP |
74 | */ |
75 | ||
ff94bc40 | 76 | #ifndef __UBOOT__ |
2d262c48 KP |
77 | #include <linux/crc32.h> |
78 | #include <linux/err.h> | |
ff94bc40 | 79 | #include <linux/slab.h> |
3db71108 | 80 | #include <u-boot/crc.h> |
ff94bc40 | 81 | #else |
f8c987f8 | 82 | #include <hexdump.h> |
ff94bc40 | 83 | #include <ubi_uboot.h> |
2d262c48 KP |
84 | #endif |
85 | ||
2d262c48 KP |
86 | #include "ubi.h" |
87 | ||
ff94bc40 HS |
88 | static int self_check_not_bad(const struct ubi_device *ubi, int pnum); |
89 | static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum); | |
90 | static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, | |
91 | const struct ubi_ec_hdr *ec_hdr); | |
92 | static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum); | |
93 | static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, | |
94 | const struct ubi_vid_hdr *vid_hdr); | |
95 | static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, | |
96 | int offset, int len); | |
2d262c48 KP |
97 | |
98 | /** | |
99 | * ubi_io_read - read data from a physical eraseblock. | |
100 | * @ubi: UBI device description object | |
101 | * @buf: buffer where to store the read data | |
102 | * @pnum: physical eraseblock number to read from | |
103 | * @offset: offset within the physical eraseblock from where to read | |
104 | * @len: how many bytes to read | |
105 | * | |
106 | * This function reads data from offset @offset of physical eraseblock @pnum | |
107 | * and stores the read data in the @buf buffer. The following return codes are | |
108 | * possible: | |
109 | * | |
110 | * o %0 if all the requested data were successfully read; | |
111 | * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but | |
112 | * correctable bit-flips were detected; this is harmless but may indicate | |
113 | * that this eraseblock may become bad soon (but do not have to); | |
114 | * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for | |
115 | * example it can be an ECC error in case of NAND; this most probably means | |
116 | * that the data is corrupted; | |
117 | * o %-EIO if some I/O error occurred; | |
118 | * o other negative error codes in case of other errors. | |
119 | */ | |
120 | int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset, | |
121 | int len) | |
122 | { | |
123 | int err, retries = 0; | |
124 | size_t read; | |
125 | loff_t addr; | |
126 | ||
127 | dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset); | |
128 | ||
129 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
130 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); | |
131 | ubi_assert(len > 0); | |
132 | ||
ff94bc40 | 133 | err = self_check_not_bad(ubi, pnum); |
2d262c48 | 134 | if (err) |
ff94bc40 HS |
135 | return err; |
136 | ||
137 | /* | |
138 | * Deliberately corrupt the buffer to improve robustness. Indeed, if we | |
139 | * do not do this, the following may happen: | |
140 | * 1. The buffer contains data from previous operation, e.g., read from | |
141 | * another PEB previously. The data looks like expected, e.g., if we | |
142 | * just do not read anything and return - the caller would not | |
143 | * notice this. E.g., if we are reading a VID header, the buffer may | |
144 | * contain a valid VID header from another PEB. | |
145 | * 2. The driver is buggy and returns us success or -EBADMSG or | |
146 | * -EUCLEAN, but it does not actually put any data to the buffer. | |
147 | * | |
148 | * This may confuse UBI or upper layers - they may think the buffer | |
149 | * contains valid data while in fact it is just old data. This is | |
150 | * especially possible because UBI (and UBIFS) relies on CRC, and | |
151 | * treats data as correct even in case of ECC errors if the CRC is | |
152 | * correct. | |
153 | * | |
154 | * Try to prevent this situation by changing the first byte of the | |
155 | * buffer. | |
156 | */ | |
157 | *((uint8_t *)buf) ^= 0xFF; | |
2d262c48 KP |
158 | |
159 | addr = (loff_t)pnum * ubi->peb_size + offset; | |
160 | retry: | |
dfe64e2c | 161 | err = mtd_read(ubi->mtd, addr, len, &read, buf); |
2d262c48 | 162 | if (err) { |
ff94bc40 HS |
163 | const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : ""; |
164 | ||
165 | if (mtd_is_bitflip(err)) { | |
2d262c48 KP |
166 | /* |
167 | * -EUCLEAN is reported if there was a bit-flip which | |
168 | * was corrected, so this is harmless. | |
ff94bc40 HS |
169 | * |
170 | * We do not report about it here unless debugging is | |
171 | * enabled. A corresponding message will be printed | |
172 | * later, when it is has been scrubbed. | |
2d262c48 | 173 | */ |
0195a7bb HS |
174 | ubi_msg(ubi, "fixable bit-flip detected at PEB %d", |
175 | pnum); | |
2d262c48 KP |
176 | ubi_assert(len == read); |
177 | return UBI_IO_BITFLIPS; | |
178 | } | |
179 | ||
ff94bc40 | 180 | if (retries++ < UBI_IO_RETRIES) { |
0195a7bb | 181 | ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry", |
ff94bc40 | 182 | err, errstr, len, pnum, offset, read); |
2d262c48 KP |
183 | yield(); |
184 | goto retry; | |
185 | } | |
186 | ||
0195a7bb | 187 | ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes", |
ff94bc40 HS |
188 | err, errstr, len, pnum, offset, read); |
189 | dump_stack(); | |
2d262c48 KP |
190 | |
191 | /* | |
192 | * The driver should never return -EBADMSG if it failed to read | |
193 | * all the requested data. But some buggy drivers might do | |
194 | * this, so we change it to -EIO. | |
195 | */ | |
ff94bc40 | 196 | if (read != len && mtd_is_eccerr(err)) { |
2d262c48 | 197 | ubi_assert(0); |
ff94bc40 | 198 | err = -EIO; |
2d262c48 KP |
199 | } |
200 | } else { | |
201 | ubi_assert(len == read); | |
202 | ||
ff94bc40 HS |
203 | if (ubi_dbg_is_bitflip(ubi)) { |
204 | dbg_gen("bit-flip (emulated)"); | |
2d262c48 KP |
205 | err = UBI_IO_BITFLIPS; |
206 | } | |
207 | } | |
208 | ||
209 | return err; | |
210 | } | |
211 | ||
212 | /** | |
213 | * ubi_io_write - write data to a physical eraseblock. | |
214 | * @ubi: UBI device description object | |
215 | * @buf: buffer with the data to write | |
216 | * @pnum: physical eraseblock number to write to | |
217 | * @offset: offset within the physical eraseblock where to write | |
218 | * @len: how many bytes to write | |
219 | * | |
220 | * This function writes @len bytes of data from buffer @buf to offset @offset | |
221 | * of physical eraseblock @pnum. If all the data were successfully written, | |
222 | * zero is returned. If an error occurred, this function returns a negative | |
223 | * error code. If %-EIO is returned, the physical eraseblock most probably went | |
224 | * bad. | |
225 | * | |
226 | * Note, in case of an error, it is possible that something was still written | |
227 | * to the flash media, but may be some garbage. | |
228 | */ | |
229 | int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, | |
230 | int len) | |
231 | { | |
232 | int err; | |
233 | size_t written; | |
234 | loff_t addr; | |
235 | ||
236 | dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset); | |
237 | ||
238 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
239 | ubi_assert(offset >= 0 && offset + len <= ubi->peb_size); | |
240 | ubi_assert(offset % ubi->hdrs_min_io_size == 0); | |
241 | ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0); | |
242 | ||
243 | if (ubi->ro_mode) { | |
0195a7bb | 244 | ubi_err(ubi, "read-only mode"); |
2d262c48 KP |
245 | return -EROFS; |
246 | } | |
247 | ||
ff94bc40 | 248 | err = self_check_not_bad(ubi, pnum); |
2d262c48 | 249 | if (err) |
ff94bc40 | 250 | return err; |
2d262c48 KP |
251 | |
252 | /* The area we are writing to has to contain all 0xFF bytes */ | |
ff94bc40 | 253 | err = ubi_self_check_all_ff(ubi, pnum, offset, len); |
2d262c48 | 254 | if (err) |
ff94bc40 | 255 | return err; |
2d262c48 KP |
256 | |
257 | if (offset >= ubi->leb_start) { | |
258 | /* | |
259 | * We write to the data area of the physical eraseblock. Make | |
260 | * sure it has valid EC and VID headers. | |
261 | */ | |
ff94bc40 | 262 | err = self_check_peb_ec_hdr(ubi, pnum); |
2d262c48 | 263 | if (err) |
ff94bc40 HS |
264 | return err; |
265 | err = self_check_peb_vid_hdr(ubi, pnum); | |
2d262c48 | 266 | if (err) |
ff94bc40 | 267 | return err; |
2d262c48 KP |
268 | } |
269 | ||
ff94bc40 | 270 | if (ubi_dbg_is_write_failure(ubi)) { |
0195a7bb | 271 | ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)", |
ff94bc40 HS |
272 | len, pnum, offset); |
273 | dump_stack(); | |
2d262c48 KP |
274 | return -EIO; |
275 | } | |
276 | ||
277 | addr = (loff_t)pnum * ubi->peb_size + offset; | |
dfe64e2c | 278 | err = mtd_write(ubi->mtd, addr, len, &written, buf); |
2d262c48 | 279 | if (err) { |
0195a7bb | 280 | ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes", |
ff94bc40 HS |
281 | err, len, pnum, offset, written); |
282 | dump_stack(); | |
283 | ubi_dump_flash(ubi, pnum, offset, len); | |
2d262c48 KP |
284 | } else |
285 | ubi_assert(written == len); | |
286 | ||
ff94bc40 HS |
287 | if (!err) { |
288 | err = self_check_write(ubi, buf, pnum, offset, len); | |
289 | if (err) | |
290 | return err; | |
291 | ||
292 | /* | |
293 | * Since we always write sequentially, the rest of the PEB has | |
294 | * to contain only 0xFF bytes. | |
295 | */ | |
296 | offset += len; | |
297 | len = ubi->peb_size - offset; | |
298 | if (len) | |
299 | err = ubi_self_check_all_ff(ubi, pnum, offset, len); | |
300 | } | |
301 | ||
2d262c48 KP |
302 | return err; |
303 | } | |
304 | ||
305 | /** | |
306 | * erase_callback - MTD erasure call-back. | |
307 | * @ei: MTD erase information object. | |
308 | * | |
309 | * Note, even though MTD erase interface is asynchronous, all the current | |
310 | * implementations are synchronous anyway. | |
311 | */ | |
312 | static void erase_callback(struct erase_info *ei) | |
313 | { | |
314 | wake_up_interruptible((wait_queue_head_t *)ei->priv); | |
315 | } | |
316 | ||
317 | /** | |
318 | * do_sync_erase - synchronously erase a physical eraseblock. | |
319 | * @ubi: UBI device description object | |
320 | * @pnum: the physical eraseblock number to erase | |
321 | * | |
322 | * This function synchronously erases physical eraseblock @pnum and returns | |
323 | * zero in case of success and a negative error code in case of failure. If | |
324 | * %-EIO is returned, the physical eraseblock most probably went bad. | |
325 | */ | |
326 | static int do_sync_erase(struct ubi_device *ubi, int pnum) | |
327 | { | |
328 | int err, retries = 0; | |
329 | struct erase_info ei; | |
330 | wait_queue_head_t wq; | |
331 | ||
332 | dbg_io("erase PEB %d", pnum); | |
ff94bc40 HS |
333 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); |
334 | ||
335 | if (ubi->ro_mode) { | |
0195a7bb | 336 | ubi_err(ubi, "read-only mode"); |
ff94bc40 HS |
337 | return -EROFS; |
338 | } | |
2d262c48 KP |
339 | |
340 | retry: | |
341 | init_waitqueue_head(&wq); | |
342 | memset(&ei, 0, sizeof(struct erase_info)); | |
343 | ||
344 | ei.mtd = ubi->mtd; | |
345 | ei.addr = (loff_t)pnum * ubi->peb_size; | |
346 | ei.len = ubi->peb_size; | |
347 | ei.callback = erase_callback; | |
348 | ei.priv = (unsigned long)&wq; | |
349 | ||
dfe64e2c | 350 | err = mtd_erase(ubi->mtd, &ei); |
2d262c48 KP |
351 | if (err) { |
352 | if (retries++ < UBI_IO_RETRIES) { | |
0195a7bb | 353 | ubi_warn(ubi, "error %d while erasing PEB %d, retry", |
ff94bc40 | 354 | err, pnum); |
2d262c48 KP |
355 | yield(); |
356 | goto retry; | |
357 | } | |
0195a7bb | 358 | ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err); |
ff94bc40 | 359 | dump_stack(); |
2d262c48 KP |
360 | return err; |
361 | } | |
362 | ||
363 | err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || | |
364 | ei.state == MTD_ERASE_FAILED); | |
365 | if (err) { | |
0195a7bb | 366 | ubi_err(ubi, "interrupted PEB %d erasure", pnum); |
2d262c48 KP |
367 | return -EINTR; |
368 | } | |
369 | ||
370 | if (ei.state == MTD_ERASE_FAILED) { | |
371 | if (retries++ < UBI_IO_RETRIES) { | |
0195a7bb HS |
372 | ubi_warn(ubi, "error while erasing PEB %d, retry", |
373 | pnum); | |
2d262c48 KP |
374 | yield(); |
375 | goto retry; | |
376 | } | |
0195a7bb | 377 | ubi_err(ubi, "cannot erase PEB %d", pnum); |
ff94bc40 | 378 | dump_stack(); |
2d262c48 KP |
379 | return -EIO; |
380 | } | |
381 | ||
ff94bc40 | 382 | err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); |
2d262c48 | 383 | if (err) |
ff94bc40 | 384 | return err; |
2d262c48 | 385 | |
ff94bc40 | 386 | if (ubi_dbg_is_erase_failure(ubi)) { |
0195a7bb | 387 | ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum); |
2d262c48 KP |
388 | return -EIO; |
389 | } | |
390 | ||
391 | return 0; | |
392 | } | |
393 | ||
2d262c48 KP |
394 | /* Patterns to write to a physical eraseblock when torturing it */ |
395 | static uint8_t patterns[] = {0xa5, 0x5a, 0x0}; | |
396 | ||
397 | /** | |
398 | * torture_peb - test a supposedly bad physical eraseblock. | |
399 | * @ubi: UBI device description object | |
400 | * @pnum: the physical eraseblock number to test | |
401 | * | |
402 | * This function returns %-EIO if the physical eraseblock did not pass the | |
403 | * test, a positive number of erase operations done if the test was | |
404 | * successfully passed, and other negative error codes in case of other errors. | |
405 | */ | |
406 | static int torture_peb(struct ubi_device *ubi, int pnum) | |
407 | { | |
408 | int err, i, patt_count; | |
409 | ||
0195a7bb | 410 | ubi_msg(ubi, "run torture test for PEB %d", pnum); |
2d262c48 KP |
411 | patt_count = ARRAY_SIZE(patterns); |
412 | ubi_assert(patt_count > 0); | |
413 | ||
414 | mutex_lock(&ubi->buf_mutex); | |
415 | for (i = 0; i < patt_count; i++) { | |
416 | err = do_sync_erase(ubi, pnum); | |
417 | if (err) | |
418 | goto out; | |
419 | ||
420 | /* Make sure the PEB contains only 0xFF bytes */ | |
ff94bc40 | 421 | err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); |
2d262c48 KP |
422 | if (err) |
423 | goto out; | |
424 | ||
ff94bc40 | 425 | err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); |
2d262c48 | 426 | if (err == 0) { |
0195a7bb | 427 | ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found", |
2d262c48 KP |
428 | pnum); |
429 | err = -EIO; | |
430 | goto out; | |
431 | } | |
432 | ||
433 | /* Write a pattern and check it */ | |
ff94bc40 HS |
434 | memset(ubi->peb_buf, patterns[i], ubi->peb_size); |
435 | err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); | |
2d262c48 KP |
436 | if (err) |
437 | goto out; | |
438 | ||
ff94bc40 HS |
439 | memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); |
440 | err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); | |
2d262c48 KP |
441 | if (err) |
442 | goto out; | |
443 | ||
ff94bc40 HS |
444 | err = ubi_check_pattern(ubi->peb_buf, patterns[i], |
445 | ubi->peb_size); | |
2d262c48 | 446 | if (err == 0) { |
0195a7bb | 447 | ubi_err(ubi, "pattern %x checking failed for PEB %d", |
2d262c48 KP |
448 | patterns[i], pnum); |
449 | err = -EIO; | |
450 | goto out; | |
451 | } | |
452 | } | |
453 | ||
454 | err = patt_count; | |
0195a7bb | 455 | ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum); |
2d262c48 KP |
456 | |
457 | out: | |
458 | mutex_unlock(&ubi->buf_mutex); | |
ff94bc40 | 459 | if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { |
2d262c48 KP |
460 | /* |
461 | * If a bit-flip or data integrity error was detected, the test | |
462 | * has not passed because it happened on a freshly erased | |
463 | * physical eraseblock which means something is wrong with it. | |
464 | */ | |
0195a7bb | 465 | ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad", |
2d262c48 KP |
466 | pnum); |
467 | err = -EIO; | |
468 | } | |
469 | return err; | |
470 | } | |
471 | ||
ff94bc40 HS |
472 | /** |
473 | * nor_erase_prepare - prepare a NOR flash PEB for erasure. | |
474 | * @ubi: UBI device description object | |
475 | * @pnum: physical eraseblock number to prepare | |
476 | * | |
477 | * NOR flash, or at least some of them, have peculiar embedded PEB erasure | |
478 | * algorithm: the PEB is first filled with zeroes, then it is erased. And | |
479 | * filling with zeroes starts from the end of the PEB. This was observed with | |
480 | * Spansion S29GL512N NOR flash. | |
481 | * | |
482 | * This means that in case of a power cut we may end up with intact data at the | |
483 | * beginning of the PEB, and all zeroes at the end of PEB. In other words, the | |
484 | * EC and VID headers are OK, but a large chunk of data at the end of PEB is | |
485 | * zeroed. This makes UBI mistakenly treat this PEB as used and associate it | |
486 | * with an LEB, which leads to subsequent failures (e.g., UBIFS fails). | |
487 | * | |
488 | * This function is called before erasing NOR PEBs and it zeroes out EC and VID | |
489 | * magic numbers in order to invalidate them and prevent the failures. Returns | |
490 | * zero in case of success and a negative error code in case of failure. | |
491 | */ | |
492 | static int nor_erase_prepare(struct ubi_device *ubi, int pnum) | |
493 | { | |
494 | int err; | |
495 | size_t written; | |
496 | loff_t addr; | |
497 | uint32_t data = 0; | |
498 | struct ubi_ec_hdr ec_hdr; | |
499 | ||
500 | /* | |
501 | * Note, we cannot generally define VID header buffers on stack, | |
502 | * because of the way we deal with these buffers (see the header | |
503 | * comment in this file). But we know this is a NOR-specific piece of | |
504 | * code, so we can do this. But yes, this is error-prone and we should | |
505 | * (pre-)allocate VID header buffer instead. | |
506 | */ | |
507 | struct ubi_vid_hdr vid_hdr; | |
508 | ||
509 | /* | |
510 | * If VID or EC is valid, we have to corrupt them before erasing. | |
511 | * It is important to first invalidate the EC header, and then the VID | |
512 | * header. Otherwise a power cut may lead to valid EC header and | |
513 | * invalid VID header, in which case UBI will treat this PEB as | |
514 | * corrupted and will try to preserve it, and print scary warnings. | |
515 | */ | |
516 | addr = (loff_t)pnum * ubi->peb_size; | |
517 | err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0); | |
518 | if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && | |
519 | err != UBI_IO_FF){ | |
520 | err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); | |
521 | if(err) | |
522 | goto error; | |
523 | } | |
524 | ||
525 | err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0); | |
526 | if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR && | |
527 | err != UBI_IO_FF){ | |
528 | addr += ubi->vid_hdr_aloffset; | |
529 | err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data); | |
530 | if (err) | |
531 | goto error; | |
532 | } | |
533 | return 0; | |
534 | ||
535 | error: | |
536 | /* | |
537 | * The PEB contains a valid VID or EC header, but we cannot invalidate | |
538 | * it. Supposedly the flash media or the driver is screwed up, so | |
539 | * return an error. | |
540 | */ | |
0195a7bb | 541 | ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err); |
ff94bc40 HS |
542 | ubi_dump_flash(ubi, pnum, 0, ubi->peb_size); |
543 | return -EIO; | |
544 | } | |
545 | ||
2d262c48 KP |
546 | /** |
547 | * ubi_io_sync_erase - synchronously erase a physical eraseblock. | |
548 | * @ubi: UBI device description object | |
549 | * @pnum: physical eraseblock number to erase | |
550 | * @torture: if this physical eraseblock has to be tortured | |
551 | * | |
552 | * This function synchronously erases physical eraseblock @pnum. If @torture | |
553 | * flag is not zero, the physical eraseblock is checked by means of writing | |
554 | * different patterns to it and reading them back. If the torturing is enabled, | |
ff94bc40 | 555 | * the physical eraseblock is erased more than once. |
2d262c48 KP |
556 | * |
557 | * This function returns the number of erasures made in case of success, %-EIO | |
558 | * if the erasure failed or the torturing test failed, and other negative error | |
559 | * codes in case of other errors. Note, %-EIO means that the physical | |
560 | * eraseblock is bad. | |
561 | */ | |
562 | int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture) | |
563 | { | |
564 | int err, ret = 0; | |
565 | ||
566 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
567 | ||
ff94bc40 | 568 | err = self_check_not_bad(ubi, pnum); |
2d262c48 | 569 | if (err != 0) |
ff94bc40 | 570 | return err; |
2d262c48 KP |
571 | |
572 | if (ubi->ro_mode) { | |
0195a7bb | 573 | ubi_err(ubi, "read-only mode"); |
2d262c48 KP |
574 | return -EROFS; |
575 | } | |
576 | ||
ff94bc40 HS |
577 | if (ubi->nor_flash) { |
578 | err = nor_erase_prepare(ubi, pnum); | |
579 | if (err) | |
580 | return err; | |
581 | } | |
582 | ||
2d262c48 KP |
583 | if (torture) { |
584 | ret = torture_peb(ubi, pnum); | |
585 | if (ret < 0) | |
586 | return ret; | |
587 | } | |
588 | ||
589 | err = do_sync_erase(ubi, pnum); | |
590 | if (err) | |
591 | return err; | |
592 | ||
593 | return ret + 1; | |
594 | } | |
595 | ||
596 | /** | |
597 | * ubi_io_is_bad - check if a physical eraseblock is bad. | |
598 | * @ubi: UBI device description object | |
599 | * @pnum: the physical eraseblock number to check | |
600 | * | |
601 | * This function returns a positive number if the physical eraseblock is bad, | |
602 | * zero if not, and a negative error code if an error occurred. | |
603 | */ | |
604 | int ubi_io_is_bad(const struct ubi_device *ubi, int pnum) | |
605 | { | |
606 | struct mtd_info *mtd = ubi->mtd; | |
607 | ||
608 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
609 | ||
610 | if (ubi->bad_allowed) { | |
611 | int ret; | |
612 | ||
dfe64e2c | 613 | ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size); |
2d262c48 | 614 | if (ret < 0) |
0195a7bb | 615 | ubi_err(ubi, "error %d while checking if PEB %d is bad", |
2d262c48 KP |
616 | ret, pnum); |
617 | else if (ret) | |
618 | dbg_io("PEB %d is bad", pnum); | |
619 | return ret; | |
620 | } | |
621 | ||
622 | return 0; | |
623 | } | |
624 | ||
625 | /** | |
626 | * ubi_io_mark_bad - mark a physical eraseblock as bad. | |
627 | * @ubi: UBI device description object | |
628 | * @pnum: the physical eraseblock number to mark | |
629 | * | |
630 | * This function returns zero in case of success and a negative error code in | |
631 | * case of failure. | |
632 | */ | |
633 | int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum) | |
634 | { | |
635 | int err; | |
636 | struct mtd_info *mtd = ubi->mtd; | |
637 | ||
638 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
639 | ||
640 | if (ubi->ro_mode) { | |
0195a7bb | 641 | ubi_err(ubi, "read-only mode"); |
2d262c48 KP |
642 | return -EROFS; |
643 | } | |
644 | ||
645 | if (!ubi->bad_allowed) | |
646 | return 0; | |
647 | ||
dfe64e2c | 648 | err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size); |
2d262c48 | 649 | if (err) |
0195a7bb | 650 | ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err); |
2d262c48 KP |
651 | return err; |
652 | } | |
653 | ||
654 | /** | |
655 | * validate_ec_hdr - validate an erase counter header. | |
656 | * @ubi: UBI device description object | |
657 | * @ec_hdr: the erase counter header to check | |
658 | * | |
659 | * This function returns zero if the erase counter header is OK, and %1 if | |
660 | * not. | |
661 | */ | |
662 | static int validate_ec_hdr(const struct ubi_device *ubi, | |
663 | const struct ubi_ec_hdr *ec_hdr) | |
664 | { | |
665 | long long ec; | |
666 | int vid_hdr_offset, leb_start; | |
667 | ||
668 | ec = be64_to_cpu(ec_hdr->ec); | |
669 | vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset); | |
670 | leb_start = be32_to_cpu(ec_hdr->data_offset); | |
671 | ||
672 | if (ec_hdr->version != UBI_VERSION) { | |
0195a7bb | 673 | ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d", |
2d262c48 KP |
674 | UBI_VERSION, (int)ec_hdr->version); |
675 | goto bad; | |
676 | } | |
677 | ||
678 | if (vid_hdr_offset != ubi->vid_hdr_offset) { | |
0195a7bb | 679 | ubi_err(ubi, "bad VID header offset %d, expected %d", |
2d262c48 KP |
680 | vid_hdr_offset, ubi->vid_hdr_offset); |
681 | goto bad; | |
682 | } | |
683 | ||
684 | if (leb_start != ubi->leb_start) { | |
0195a7bb | 685 | ubi_err(ubi, "bad data offset %d, expected %d", |
2d262c48 KP |
686 | leb_start, ubi->leb_start); |
687 | goto bad; | |
688 | } | |
689 | ||
690 | if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) { | |
0195a7bb | 691 | ubi_err(ubi, "bad erase counter %lld", ec); |
2d262c48 KP |
692 | goto bad; |
693 | } | |
694 | ||
695 | return 0; | |
696 | ||
697 | bad: | |
0195a7bb | 698 | ubi_err(ubi, "bad EC header"); |
ff94bc40 HS |
699 | ubi_dump_ec_hdr(ec_hdr); |
700 | dump_stack(); | |
2d262c48 KP |
701 | return 1; |
702 | } | |
703 | ||
704 | /** | |
705 | * ubi_io_read_ec_hdr - read and check an erase counter header. | |
706 | * @ubi: UBI device description object | |
707 | * @pnum: physical eraseblock to read from | |
708 | * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter | |
709 | * header | |
710 | * @verbose: be verbose if the header is corrupted or was not found | |
711 | * | |
712 | * This function reads erase counter header from physical eraseblock @pnum and | |
713 | * stores it in @ec_hdr. This function also checks CRC checksum of the read | |
714 | * erase counter header. The following codes may be returned: | |
715 | * | |
716 | * o %0 if the CRC checksum is correct and the header was successfully read; | |
717 | * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected | |
718 | * and corrected by the flash driver; this is harmless but may indicate that | |
719 | * this eraseblock may become bad soon (but may be not); | |
ff94bc40 HS |
720 | * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error); |
721 | * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was | |
722 | * a data integrity error (uncorrectable ECC error in case of NAND); | |
723 | * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty) | |
2d262c48 KP |
724 | * o a negative error code in case of failure. |
725 | */ | |
726 | int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum, | |
727 | struct ubi_ec_hdr *ec_hdr, int verbose) | |
728 | { | |
ff94bc40 | 729 | int err, read_err; |
2d262c48 KP |
730 | uint32_t crc, magic, hdr_crc; |
731 | ||
732 | dbg_io("read EC header from PEB %d", pnum); | |
733 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
2d262c48 | 734 | |
ff94bc40 HS |
735 | read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); |
736 | if (read_err) { | |
737 | if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) | |
738 | return read_err; | |
2d262c48 KP |
739 | |
740 | /* | |
741 | * We read all the data, but either a correctable bit-flip | |
ff94bc40 HS |
742 | * occurred, or MTD reported a data integrity error |
743 | * (uncorrectable ECC error in case of NAND). The former is | |
744 | * harmless, the later may mean that the read data is | |
745 | * corrupted. But we have a CRC check-sum and we will detect | |
746 | * this. If the EC header is still OK, we just report this as | |
747 | * there was a bit-flip, to force scrubbing. | |
2d262c48 | 748 | */ |
2d262c48 KP |
749 | } |
750 | ||
751 | magic = be32_to_cpu(ec_hdr->magic); | |
752 | if (magic != UBI_EC_HDR_MAGIC) { | |
ff94bc40 HS |
753 | if (mtd_is_eccerr(read_err)) |
754 | return UBI_IO_BAD_HDR_EBADMSG; | |
755 | ||
2d262c48 KP |
756 | /* |
757 | * The magic field is wrong. Let's check if we have read all | |
758 | * 0xFF. If yes, this physical eraseblock is assumed to be | |
759 | * empty. | |
2d262c48 | 760 | */ |
ff94bc40 | 761 | if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) { |
2d262c48 | 762 | /* The physical eraseblock is supposedly empty */ |
2d262c48 | 763 | if (verbose) |
0195a7bb | 764 | ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes", |
ff94bc40 HS |
765 | pnum); |
766 | dbg_bld("no EC header found at PEB %d, only 0xFF bytes", | |
767 | pnum); | |
768 | if (!read_err) | |
769 | return UBI_IO_FF; | |
770 | else | |
771 | return UBI_IO_FF_BITFLIPS; | |
2d262c48 KP |
772 | } |
773 | ||
774 | /* | |
775 | * This is not a valid erase counter header, and these are not | |
776 | * 0xFF bytes. Report that the header is corrupted. | |
777 | */ | |
778 | if (verbose) { | |
0195a7bb | 779 | ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", |
ff94bc40 HS |
780 | pnum, magic, UBI_EC_HDR_MAGIC); |
781 | ubi_dump_ec_hdr(ec_hdr); | |
2d262c48 | 782 | } |
ff94bc40 HS |
783 | dbg_bld("bad magic number at PEB %d: %08x instead of %08x", |
784 | pnum, magic, UBI_EC_HDR_MAGIC); | |
785 | return UBI_IO_BAD_HDR; | |
2d262c48 KP |
786 | } |
787 | ||
788 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); | |
789 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); | |
790 | ||
791 | if (hdr_crc != crc) { | |
792 | if (verbose) { | |
0195a7bb | 793 | ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x", |
ff94bc40 HS |
794 | pnum, crc, hdr_crc); |
795 | ubi_dump_ec_hdr(ec_hdr); | |
2d262c48 | 796 | } |
ff94bc40 HS |
797 | dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x", |
798 | pnum, crc, hdr_crc); | |
799 | ||
800 | if (!read_err) | |
801 | return UBI_IO_BAD_HDR; | |
802 | else | |
803 | return UBI_IO_BAD_HDR_EBADMSG; | |
2d262c48 KP |
804 | } |
805 | ||
806 | /* And of course validate what has just been read from the media */ | |
807 | err = validate_ec_hdr(ubi, ec_hdr); | |
808 | if (err) { | |
0195a7bb | 809 | ubi_err(ubi, "validation failed for PEB %d", pnum); |
2d262c48 KP |
810 | return -EINVAL; |
811 | } | |
812 | ||
ff94bc40 HS |
813 | /* |
814 | * If there was %-EBADMSG, but the header CRC is still OK, report about | |
815 | * a bit-flip to force scrubbing on this PEB. | |
816 | */ | |
2d262c48 KP |
817 | return read_err ? UBI_IO_BITFLIPS : 0; |
818 | } | |
819 | ||
820 | /** | |
821 | * ubi_io_write_ec_hdr - write an erase counter header. | |
822 | * @ubi: UBI device description object | |
823 | * @pnum: physical eraseblock to write to | |
824 | * @ec_hdr: the erase counter header to write | |
825 | * | |
826 | * This function writes erase counter header described by @ec_hdr to physical | |
827 | * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so | |
828 | * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec | |
829 | * field. | |
830 | * | |
831 | * This function returns zero in case of success and a negative error code in | |
832 | * case of failure. If %-EIO is returned, the physical eraseblock most probably | |
833 | * went bad. | |
834 | */ | |
835 | int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum, | |
836 | struct ubi_ec_hdr *ec_hdr) | |
837 | { | |
838 | int err; | |
839 | uint32_t crc; | |
840 | ||
841 | dbg_io("write EC header to PEB %d", pnum); | |
842 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
843 | ||
844 | ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC); | |
845 | ec_hdr->version = UBI_VERSION; | |
846 | ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset); | |
847 | ec_hdr->data_offset = cpu_to_be32(ubi->leb_start); | |
ff94bc40 | 848 | ec_hdr->image_seq = cpu_to_be32(ubi->image_seq); |
2d262c48 KP |
849 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); |
850 | ec_hdr->hdr_crc = cpu_to_be32(crc); | |
851 | ||
ff94bc40 | 852 | err = self_check_ec_hdr(ubi, pnum, ec_hdr); |
2d262c48 | 853 | if (err) |
ff94bc40 | 854 | return err; |
2d262c48 | 855 | |
0195a7bb HS |
856 | if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE)) |
857 | return -EROFS; | |
858 | ||
2d262c48 KP |
859 | err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize); |
860 | return err; | |
861 | } | |
862 | ||
863 | /** | |
864 | * validate_vid_hdr - validate a volume identifier header. | |
865 | * @ubi: UBI device description object | |
866 | * @vid_hdr: the volume identifier header to check | |
867 | * | |
868 | * This function checks that data stored in the volume identifier header | |
869 | * @vid_hdr. Returns zero if the VID header is OK and %1 if not. | |
870 | */ | |
871 | static int validate_vid_hdr(const struct ubi_device *ubi, | |
872 | const struct ubi_vid_hdr *vid_hdr) | |
873 | { | |
874 | int vol_type = vid_hdr->vol_type; | |
875 | int copy_flag = vid_hdr->copy_flag; | |
876 | int vol_id = be32_to_cpu(vid_hdr->vol_id); | |
877 | int lnum = be32_to_cpu(vid_hdr->lnum); | |
878 | int compat = vid_hdr->compat; | |
879 | int data_size = be32_to_cpu(vid_hdr->data_size); | |
880 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | |
881 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | |
882 | int data_crc = be32_to_cpu(vid_hdr->data_crc); | |
883 | int usable_leb_size = ubi->leb_size - data_pad; | |
884 | ||
885 | if (copy_flag != 0 && copy_flag != 1) { | |
0195a7bb | 886 | ubi_err(ubi, "bad copy_flag"); |
2d262c48 KP |
887 | goto bad; |
888 | } | |
889 | ||
890 | if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 || | |
891 | data_pad < 0) { | |
0195a7bb | 892 | ubi_err(ubi, "negative values"); |
2d262c48 KP |
893 | goto bad; |
894 | } | |
895 | ||
896 | if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) { | |
0195a7bb | 897 | ubi_err(ubi, "bad vol_id"); |
2d262c48 KP |
898 | goto bad; |
899 | } | |
900 | ||
901 | if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) { | |
0195a7bb | 902 | ubi_err(ubi, "bad compat"); |
2d262c48 KP |
903 | goto bad; |
904 | } | |
905 | ||
906 | if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE && | |
907 | compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE && | |
908 | compat != UBI_COMPAT_REJECT) { | |
0195a7bb | 909 | ubi_err(ubi, "bad compat"); |
2d262c48 KP |
910 | goto bad; |
911 | } | |
912 | ||
913 | if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) { | |
0195a7bb | 914 | ubi_err(ubi, "bad vol_type"); |
2d262c48 KP |
915 | goto bad; |
916 | } | |
917 | ||
918 | if (data_pad >= ubi->leb_size / 2) { | |
0195a7bb | 919 | ubi_err(ubi, "bad data_pad"); |
2d262c48 KP |
920 | goto bad; |
921 | } | |
922 | ||
923 | if (vol_type == UBI_VID_STATIC) { | |
924 | /* | |
925 | * Although from high-level point of view static volumes may | |
926 | * contain zero bytes of data, but no VID headers can contain | |
927 | * zero at these fields, because they empty volumes do not have | |
928 | * mapped logical eraseblocks. | |
929 | */ | |
930 | if (used_ebs == 0) { | |
0195a7bb | 931 | ubi_err(ubi, "zero used_ebs"); |
2d262c48 KP |
932 | goto bad; |
933 | } | |
934 | if (data_size == 0) { | |
0195a7bb | 935 | ubi_err(ubi, "zero data_size"); |
2d262c48 KP |
936 | goto bad; |
937 | } | |
938 | if (lnum < used_ebs - 1) { | |
939 | if (data_size != usable_leb_size) { | |
0195a7bb | 940 | ubi_err(ubi, "bad data_size"); |
2d262c48 KP |
941 | goto bad; |
942 | } | |
943 | } else if (lnum == used_ebs - 1) { | |
944 | if (data_size == 0) { | |
0195a7bb | 945 | ubi_err(ubi, "bad data_size at last LEB"); |
2d262c48 KP |
946 | goto bad; |
947 | } | |
948 | } else { | |
0195a7bb | 949 | ubi_err(ubi, "too high lnum"); |
2d262c48 KP |
950 | goto bad; |
951 | } | |
952 | } else { | |
953 | if (copy_flag == 0) { | |
954 | if (data_crc != 0) { | |
0195a7bb | 955 | ubi_err(ubi, "non-zero data CRC"); |
2d262c48 KP |
956 | goto bad; |
957 | } | |
958 | if (data_size != 0) { | |
0195a7bb | 959 | ubi_err(ubi, "non-zero data_size"); |
2d262c48 KP |
960 | goto bad; |
961 | } | |
962 | } else { | |
963 | if (data_size == 0) { | |
0195a7bb | 964 | ubi_err(ubi, "zero data_size of copy"); |
2d262c48 KP |
965 | goto bad; |
966 | } | |
967 | } | |
968 | if (used_ebs != 0) { | |
0195a7bb | 969 | ubi_err(ubi, "bad used_ebs"); |
2d262c48 KP |
970 | goto bad; |
971 | } | |
972 | } | |
973 | ||
974 | return 0; | |
975 | ||
976 | bad: | |
0195a7bb | 977 | ubi_err(ubi, "bad VID header"); |
ff94bc40 HS |
978 | ubi_dump_vid_hdr(vid_hdr); |
979 | dump_stack(); | |
2d262c48 KP |
980 | return 1; |
981 | } | |
982 | ||
983 | /** | |
984 | * ubi_io_read_vid_hdr - read and check a volume identifier header. | |
985 | * @ubi: UBI device description object | |
986 | * @pnum: physical eraseblock number to read from | |
987 | * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume | |
988 | * identifier header | |
989 | * @verbose: be verbose if the header is corrupted or wasn't found | |
990 | * | |
991 | * This function reads the volume identifier header from physical eraseblock | |
992 | * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read | |
ff94bc40 HS |
993 | * volume identifier header. The error codes are the same as in |
994 | * 'ubi_io_read_ec_hdr()'. | |
2d262c48 | 995 | * |
ff94bc40 HS |
996 | * Note, the implementation of this function is also very similar to |
997 | * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'. | |
2d262c48 KP |
998 | */ |
999 | int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum, | |
1000 | struct ubi_vid_hdr *vid_hdr, int verbose) | |
1001 | { | |
ff94bc40 | 1002 | int err, read_err; |
2d262c48 KP |
1003 | uint32_t crc, magic, hdr_crc; |
1004 | void *p; | |
1005 | ||
1006 | dbg_io("read VID header from PEB %d", pnum); | |
1007 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
2d262c48 KP |
1008 | |
1009 | p = (char *)vid_hdr - ubi->vid_hdr_shift; | |
ff94bc40 | 1010 | read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, |
2d262c48 | 1011 | ubi->vid_hdr_alsize); |
ff94bc40 HS |
1012 | if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err)) |
1013 | return read_err; | |
2d262c48 KP |
1014 | |
1015 | magic = be32_to_cpu(vid_hdr->magic); | |
1016 | if (magic != UBI_VID_HDR_MAGIC) { | |
ff94bc40 HS |
1017 | if (mtd_is_eccerr(read_err)) |
1018 | return UBI_IO_BAD_HDR_EBADMSG; | |
2d262c48 | 1019 | |
ff94bc40 | 1020 | if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) { |
2d262c48 | 1021 | if (verbose) |
0195a7bb | 1022 | ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes", |
ff94bc40 HS |
1023 | pnum); |
1024 | dbg_bld("no VID header found at PEB %d, only 0xFF bytes", | |
1025 | pnum); | |
1026 | if (!read_err) | |
1027 | return UBI_IO_FF; | |
1028 | else | |
1029 | return UBI_IO_FF_BITFLIPS; | |
2d262c48 KP |
1030 | } |
1031 | ||
2d262c48 | 1032 | if (verbose) { |
0195a7bb | 1033 | ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x", |
ff94bc40 HS |
1034 | pnum, magic, UBI_VID_HDR_MAGIC); |
1035 | ubi_dump_vid_hdr(vid_hdr); | |
2d262c48 | 1036 | } |
ff94bc40 HS |
1037 | dbg_bld("bad magic number at PEB %d: %08x instead of %08x", |
1038 | pnum, magic, UBI_VID_HDR_MAGIC); | |
1039 | return UBI_IO_BAD_HDR; | |
2d262c48 KP |
1040 | } |
1041 | ||
1042 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); | |
1043 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); | |
1044 | ||
1045 | if (hdr_crc != crc) { | |
1046 | if (verbose) { | |
0195a7bb | 1047 | ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x", |
ff94bc40 HS |
1048 | pnum, crc, hdr_crc); |
1049 | ubi_dump_vid_hdr(vid_hdr); | |
2d262c48 | 1050 | } |
ff94bc40 HS |
1051 | dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x", |
1052 | pnum, crc, hdr_crc); | |
1053 | if (!read_err) | |
1054 | return UBI_IO_BAD_HDR; | |
1055 | else | |
1056 | return UBI_IO_BAD_HDR_EBADMSG; | |
2d262c48 KP |
1057 | } |
1058 | ||
2d262c48 KP |
1059 | err = validate_vid_hdr(ubi, vid_hdr); |
1060 | if (err) { | |
0195a7bb | 1061 | ubi_err(ubi, "validation failed for PEB %d", pnum); |
2d262c48 KP |
1062 | return -EINVAL; |
1063 | } | |
1064 | ||
1065 | return read_err ? UBI_IO_BITFLIPS : 0; | |
1066 | } | |
1067 | ||
1068 | /** | |
1069 | * ubi_io_write_vid_hdr - write a volume identifier header. | |
1070 | * @ubi: UBI device description object | |
1071 | * @pnum: the physical eraseblock number to write to | |
1072 | * @vid_hdr: the volume identifier header to write | |
1073 | * | |
1074 | * This function writes the volume identifier header described by @vid_hdr to | |
1075 | * physical eraseblock @pnum. This function automatically fills the | |
1076 | * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates | |
1077 | * header CRC checksum and stores it at vid_hdr->hdr_crc. | |
1078 | * | |
1079 | * This function returns zero in case of success and a negative error code in | |
1080 | * case of failure. If %-EIO is returned, the physical eraseblock probably went | |
1081 | * bad. | |
1082 | */ | |
1083 | int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum, | |
1084 | struct ubi_vid_hdr *vid_hdr) | |
1085 | { | |
1086 | int err; | |
1087 | uint32_t crc; | |
1088 | void *p; | |
1089 | ||
1090 | dbg_io("write VID header to PEB %d", pnum); | |
1091 | ubi_assert(pnum >= 0 && pnum < ubi->peb_count); | |
1092 | ||
ff94bc40 | 1093 | err = self_check_peb_ec_hdr(ubi, pnum); |
2d262c48 | 1094 | if (err) |
ff94bc40 | 1095 | return err; |
2d262c48 KP |
1096 | |
1097 | vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC); | |
1098 | vid_hdr->version = UBI_VERSION; | |
1099 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC); | |
1100 | vid_hdr->hdr_crc = cpu_to_be32(crc); | |
1101 | ||
ff94bc40 | 1102 | err = self_check_vid_hdr(ubi, pnum, vid_hdr); |
2d262c48 | 1103 | if (err) |
ff94bc40 | 1104 | return err; |
2d262c48 | 1105 | |
0195a7bb HS |
1106 | if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE)) |
1107 | return -EROFS; | |
1108 | ||
2d262c48 KP |
1109 | p = (char *)vid_hdr - ubi->vid_hdr_shift; |
1110 | err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset, | |
1111 | ubi->vid_hdr_alsize); | |
1112 | return err; | |
1113 | } | |
1114 | ||
2d262c48 | 1115 | /** |
ff94bc40 | 1116 | * self_check_not_bad - ensure that a physical eraseblock is not bad. |
2d262c48 KP |
1117 | * @ubi: UBI device description object |
1118 | * @pnum: physical eraseblock number to check | |
1119 | * | |
ff94bc40 HS |
1120 | * This function returns zero if the physical eraseblock is good, %-EINVAL if |
1121 | * it is bad and a negative error code if an error occurred. | |
2d262c48 | 1122 | */ |
ff94bc40 | 1123 | static int self_check_not_bad(const struct ubi_device *ubi, int pnum) |
2d262c48 KP |
1124 | { |
1125 | int err; | |
1126 | ||
ff94bc40 HS |
1127 | if (!ubi_dbg_chk_io(ubi)) |
1128 | return 0; | |
1129 | ||
2d262c48 KP |
1130 | err = ubi_io_is_bad(ubi, pnum); |
1131 | if (!err) | |
1132 | return err; | |
1133 | ||
0195a7bb | 1134 | ubi_err(ubi, "self-check failed for PEB %d", pnum); |
ff94bc40 HS |
1135 | dump_stack(); |
1136 | return err > 0 ? -EINVAL : err; | |
2d262c48 KP |
1137 | } |
1138 | ||
1139 | /** | |
ff94bc40 | 1140 | * self_check_ec_hdr - check if an erase counter header is all right. |
2d262c48 KP |
1141 | * @ubi: UBI device description object |
1142 | * @pnum: physical eraseblock number the erase counter header belongs to | |
1143 | * @ec_hdr: the erase counter header to check | |
1144 | * | |
1145 | * This function returns zero if the erase counter header contains valid | |
ff94bc40 | 1146 | * values, and %-EINVAL if not. |
2d262c48 | 1147 | */ |
ff94bc40 HS |
1148 | static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum, |
1149 | const struct ubi_ec_hdr *ec_hdr) | |
2d262c48 KP |
1150 | { |
1151 | int err; | |
1152 | uint32_t magic; | |
1153 | ||
ff94bc40 HS |
1154 | if (!ubi_dbg_chk_io(ubi)) |
1155 | return 0; | |
1156 | ||
2d262c48 KP |
1157 | magic = be32_to_cpu(ec_hdr->magic); |
1158 | if (magic != UBI_EC_HDR_MAGIC) { | |
0195a7bb | 1159 | ubi_err(ubi, "bad magic %#08x, must be %#08x", |
2d262c48 KP |
1160 | magic, UBI_EC_HDR_MAGIC); |
1161 | goto fail; | |
1162 | } | |
1163 | ||
1164 | err = validate_ec_hdr(ubi, ec_hdr); | |
1165 | if (err) { | |
0195a7bb | 1166 | ubi_err(ubi, "self-check failed for PEB %d", pnum); |
2d262c48 KP |
1167 | goto fail; |
1168 | } | |
1169 | ||
1170 | return 0; | |
1171 | ||
1172 | fail: | |
ff94bc40 HS |
1173 | ubi_dump_ec_hdr(ec_hdr); |
1174 | dump_stack(); | |
1175 | return -EINVAL; | |
2d262c48 KP |
1176 | } |
1177 | ||
1178 | /** | |
ff94bc40 | 1179 | * self_check_peb_ec_hdr - check erase counter header. |
2d262c48 KP |
1180 | * @ubi: UBI device description object |
1181 | * @pnum: the physical eraseblock number to check | |
1182 | * | |
ff94bc40 HS |
1183 | * This function returns zero if the erase counter header is all right and and |
1184 | * a negative error code if not or if an error occurred. | |
2d262c48 | 1185 | */ |
ff94bc40 | 1186 | static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum) |
2d262c48 KP |
1187 | { |
1188 | int err; | |
1189 | uint32_t crc, hdr_crc; | |
1190 | struct ubi_ec_hdr *ec_hdr; | |
1191 | ||
ff94bc40 HS |
1192 | if (!ubi_dbg_chk_io(ubi)) |
1193 | return 0; | |
1194 | ||
2d262c48 KP |
1195 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); |
1196 | if (!ec_hdr) | |
1197 | return -ENOMEM; | |
1198 | ||
1199 | err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE); | |
ff94bc40 | 1200 | if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
2d262c48 KP |
1201 | goto exit; |
1202 | ||
1203 | crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC); | |
1204 | hdr_crc = be32_to_cpu(ec_hdr->hdr_crc); | |
1205 | if (hdr_crc != crc) { | |
0195a7bb HS |
1206 | ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x", |
1207 | crc, hdr_crc); | |
1208 | ubi_err(ubi, "self-check failed for PEB %d", pnum); | |
ff94bc40 HS |
1209 | ubi_dump_ec_hdr(ec_hdr); |
1210 | dump_stack(); | |
1211 | err = -EINVAL; | |
2d262c48 KP |
1212 | goto exit; |
1213 | } | |
1214 | ||
ff94bc40 | 1215 | err = self_check_ec_hdr(ubi, pnum, ec_hdr); |
2d262c48 KP |
1216 | |
1217 | exit: | |
1218 | kfree(ec_hdr); | |
1219 | return err; | |
1220 | } | |
1221 | ||
1222 | /** | |
ff94bc40 | 1223 | * self_check_vid_hdr - check that a volume identifier header is all right. |
2d262c48 KP |
1224 | * @ubi: UBI device description object |
1225 | * @pnum: physical eraseblock number the volume identifier header belongs to | |
1226 | * @vid_hdr: the volume identifier header to check | |
1227 | * | |
1228 | * This function returns zero if the volume identifier header is all right, and | |
ff94bc40 | 1229 | * %-EINVAL if not. |
2d262c48 | 1230 | */ |
ff94bc40 HS |
1231 | static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum, |
1232 | const struct ubi_vid_hdr *vid_hdr) | |
2d262c48 KP |
1233 | { |
1234 | int err; | |
1235 | uint32_t magic; | |
1236 | ||
ff94bc40 HS |
1237 | if (!ubi_dbg_chk_io(ubi)) |
1238 | return 0; | |
1239 | ||
2d262c48 KP |
1240 | magic = be32_to_cpu(vid_hdr->magic); |
1241 | if (magic != UBI_VID_HDR_MAGIC) { | |
0195a7bb | 1242 | ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x", |
2d262c48 KP |
1243 | magic, pnum, UBI_VID_HDR_MAGIC); |
1244 | goto fail; | |
1245 | } | |
1246 | ||
1247 | err = validate_vid_hdr(ubi, vid_hdr); | |
1248 | if (err) { | |
0195a7bb | 1249 | ubi_err(ubi, "self-check failed for PEB %d", pnum); |
2d262c48 KP |
1250 | goto fail; |
1251 | } | |
1252 | ||
1253 | return err; | |
1254 | ||
1255 | fail: | |
0195a7bb | 1256 | ubi_err(ubi, "self-check failed for PEB %d", pnum); |
ff94bc40 HS |
1257 | ubi_dump_vid_hdr(vid_hdr); |
1258 | dump_stack(); | |
1259 | return -EINVAL; | |
2d262c48 KP |
1260 | |
1261 | } | |
1262 | ||
1263 | /** | |
ff94bc40 | 1264 | * self_check_peb_vid_hdr - check volume identifier header. |
2d262c48 KP |
1265 | * @ubi: UBI device description object |
1266 | * @pnum: the physical eraseblock number to check | |
1267 | * | |
1268 | * This function returns zero if the volume identifier header is all right, | |
ff94bc40 | 1269 | * and a negative error code if not or if an error occurred. |
2d262c48 | 1270 | */ |
ff94bc40 | 1271 | static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum) |
2d262c48 KP |
1272 | { |
1273 | int err; | |
1274 | uint32_t crc, hdr_crc; | |
1275 | struct ubi_vid_hdr *vid_hdr; | |
1276 | void *p; | |
1277 | ||
ff94bc40 HS |
1278 | if (!ubi_dbg_chk_io(ubi)) |
1279 | return 0; | |
1280 | ||
2d262c48 KP |
1281 | vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); |
1282 | if (!vid_hdr) | |
1283 | return -ENOMEM; | |
1284 | ||
1285 | p = (char *)vid_hdr - ubi->vid_hdr_shift; | |
1286 | err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset, | |
1287 | ubi->vid_hdr_alsize); | |
ff94bc40 | 1288 | if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err)) |
2d262c48 KP |
1289 | goto exit; |
1290 | ||
1291 | crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC); | |
1292 | hdr_crc = be32_to_cpu(vid_hdr->hdr_crc); | |
1293 | if (hdr_crc != crc) { | |
0195a7bb | 1294 | ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x", |
ff94bc40 | 1295 | pnum, crc, hdr_crc); |
0195a7bb | 1296 | ubi_err(ubi, "self-check failed for PEB %d", pnum); |
ff94bc40 HS |
1297 | ubi_dump_vid_hdr(vid_hdr); |
1298 | dump_stack(); | |
1299 | err = -EINVAL; | |
2d262c48 KP |
1300 | goto exit; |
1301 | } | |
1302 | ||
ff94bc40 | 1303 | err = self_check_vid_hdr(ubi, pnum, vid_hdr); |
2d262c48 KP |
1304 | |
1305 | exit: | |
1306 | ubi_free_vid_hdr(ubi, vid_hdr); | |
1307 | return err; | |
1308 | } | |
1309 | ||
1310 | /** | |
ff94bc40 HS |
1311 | * self_check_write - make sure write succeeded. |
1312 | * @ubi: UBI device description object | |
1313 | * @buf: buffer with data which were written | |
1314 | * @pnum: physical eraseblock number the data were written to | |
1315 | * @offset: offset within the physical eraseblock the data were written to | |
1316 | * @len: how many bytes were written | |
1317 | * | |
1318 | * This functions reads data which were recently written and compares it with | |
1319 | * the original data buffer - the data have to match. Returns zero if the data | |
1320 | * match and a negative error code if not or in case of failure. | |
1321 | */ | |
1322 | static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum, | |
1323 | int offset, int len) | |
1324 | { | |
1325 | int err, i; | |
1326 | size_t read; | |
1327 | void *buf1; | |
1328 | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; | |
1329 | ||
1330 | if (!ubi_dbg_chk_io(ubi)) | |
1331 | return 0; | |
1332 | ||
1333 | buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); | |
1334 | if (!buf1) { | |
0195a7bb | 1335 | ubi_err(ubi, "cannot allocate memory to check writes"); |
ff94bc40 HS |
1336 | return 0; |
1337 | } | |
1338 | ||
1339 | err = mtd_read(ubi->mtd, addr, len, &read, buf1); | |
1340 | if (err && !mtd_is_bitflip(err)) | |
1341 | goto out_free; | |
1342 | ||
1343 | for (i = 0; i < len; i++) { | |
1344 | uint8_t c = ((uint8_t *)buf)[i]; | |
1345 | uint8_t c1 = ((uint8_t *)buf1)[i]; | |
1346 | #if !defined(CONFIG_UBI_SILENCE_MSG) | |
1347 | int dump_len = max_t(int, 128, len - i); | |
1348 | #endif | |
1349 | ||
1350 | if (c == c1) | |
1351 | continue; | |
1352 | ||
0195a7bb | 1353 | ubi_err(ubi, "self-check failed for PEB %d:%d, len %d", |
ff94bc40 | 1354 | pnum, offset, len); |
5ebd3df6 | 1355 | #if !defined(CONFIG_UBI_SILENCE_MSG) |
0195a7bb | 1356 | ubi_msg(ubi, "data differ at position %d", i); |
0195a7bb | 1357 | ubi_msg(ubi, "hex dump of the original buffer from %d to %d", |
ff94bc40 | 1358 | i, i + dump_len); |
f8c987f8 | 1359 | print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, |
ff94bc40 | 1360 | buf + i, dump_len, 1); |
0195a7bb | 1361 | ubi_msg(ubi, "hex dump of the read buffer from %d to %d", |
ff94bc40 | 1362 | i, i + dump_len); |
f8c987f8 | 1363 | print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, |
ff94bc40 | 1364 | buf1 + i, dump_len, 1); |
5ebd3df6 | 1365 | #endif |
ff94bc40 HS |
1366 | dump_stack(); |
1367 | err = -EINVAL; | |
1368 | goto out_free; | |
1369 | } | |
1370 | ||
1371 | vfree(buf1); | |
1372 | return 0; | |
1373 | ||
1374 | out_free: | |
1375 | vfree(buf1); | |
1376 | return err; | |
1377 | } | |
1378 | ||
1379 | /** | |
1380 | * ubi_self_check_all_ff - check that a region of flash is empty. | |
2d262c48 KP |
1381 | * @ubi: UBI device description object |
1382 | * @pnum: the physical eraseblock number to check | |
1383 | * @offset: the starting offset within the physical eraseblock to check | |
1384 | * @len: the length of the region to check | |
1385 | * | |
1386 | * This function returns zero if only 0xFF bytes are present at offset | |
ff94bc40 HS |
1387 | * @offset of the physical eraseblock @pnum, and a negative error code if not |
1388 | * or if an error occurred. | |
2d262c48 | 1389 | */ |
ff94bc40 | 1390 | int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len) |
2d262c48 KP |
1391 | { |
1392 | size_t read; | |
1393 | int err; | |
ff94bc40 | 1394 | void *buf; |
2d262c48 KP |
1395 | loff_t addr = (loff_t)pnum * ubi->peb_size + offset; |
1396 | ||
ff94bc40 HS |
1397 | if (!ubi_dbg_chk_io(ubi)) |
1398 | return 0; | |
1399 | ||
1400 | buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL); | |
1401 | if (!buf) { | |
0195a7bb | 1402 | ubi_err(ubi, "cannot allocate memory to check for 0xFFs"); |
ff94bc40 HS |
1403 | return 0; |
1404 | } | |
1405 | ||
1406 | err = mtd_read(ubi->mtd, addr, len, &read, buf); | |
1407 | if (err && !mtd_is_bitflip(err)) { | |
0195a7bb | 1408 | ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes", |
ff94bc40 | 1409 | err, len, pnum, offset, read); |
2d262c48 KP |
1410 | goto error; |
1411 | } | |
1412 | ||
ff94bc40 | 1413 | err = ubi_check_pattern(buf, 0xFF, len); |
2d262c48 | 1414 | if (err == 0) { |
0195a7bb | 1415 | ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes", |
ff94bc40 | 1416 | pnum, offset, len); |
2d262c48 KP |
1417 | goto fail; |
1418 | } | |
2d262c48 | 1419 | |
ff94bc40 | 1420 | vfree(buf); |
2d262c48 KP |
1421 | return 0; |
1422 | ||
1423 | fail: | |
0195a7bb HS |
1424 | ubi_err(ubi, "self-check failed for PEB %d", pnum); |
1425 | ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len); | |
f8c987f8 | 1426 | print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1); |
ff94bc40 | 1427 | err = -EINVAL; |
2d262c48 | 1428 | error: |
ff94bc40 HS |
1429 | dump_stack(); |
1430 | vfree(buf); | |
2d262c48 KP |
1431 | return err; |
1432 | } |