]>
Commit | Line | Data |
---|---|---|
383fded7 MW |
1 | // SPDX-License-Identifier: GPL-2.0+ |
2 | /* | |
3 | * NXP FlexSPI(FSPI) controller driver. | |
4 | * | |
5 | * Copyright (c) 2019 Michael Walle <[email protected]> | |
6 | * Copyright (c) 2019 NXP | |
7 | * | |
8 | * This driver was originally ported from the linux kernel v5.4-rc3, which had | |
9 | * the following notes: | |
10 | * | |
11 | * FlexSPI is a flexsible SPI host controller which supports two SPI | |
12 | * channels and up to 4 external devices. Each channel supports | |
13 | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional | |
14 | * data lines). | |
15 | * | |
16 | * FlexSPI controller is driven by the LUT(Look-up Table) registers | |
17 | * LUT registers are a look-up-table for sequences of instructions. | |
18 | * A valid sequence consists of four LUT registers. | |
19 | * Maximum 32 LUT sequences can be programmed simultaneously. | |
20 | * | |
21 | * LUTs are being created at run-time based on the commands passed | |
22 | * from the spi-mem framework, thus using single LUT index. | |
23 | * | |
24 | * Software triggered Flash read/write access by IP Bus. | |
25 | * | |
26 | * Memory mapped read access by AHB Bus. | |
27 | * | |
28 | * Based on SPI MEM interface and spi-fsl-qspi.c driver. | |
29 | * | |
30 | * Author: | |
31 | * Yogesh Narayan Gaur <[email protected]> | |
32 | * Boris Brezillon <[email protected]> | |
33 | * Frieder Schrempf <[email protected]> | |
34 | */ | |
35 | ||
06aaca51 SA |
36 | #include <clk.h> |
37 | #include <dm.h> | |
38 | #include <dm/device_compat.h> | |
383fded7 MW |
39 | #include <malloc.h> |
40 | #include <spi.h> | |
41 | #include <spi-mem.h> | |
06aaca51 | 42 | #include <asm/io.h> |
b9cfd8b0 KS |
43 | #ifdef CONFIG_FSL_LAYERSCAPE |
44 | #include <asm/arch/clock.h> | |
45 | #include <asm/arch/soc.h> | |
46 | #include <asm/arch/speed.h> | |
47 | #endif | |
cd93d625 | 48 | #include <linux/bitops.h> |
383fded7 MW |
49 | #include <linux/kernel.h> |
50 | #include <linux/sizes.h> | |
51 | #include <linux/iopoll.h> | |
52 | #include <linux/bug.h> | |
f2176515 | 53 | #include <linux/err.h> |
383fded7 MW |
54 | |
55 | /* | |
56 | * The driver only uses one single LUT entry, that is updated on | |
57 | * each call of exec_op(). Index 0 is preset at boot with a basic | |
58 | * read operation, so let's use the last entry (31). | |
59 | */ | |
60 | #define SEQID_LUT 31 | |
61 | ||
62 | /* Registers used by the driver */ | |
63 | #define FSPI_MCR0 0x00 | |
64 | #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) | |
65 | #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) | |
66 | #define FSPI_MCR0_LEARN_EN BIT(15) | |
67 | #define FSPI_MCR0_SCRFRUN_EN BIT(14) | |
68 | #define FSPI_MCR0_OCTCOMB_EN BIT(13) | |
69 | #define FSPI_MCR0_DOZE_EN BIT(12) | |
70 | #define FSPI_MCR0_HSEN BIT(11) | |
71 | #define FSPI_MCR0_SERCLKDIV BIT(8) | |
72 | #define FSPI_MCR0_ATDF_EN BIT(7) | |
73 | #define FSPI_MCR0_ARDF_EN BIT(6) | |
74 | #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) | |
75 | #define FSPI_MCR0_END_CFG(x) ((x) << 2) | |
76 | #define FSPI_MCR0_MDIS BIT(1) | |
77 | #define FSPI_MCR0_SWRST BIT(0) | |
78 | ||
79 | #define FSPI_MCR1 0x04 | |
80 | #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) | |
81 | #define FSPI_MCR1_AHB_TIMEOUT(x) (x) | |
82 | ||
83 | #define FSPI_MCR2 0x08 | |
84 | #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) | |
85 | #define FSPI_MCR2_SAMEDEVICEEN BIT(15) | |
86 | #define FSPI_MCR2_CLRLRPHS BIT(14) | |
87 | #define FSPI_MCR2_ABRDATSZ BIT(8) | |
88 | #define FSPI_MCR2_ABRLEARN BIT(7) | |
89 | #define FSPI_MCR2_ABR_READ BIT(6) | |
90 | #define FSPI_MCR2_ABRWRITE BIT(5) | |
91 | #define FSPI_MCR2_ABRDUMMY BIT(4) | |
92 | #define FSPI_MCR2_ABR_MODE BIT(3) | |
93 | #define FSPI_MCR2_ABRCADDR BIT(2) | |
94 | #define FSPI_MCR2_ABRRADDR BIT(1) | |
95 | #define FSPI_MCR2_ABR_CMD BIT(0) | |
96 | ||
97 | #define FSPI_AHBCR 0x0c | |
98 | #define FSPI_AHBCR_RDADDROPT BIT(6) | |
99 | #define FSPI_AHBCR_PREF_EN BIT(5) | |
100 | #define FSPI_AHBCR_BUFF_EN BIT(4) | |
101 | #define FSPI_AHBCR_CACH_EN BIT(3) | |
102 | #define FSPI_AHBCR_CLRTXBUF BIT(2) | |
103 | #define FSPI_AHBCR_CLRRXBUF BIT(1) | |
104 | #define FSPI_AHBCR_PAR_EN BIT(0) | |
105 | ||
106 | #define FSPI_INTEN 0x10 | |
107 | #define FSPI_INTEN_SCLKSBWR BIT(9) | |
108 | #define FSPI_INTEN_SCLKSBRD BIT(8) | |
109 | #define FSPI_INTEN_DATALRNFL BIT(7) | |
110 | #define FSPI_INTEN_IPTXWE BIT(6) | |
111 | #define FSPI_INTEN_IPRXWA BIT(5) | |
112 | #define FSPI_INTEN_AHBCMDERR BIT(4) | |
113 | #define FSPI_INTEN_IPCMDERR BIT(3) | |
114 | #define FSPI_INTEN_AHBCMDGE BIT(2) | |
115 | #define FSPI_INTEN_IPCMDGE BIT(1) | |
116 | #define FSPI_INTEN_IPCMDDONE BIT(0) | |
117 | ||
118 | #define FSPI_INTR 0x14 | |
119 | #define FSPI_INTR_SCLKSBWR BIT(9) | |
120 | #define FSPI_INTR_SCLKSBRD BIT(8) | |
121 | #define FSPI_INTR_DATALRNFL BIT(7) | |
122 | #define FSPI_INTR_IPTXWE BIT(6) | |
123 | #define FSPI_INTR_IPRXWA BIT(5) | |
124 | #define FSPI_INTR_AHBCMDERR BIT(4) | |
125 | #define FSPI_INTR_IPCMDERR BIT(3) | |
126 | #define FSPI_INTR_AHBCMDGE BIT(2) | |
127 | #define FSPI_INTR_IPCMDGE BIT(1) | |
128 | #define FSPI_INTR_IPCMDDONE BIT(0) | |
129 | ||
130 | #define FSPI_LUTKEY 0x18 | |
131 | #define FSPI_LUTKEY_VALUE 0x5AF05AF0 | |
132 | ||
133 | #define FSPI_LCKCR 0x1C | |
134 | ||
135 | #define FSPI_LCKER_LOCK 0x1 | |
136 | #define FSPI_LCKER_UNLOCK 0x2 | |
137 | ||
138 | #define FSPI_BUFXCR_INVALID_MSTRID 0xE | |
139 | #define FSPI_AHBRX_BUF0CR0 0x20 | |
140 | #define FSPI_AHBRX_BUF1CR0 0x24 | |
141 | #define FSPI_AHBRX_BUF2CR0 0x28 | |
142 | #define FSPI_AHBRX_BUF3CR0 0x2C | |
143 | #define FSPI_AHBRX_BUF4CR0 0x30 | |
144 | #define FSPI_AHBRX_BUF5CR0 0x34 | |
145 | #define FSPI_AHBRX_BUF6CR0 0x38 | |
146 | #define FSPI_AHBRX_BUF7CR0 0x3C | |
147 | #define FSPI_AHBRXBUF0CR7_PREF BIT(31) | |
148 | ||
149 | #define FSPI_AHBRX_BUF0CR1 0x40 | |
150 | #define FSPI_AHBRX_BUF1CR1 0x44 | |
151 | #define FSPI_AHBRX_BUF2CR1 0x48 | |
152 | #define FSPI_AHBRX_BUF3CR1 0x4C | |
153 | #define FSPI_AHBRX_BUF4CR1 0x50 | |
154 | #define FSPI_AHBRX_BUF5CR1 0x54 | |
155 | #define FSPI_AHBRX_BUF6CR1 0x58 | |
156 | #define FSPI_AHBRX_BUF7CR1 0x5C | |
157 | ||
158 | #define FSPI_FLSHA1CR0 0x60 | |
159 | #define FSPI_FLSHA2CR0 0x64 | |
160 | #define FSPI_FLSHB1CR0 0x68 | |
161 | #define FSPI_FLSHB2CR0 0x6C | |
162 | #define FSPI_FLSHXCR0_SZ_KB 10 | |
163 | #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) | |
164 | ||
165 | #define FSPI_FLSHA1CR1 0x70 | |
166 | #define FSPI_FLSHA2CR1 0x74 | |
167 | #define FSPI_FLSHB1CR1 0x78 | |
168 | #define FSPI_FLSHB2CR1 0x7C | |
169 | #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) | |
170 | #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) | |
171 | #define FSPI_FLSHXCR1_WA BIT(10) | |
172 | #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) | |
173 | #define FSPI_FLSHXCR1_TCSS(x) (x) | |
174 | ||
175 | #define FSPI_FLSHA1CR2 0x80 | |
176 | #define FSPI_FLSHA2CR2 0x84 | |
177 | #define FSPI_FLSHB1CR2 0x88 | |
178 | #define FSPI_FLSHB2CR2 0x8C | |
179 | #define FSPI_FLSHXCR2_CLRINSP BIT(24) | |
180 | #define FSPI_FLSHXCR2_AWRWAIT BIT(16) | |
181 | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 | |
182 | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 | |
183 | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 | |
184 | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 | |
185 | ||
186 | #define FSPI_IPCR0 0xA0 | |
187 | ||
188 | #define FSPI_IPCR1 0xA4 | |
189 | #define FSPI_IPCR1_IPAREN BIT(31) | |
190 | #define FSPI_IPCR1_SEQNUM_SHIFT 24 | |
191 | #define FSPI_IPCR1_SEQID_SHIFT 16 | |
192 | #define FSPI_IPCR1_IDATSZ(x) (x) | |
193 | ||
194 | #define FSPI_IPCMD 0xB0 | |
195 | #define FSPI_IPCMD_TRG BIT(0) | |
196 | ||
197 | #define FSPI_DLPR 0xB4 | |
198 | ||
199 | #define FSPI_IPRXFCR 0xB8 | |
200 | #define FSPI_IPRXFCR_CLR BIT(0) | |
201 | #define FSPI_IPRXFCR_DMA_EN BIT(1) | |
202 | #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) | |
203 | ||
204 | #define FSPI_IPTXFCR 0xBC | |
205 | #define FSPI_IPTXFCR_CLR BIT(0) | |
206 | #define FSPI_IPTXFCR_DMA_EN BIT(1) | |
207 | #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) | |
208 | ||
209 | #define FSPI_DLLACR 0xC0 | |
210 | #define FSPI_DLLACR_OVRDEN BIT(8) | |
211 | ||
212 | #define FSPI_DLLBCR 0xC4 | |
213 | #define FSPI_DLLBCR_OVRDEN BIT(8) | |
214 | ||
215 | #define FSPI_STS0 0xE0 | |
216 | #define FSPI_STS0_DLPHB(x) ((x) << 8) | |
217 | #define FSPI_STS0_DLPHA(x) ((x) << 4) | |
218 | #define FSPI_STS0_CMD_SRC(x) ((x) << 2) | |
219 | #define FSPI_STS0_ARB_IDLE BIT(1) | |
220 | #define FSPI_STS0_SEQ_IDLE BIT(0) | |
221 | ||
222 | #define FSPI_STS1 0xE4 | |
223 | #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) | |
224 | #define FSPI_STS1_IP_ERRID(x) ((x) << 16) | |
225 | #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) | |
226 | #define FSPI_STS1_AHB_ERRID(x) (x) | |
227 | ||
228 | #define FSPI_AHBSPNST 0xEC | |
229 | #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) | |
230 | #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) | |
231 | #define FSPI_AHBSPNST_ACTIVE BIT(0) | |
232 | ||
233 | #define FSPI_IPRXFSTS 0xF0 | |
234 | #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) | |
235 | #define FSPI_IPRXFSTS_FILL(x) (x) | |
236 | ||
237 | #define FSPI_IPTXFSTS 0xF4 | |
238 | #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) | |
239 | #define FSPI_IPTXFSTS_FILL(x) (x) | |
240 | ||
241 | #define FSPI_RFDR 0x100 | |
242 | #define FSPI_TFDR 0x180 | |
243 | ||
244 | #define FSPI_LUT_BASE 0x200 | |
245 | #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) | |
246 | #define FSPI_LUT_REG(idx) \ | |
247 | (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) | |
248 | ||
249 | /* register map end */ | |
250 | ||
251 | /* Instruction set for the LUT register. */ | |
252 | #define LUT_STOP 0x00 | |
253 | #define LUT_CMD 0x01 | |
254 | #define LUT_ADDR 0x02 | |
255 | #define LUT_CADDR_SDR 0x03 | |
256 | #define LUT_MODE 0x04 | |
257 | #define LUT_MODE2 0x05 | |
258 | #define LUT_MODE4 0x06 | |
259 | #define LUT_MODE8 0x07 | |
260 | #define LUT_NXP_WRITE 0x08 | |
261 | #define LUT_NXP_READ 0x09 | |
262 | #define LUT_LEARN_SDR 0x0A | |
263 | #define LUT_DATSZ_SDR 0x0B | |
264 | #define LUT_DUMMY 0x0C | |
265 | #define LUT_DUMMY_RWDS_SDR 0x0D | |
266 | #define LUT_JMP_ON_CS 0x1F | |
267 | #define LUT_CMD_DDR 0x21 | |
268 | #define LUT_ADDR_DDR 0x22 | |
269 | #define LUT_CADDR_DDR 0x23 | |
270 | #define LUT_MODE_DDR 0x24 | |
271 | #define LUT_MODE2_DDR 0x25 | |
272 | #define LUT_MODE4_DDR 0x26 | |
273 | #define LUT_MODE8_DDR 0x27 | |
274 | #define LUT_WRITE_DDR 0x28 | |
275 | #define LUT_READ_DDR 0x29 | |
276 | #define LUT_LEARN_DDR 0x2A | |
277 | #define LUT_DATSZ_DDR 0x2B | |
278 | #define LUT_DUMMY_DDR 0x2C | |
279 | #define LUT_DUMMY_RWDS_DDR 0x2D | |
280 | ||
281 | /* | |
282 | * Calculate number of required PAD bits for LUT register. | |
283 | * | |
284 | * The pad stands for the number of IO lines [0:7]. | |
285 | * For example, the octal read needs eight IO lines, | |
286 | * so you should use LUT_PAD(8). This macro | |
287 | * returns 3 i.e. use eight (2^3) IP lines for read. | |
288 | */ | |
289 | #define LUT_PAD(x) (fls(x) - 1) | |
290 | ||
291 | /* | |
292 | * Macro for constructing the LUT entries with the following | |
293 | * register layout: | |
294 | * | |
295 | * --------------------------------------------------- | |
296 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | | |
297 | * --------------------------------------------------- | |
298 | */ | |
299 | #define PAD_SHIFT 8 | |
300 | #define INSTR_SHIFT 10 | |
301 | #define OPRND_SHIFT 16 | |
302 | ||
303 | /* Macros for constructing the LUT register. */ | |
304 | #define LUT_DEF(idx, ins, pad, opr) \ | |
305 | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ | |
306 | (opr)) << (((idx) % 2) * OPRND_SHIFT)) | |
307 | ||
308 | #define POLL_TOUT 5000 | |
309 | #define NXP_FSPI_MAX_CHIPSELECT 4 | |
310 | ||
e8751a93 KS |
311 | /* Access flash memory using IP bus only */ |
312 | #define FSPI_QUIRK_USE_IP_ONLY BIT(0) | |
313 | ||
383fded7 MW |
314 | struct nxp_fspi_devtype_data { |
315 | unsigned int rxfifo; | |
316 | unsigned int txfifo; | |
317 | unsigned int ahb_buf_size; | |
318 | unsigned int quirks; | |
319 | bool little_endian; | |
320 | }; | |
321 | ||
b9cfd8b0 | 322 | static struct nxp_fspi_devtype_data lx2160a_data = { |
383fded7 MW |
323 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
324 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
325 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
326 | .quirks = 0, | |
327 | .little_endian = true, /* little-endian */ | |
328 | }; | |
329 | ||
b9cfd8b0 | 330 | static struct nxp_fspi_devtype_data imx8mm_data = { |
5fb6b824 AF |
331 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
332 | .txfifo = SZ_1K, /* (128 * 64 bits) */ | |
333 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ | |
334 | .quirks = 0, | |
335 | .little_endian = true, /* little-endian */ | |
336 | }; | |
337 | ||
383fded7 MW |
338 | struct nxp_fspi { |
339 | struct udevice *dev; | |
340 | void __iomem *iobase; | |
341 | void __iomem *ahb_addr; | |
342 | u32 memmap_phy; | |
343 | u32 memmap_phy_size; | |
344 | struct clk clk, clk_en; | |
b9cfd8b0 | 345 | struct nxp_fspi_devtype_data *devtype_data; |
383fded7 MW |
346 | }; |
347 | ||
e8751a93 KS |
348 | static inline int needs_ip_only(struct nxp_fspi *f) |
349 | { | |
350 | return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; | |
351 | } | |
352 | ||
383fded7 MW |
353 | /* |
354 | * R/W functions for big- or little-endian registers: | |
355 | * The FSPI controller's endianness is independent of | |
356 | * the CPU core's endianness. So far, although the CPU | |
357 | * core is little-endian the FSPI controller can use | |
358 | * big-endian or little-endian. | |
359 | */ | |
360 | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) | |
361 | { | |
362 | if (f->devtype_data->little_endian) | |
363 | out_le32(addr, val); | |
364 | else | |
365 | out_be32(addr, val); | |
366 | } | |
367 | ||
368 | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) | |
369 | { | |
370 | if (f->devtype_data->little_endian) | |
371 | return in_le32(addr); | |
372 | else | |
373 | return in_be32(addr); | |
374 | } | |
375 | ||
376 | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) | |
377 | { | |
378 | switch (width) { | |
379 | case 1: | |
380 | case 2: | |
381 | case 4: | |
382 | case 8: | |
383 | return 0; | |
384 | } | |
385 | ||
386 | return -ENOTSUPP; | |
387 | } | |
388 | ||
389 | static bool nxp_fspi_supports_op(struct spi_slave *slave, | |
390 | const struct spi_mem_op *op) | |
391 | { | |
392 | struct nxp_fspi *f; | |
393 | struct udevice *bus; | |
394 | int ret; | |
395 | ||
396 | bus = slave->dev->parent; | |
397 | f = dev_get_priv(bus); | |
398 | ||
399 | ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); | |
400 | ||
401 | if (op->addr.nbytes) | |
402 | ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); | |
403 | ||
404 | if (op->dummy.nbytes) | |
405 | ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); | |
406 | ||
407 | if (op->data.nbytes) | |
408 | ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); | |
409 | ||
410 | if (ret) | |
411 | return false; | |
412 | ||
413 | /* | |
414 | * The number of address bytes should be equal to or less than 4 bytes. | |
415 | */ | |
416 | if (op->addr.nbytes > 4) | |
417 | return false; | |
418 | ||
419 | /* | |
420 | * If requested address value is greater than controller assigned | |
421 | * memory mapped space, return error as it didn't fit in the range | |
422 | * of assigned address space. | |
423 | */ | |
424 | if (op->addr.val >= f->memmap_phy_size) | |
425 | return false; | |
426 | ||
427 | /* Max 64 dummy clock cycles supported */ | |
428 | if (op->dummy.buswidth && | |
429 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) | |
430 | return false; | |
431 | ||
432 | /* Max data length, check controller limits and alignment */ | |
433 | if (op->data.dir == SPI_MEM_DATA_IN && | |
434 | (op->data.nbytes > f->devtype_data->ahb_buf_size || | |
435 | (op->data.nbytes > f->devtype_data->rxfifo - 4 && | |
436 | !IS_ALIGNED(op->data.nbytes, 8)))) | |
437 | return false; | |
438 | ||
439 | if (op->data.dir == SPI_MEM_DATA_OUT && | |
440 | op->data.nbytes > f->devtype_data->txfifo) | |
441 | return false; | |
442 | ||
364174b2 | 443 | return spi_mem_default_supports_op(slave, op); |
383fded7 MW |
444 | } |
445 | ||
28029c76 | 446 | /* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */ |
383fded7 MW |
447 | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, |
448 | u32 mask, u32 delay_us, | |
449 | u32 timeout_us, bool c) | |
450 | { | |
451 | u32 reg; | |
452 | ||
453 | if (!f->devtype_data->little_endian) | |
454 | mask = (u32)cpu_to_be32(mask); | |
455 | ||
456 | if (c) | |
28029c76 KS |
457 | return readl_poll_sleep_timeout(base, reg, (reg & mask), |
458 | delay_us, timeout_us); | |
383fded7 | 459 | else |
28029c76 KS |
460 | return readl_poll_sleep_timeout(base, reg, !(reg & mask), |
461 | delay_us, timeout_us); | |
383fded7 MW |
462 | } |
463 | ||
464 | /* | |
465 | * If the slave device content being changed by Write/Erase, need to | |
466 | * invalidate the AHB buffer. This can be achieved by doing the reset | |
467 | * of controller after setting MCR0[SWRESET] bit. | |
468 | */ | |
469 | static inline void nxp_fspi_invalid(struct nxp_fspi *f) | |
470 | { | |
471 | u32 reg; | |
472 | int ret; | |
473 | ||
474 | reg = fspi_readl(f, f->iobase + FSPI_MCR0); | |
475 | fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); | |
476 | ||
477 | /* w1c register, wait unit clear */ | |
478 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
479 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
480 | WARN_ON(ret); | |
481 | } | |
482 | ||
483 | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, | |
484 | const struct spi_mem_op *op) | |
485 | { | |
486 | void __iomem *base = f->iobase; | |
487 | u32 lutval[4] = {}; | |
488 | int lutidx = 1, i; | |
489 | ||
490 | /* cmd */ | |
491 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), | |
492 | op->cmd.opcode); | |
493 | ||
494 | /* addr bytes */ | |
495 | if (op->addr.nbytes) { | |
496 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, | |
497 | LUT_PAD(op->addr.buswidth), | |
498 | op->addr.nbytes * 8); | |
499 | lutidx++; | |
500 | } | |
501 | ||
502 | /* dummy bytes, if needed */ | |
503 | if (op->dummy.nbytes) { | |
504 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, | |
505 | /* | |
506 | * Due to FlexSPI controller limitation number of PAD for dummy | |
507 | * buswidth needs to be programmed as equal to data buswidth. | |
508 | */ | |
509 | LUT_PAD(op->data.buswidth), | |
510 | op->dummy.nbytes * 8 / | |
511 | op->dummy.buswidth); | |
512 | lutidx++; | |
513 | } | |
514 | ||
515 | /* read/write data bytes */ | |
516 | if (op->data.nbytes) { | |
517 | lutval[lutidx / 2] |= LUT_DEF(lutidx, | |
518 | op->data.dir == SPI_MEM_DATA_IN ? | |
519 | LUT_NXP_READ : LUT_NXP_WRITE, | |
520 | LUT_PAD(op->data.buswidth), | |
521 | 0); | |
522 | lutidx++; | |
523 | } | |
524 | ||
525 | /* stop condition. */ | |
526 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); | |
527 | ||
528 | /* unlock LUT */ | |
529 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
530 | fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); | |
531 | ||
532 | /* fill LUT */ | |
533 | for (i = 0; i < ARRAY_SIZE(lutval); i++) | |
534 | fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); | |
535 | ||
b9cfd8b0 KS |
536 | dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n", |
537 | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); | |
383fded7 MW |
538 | |
539 | /* lock LUT */ | |
540 | fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); | |
541 | fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); | |
542 | } | |
543 | ||
957a3e54 | 544 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
545 | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) |
546 | { | |
547 | int ret; | |
548 | ||
549 | ret = clk_enable(&f->clk_en); | |
550 | if (ret) | |
551 | return ret; | |
552 | ||
553 | ret = clk_enable(&f->clk); | |
554 | if (ret) { | |
555 | clk_disable(&f->clk_en); | |
556 | return ret; | |
557 | } | |
558 | ||
559 | return 0; | |
560 | } | |
561 | ||
562 | static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) | |
563 | { | |
564 | clk_disable(&f->clk); | |
565 | clk_disable(&f->clk_en); | |
566 | } | |
567 | #endif | |
568 | ||
569 | /* | |
570 | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 | |
571 | * register and start base address of the slave device. | |
572 | * | |
573 | * (Higher address) | |
574 | * -------- <-- FLSHB2CR0 | |
575 | * | B2 | | |
576 | * | | | |
577 | * B2 start address --> -------- <-- FLSHB1CR0 | |
578 | * | B1 | | |
579 | * | | | |
580 | * B1 start address --> -------- <-- FLSHA2CR0 | |
581 | * | A2 | | |
582 | * | | | |
583 | * A2 start address --> -------- <-- FLSHA1CR0 | |
584 | * | A1 | | |
585 | * | | | |
586 | * A1 start address --> -------- (Lower address) | |
587 | * | |
588 | * | |
589 | * Start base address defines the starting address range for given CS and | |
590 | * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. | |
591 | * | |
592 | * But, different targets are having different combinations of number of CS, | |
593 | * some targets only have single CS or two CS covering controller's full | |
594 | * memory mapped space area. | |
595 | * Thus, implementation is being done as independent of the size and number | |
596 | * of the connected slave device. | |
597 | * Assign controller memory mapped space size as the size to the connected | |
598 | * slave device. | |
599 | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected | |
600 | * chip-select Flash configuration register. | |
601 | * | |
602 | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the | |
603 | * memory mapped size of the controller. | |
604 | * Value for rest of the CS FLSHxxCR0 register would be zero. | |
605 | * | |
606 | */ | |
607 | static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select) | |
608 | { | |
609 | u64 size_kb; | |
610 | ||
611 | /* Reset FLSHxxCR0 registers */ | |
612 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); | |
613 | fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); | |
614 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); | |
615 | fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); | |
616 | ||
617 | /* Assign controller memory mapped space as size, KBytes, of flash. */ | |
618 | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); | |
619 | ||
620 | fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + | |
621 | 4 * chip_select); | |
622 | ||
623 | dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select); | |
624 | } | |
625 | ||
626 | static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) | |
627 | { | |
628 | u32 len = op->data.nbytes; | |
629 | ||
630 | /* Read out the data directly from the AHB buffer. */ | |
631 | memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); | |
632 | } | |
633 | ||
634 | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, | |
635 | const struct spi_mem_op *op) | |
636 | { | |
637 | void __iomem *base = f->iobase; | |
638 | int i, ret; | |
639 | u8 *buf = (u8 *)op->data.buf.out; | |
640 | ||
641 | /* clear the TX FIFO. */ | |
642 | fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); | |
643 | ||
644 | /* | |
645 | * Default value of water mark level is 8 bytes, hence in single | |
646 | * write request controller can write max 8 bytes of data. | |
647 | */ | |
648 | ||
649 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { | |
650 | /* Wait for TXFIFO empty */ | |
651 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
652 | FSPI_INTR_IPTXWE, 0, | |
653 | POLL_TOUT, true); | |
654 | WARN_ON(ret); | |
655 | ||
656 | fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR); | |
657 | fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4); | |
658 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
659 | } | |
660 | ||
661 | if (i < op->data.nbytes) { | |
662 | u32 data = 0; | |
663 | int j; | |
664 | /* Wait for TXFIFO empty */ | |
665 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
666 | FSPI_INTR_IPTXWE, 0, | |
667 | POLL_TOUT, true); | |
668 | WARN_ON(ret); | |
669 | ||
670 | for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { | |
671 | memcpy(&data, buf + i + j, 4); | |
672 | fspi_writel(f, data, base + FSPI_TFDR + j); | |
673 | } | |
674 | fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); | |
675 | } | |
676 | } | |
677 | ||
678 | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, | |
679 | const struct spi_mem_op *op) | |
680 | { | |
681 | void __iomem *base = f->iobase; | |
682 | int i, ret; | |
683 | int len = op->data.nbytes; | |
684 | u8 *buf = (u8 *)op->data.buf.in; | |
685 | ||
686 | /* | |
687 | * Default value of water mark level is 8 bytes, hence in single | |
688 | * read request controller can read max 8 bytes of data. | |
689 | */ | |
690 | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { | |
691 | /* Wait for RXFIFO available */ | |
692 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
693 | FSPI_INTR_IPRXWA, 0, | |
694 | POLL_TOUT, true); | |
695 | WARN_ON(ret); | |
696 | ||
697 | *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); | |
698 | *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); | |
699 | /* move the FIFO pointer */ | |
700 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
701 | } | |
702 | ||
703 | if (i < len) { | |
704 | u32 tmp; | |
705 | int size, j; | |
706 | ||
707 | buf = op->data.buf.in + i; | |
708 | /* Wait for RXFIFO available */ | |
709 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, | |
710 | FSPI_INTR_IPRXWA, 0, | |
711 | POLL_TOUT, true); | |
712 | WARN_ON(ret); | |
713 | ||
714 | len = op->data.nbytes - i; | |
715 | for (j = 0; j < op->data.nbytes - i; j += 4) { | |
716 | tmp = fspi_readl(f, base + FSPI_RFDR + j); | |
717 | size = min(len, 4); | |
718 | memcpy(buf + j, &tmp, size); | |
719 | len -= size; | |
720 | } | |
721 | } | |
722 | ||
723 | /* invalid the RXFIFO */ | |
724 | fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); | |
725 | /* move the FIFO pointer */ | |
726 | fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); | |
727 | } | |
728 | ||
729 | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) | |
730 | { | |
731 | void __iomem *base = f->iobase; | |
732 | int seqnum = 0; | |
733 | int err = 0; | |
734 | u32 reg; | |
735 | ||
736 | reg = fspi_readl(f, base + FSPI_IPRXFCR); | |
737 | /* invalid RXFIFO first */ | |
738 | reg &= ~FSPI_IPRXFCR_DMA_EN; | |
739 | reg = reg | FSPI_IPRXFCR_CLR; | |
740 | fspi_writel(f, reg, base + FSPI_IPRXFCR); | |
741 | ||
742 | fspi_writel(f, op->addr.val, base + FSPI_IPCR0); | |
743 | /* | |
744 | * Always start the sequence at the same index since we update | |
745 | * the LUT at each exec_op() call. And also specify the DATA | |
746 | * length, since it's has not been specified in the LUT. | |
747 | */ | |
748 | fspi_writel(f, op->data.nbytes | | |
749 | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | | |
750 | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), | |
751 | base + FSPI_IPCR1); | |
752 | ||
753 | /* Trigger the LUT now. */ | |
754 | fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); | |
755 | ||
756 | /* Wait for the completion. */ | |
757 | err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, | |
758 | FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true); | |
759 | ||
760 | /* Invoke IP data read, if request is of data read. */ | |
761 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) | |
762 | nxp_fspi_read_rxfifo(f, op); | |
763 | ||
764 | return err; | |
765 | } | |
766 | ||
767 | static int nxp_fspi_exec_op(struct spi_slave *slave, | |
768 | const struct spi_mem_op *op) | |
769 | { | |
770 | struct nxp_fspi *f; | |
771 | struct udevice *bus; | |
772 | int err = 0; | |
773 | ||
774 | bus = slave->dev->parent; | |
775 | f = dev_get_priv(bus); | |
776 | ||
777 | /* Wait for controller being ready. */ | |
778 | err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, | |
779 | FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); | |
780 | WARN_ON(err); | |
781 | ||
782 | nxp_fspi_prepare_lut(f, op); | |
783 | /* | |
e8751a93 KS |
784 | * If we have large chunks of data, we read them through the AHB bus by |
785 | * accessing the mapped memory. In all other cases we use IP commands | |
786 | * to access the flash. Read via AHB bus may be corrupted due to | |
787 | * existence of an errata and therefore discard AHB read in such cases. | |
383fded7 MW |
788 | */ |
789 | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && | |
e8751a93 KS |
790 | op->data.dir == SPI_MEM_DATA_IN && |
791 | !needs_ip_only(f)) { | |
383fded7 MW |
792 | nxp_fspi_read_ahb(f, op); |
793 | } else { | |
794 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) | |
795 | nxp_fspi_fill_txfifo(f, op); | |
796 | ||
797 | err = nxp_fspi_do_op(f, op); | |
798 | } | |
799 | ||
800 | /* Invalidate the data in the AHB buffer. */ | |
801 | nxp_fspi_invalid(f); | |
802 | ||
803 | return err; | |
804 | } | |
805 | ||
806 | static int nxp_fspi_adjust_op_size(struct spi_slave *slave, | |
807 | struct spi_mem_op *op) | |
808 | { | |
809 | struct nxp_fspi *f; | |
810 | struct udevice *bus; | |
811 | ||
812 | bus = slave->dev->parent; | |
813 | f = dev_get_priv(bus); | |
814 | ||
815 | if (op->data.dir == SPI_MEM_DATA_OUT) { | |
816 | if (op->data.nbytes > f->devtype_data->txfifo) | |
817 | op->data.nbytes = f->devtype_data->txfifo; | |
818 | } else { | |
819 | if (op->data.nbytes > f->devtype_data->ahb_buf_size) | |
820 | op->data.nbytes = f->devtype_data->ahb_buf_size; | |
821 | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) | |
822 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); | |
823 | } | |
824 | ||
e8751a93 KS |
825 | /* Limit data bytes to RX FIFO in case of IP read only */ |
826 | if (needs_ip_only(f) && | |
827 | op->data.dir == SPI_MEM_DATA_IN && | |
828 | op->data.nbytes > f->devtype_data->rxfifo) | |
829 | op->data.nbytes = f->devtype_data->rxfifo; | |
830 | ||
383fded7 MW |
831 | return 0; |
832 | } | |
833 | ||
b9cfd8b0 KS |
834 | #ifdef CONFIG_FSL_LAYERSCAPE |
835 | static void erratum_err050568(struct nxp_fspi *f) | |
836 | { | |
837 | struct sys_info sysinfo; | |
838 | u32 svr = 0, freq = 0; | |
839 | ||
840 | /* Check for LS1028A variants */ | |
841 | svr = SVR_SOC_VER(get_svr()); | |
842 | if (svr != SVR_LS1017A || | |
843 | svr != SVR_LS1018A || | |
844 | svr != SVR_LS1027A || | |
845 | svr != SVR_LS1028A) { | |
846 | dev_dbg(f->dev, "Errata applicable only for LS1028A variants\n"); | |
847 | return; | |
848 | } | |
849 | ||
850 | /* Read PLL frequency */ | |
851 | get_sys_info(&sysinfo); | |
852 | freq = sysinfo.freq_systembus / 1000000; /* Convert to MHz */ | |
853 | dev_dbg(f->dev, "svr: %08x, Frequency: %dMhz\n", svr, freq); | |
854 | ||
855 | /* Use IP bus only if PLL is 300MHz */ | |
856 | if (freq == 300) | |
857 | f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; | |
858 | } | |
859 | #endif | |
860 | ||
383fded7 MW |
861 | static int nxp_fspi_default_setup(struct nxp_fspi *f) |
862 | { | |
863 | void __iomem *base = f->iobase; | |
864 | int ret, i; | |
865 | u32 reg; | |
866 | ||
957a3e54 | 867 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
868 | /* the default frequency, we will change it later if necessary. */ |
869 | ret = clk_set_rate(&f->clk, 20000000); | |
90d76f81 | 870 | if (ret < 0) |
383fded7 MW |
871 | return ret; |
872 | ||
873 | ret = nxp_fspi_clk_prep_enable(f); | |
874 | if (ret) | |
875 | return ret; | |
876 | #endif | |
877 | ||
b9cfd8b0 KS |
878 | #ifdef CONFIG_FSL_LAYERSCAPE |
879 | /* | |
880 | * ERR050568: Flash access by FlexSPI AHB command may not work with | |
881 | * platform frequency equal to 300 MHz on LS1028A. | |
882 | * LS1028A reuses LX2160A compatible entry. Make errata applicable for | |
883 | * Layerscape LS1028A platform family. | |
884 | */ | |
885 | if (device_is_compatible(f->dev, "nxp,lx2160a-fspi")) | |
886 | erratum_err050568(f); | |
887 | #endif | |
888 | ||
383fded7 MW |
889 | /* Reset the module */ |
890 | /* w1c register, wait unit clear */ | |
891 | ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, | |
892 | FSPI_MCR0_SWRST, 0, POLL_TOUT, false); | |
893 | WARN_ON(ret); | |
894 | ||
895 | /* Disable the module */ | |
896 | fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); | |
897 | ||
898 | /* Reset the DLL register to default value */ | |
899 | fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); | |
900 | fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); | |
901 | ||
902 | /* enable module */ | |
903 | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF), | |
904 | base + FSPI_MCR0); | |
905 | ||
906 | /* | |
907 | * Disable same device enable bit and configure all slave devices | |
908 | * independently. | |
909 | */ | |
910 | reg = fspi_readl(f, f->iobase + FSPI_MCR2); | |
911 | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); | |
912 | fspi_writel(f, reg, base + FSPI_MCR2); | |
913 | ||
914 | /* AHB configuration for access buffer 0~7. */ | |
915 | for (i = 0; i < 7; i++) | |
916 | fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); | |
917 | ||
918 | /* | |
919 | * Set ADATSZ with the maximum AHB buffer size to improve the read | |
920 | * performance. | |
921 | */ | |
922 | fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | | |
923 | FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); | |
924 | ||
925 | /* prefetch and no start address alignment limitation */ | |
926 | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, | |
927 | base + FSPI_AHBCR); | |
928 | ||
131e44c5 HX |
929 | /* Reset the flashx control1 registers */ |
930 | reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); | |
931 | fspi_writel(f, reg, base + FSPI_FLSHA1CR1); | |
932 | fspi_writel(f, reg, base + FSPI_FLSHA2CR1); | |
933 | fspi_writel(f, reg, base + FSPI_FLSHB1CR1); | |
934 | fspi_writel(f, reg, base + FSPI_FLSHB2CR1); | |
935 | ||
383fded7 MW |
936 | /* AHB Read - Set lut sequence ID for all CS. */ |
937 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); | |
938 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); | |
939 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); | |
940 | fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); | |
941 | ||
942 | return 0; | |
943 | } | |
944 | ||
945 | static int nxp_fspi_probe(struct udevice *bus) | |
946 | { | |
947 | struct nxp_fspi *f = dev_get_priv(bus); | |
948 | ||
949 | f->devtype_data = | |
950 | (struct nxp_fspi_devtype_data *)dev_get_driver_data(bus); | |
951 | nxp_fspi_default_setup(f); | |
952 | ||
953 | return 0; | |
954 | } | |
955 | ||
956 | static int nxp_fspi_claim_bus(struct udevice *dev) | |
957 | { | |
958 | struct nxp_fspi *f; | |
959 | struct udevice *bus; | |
8a8d24bd | 960 | struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); |
383fded7 MW |
961 | |
962 | bus = dev->parent; | |
963 | f = dev_get_priv(bus); | |
964 | ||
34da258b | 965 | nxp_fspi_select_mem(f, slave_plat->cs[0]); |
383fded7 MW |
966 | |
967 | return 0; | |
968 | } | |
969 | ||
970 | static int nxp_fspi_set_speed(struct udevice *bus, uint speed) | |
971 | { | |
957a3e54 | 972 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
973 | struct nxp_fspi *f = dev_get_priv(bus); |
974 | int ret; | |
975 | ||
976 | nxp_fspi_clk_disable_unprep(f); | |
977 | ||
978 | ret = clk_set_rate(&f->clk, speed); | |
90d76f81 | 979 | if (ret < 0) |
383fded7 MW |
980 | return ret; |
981 | ||
982 | ret = nxp_fspi_clk_prep_enable(f); | |
983 | if (ret) | |
984 | return ret; | |
985 | #endif | |
986 | return 0; | |
987 | } | |
988 | ||
989 | static int nxp_fspi_set_mode(struct udevice *bus, uint mode) | |
990 | { | |
991 | /* Nothing to do */ | |
992 | return 0; | |
993 | } | |
994 | ||
d1998a9f | 995 | static int nxp_fspi_of_to_plat(struct udevice *bus) |
383fded7 MW |
996 | { |
997 | struct nxp_fspi *f = dev_get_priv(bus); | |
957a3e54 | 998 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
999 | int ret; |
1000 | #endif | |
1001 | ||
1002 | fdt_addr_t iobase; | |
1003 | fdt_addr_t iobase_size; | |
1004 | fdt_addr_t ahb_addr; | |
1005 | fdt_addr_t ahb_size; | |
1006 | ||
1007 | f->dev = bus; | |
1008 | ||
1009 | iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size); | |
1010 | if (iobase == FDT_ADDR_T_NONE) { | |
1011 | dev_err(bus, "fspi_base regs missing\n"); | |
1012 | return -ENODEV; | |
1013 | } | |
1014 | f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE); | |
1015 | ||
1016 | ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size); | |
1017 | if (ahb_addr == FDT_ADDR_T_NONE) { | |
1018 | dev_err(bus, "fspi_mmap regs missing\n"); | |
1019 | return -ENODEV; | |
1020 | } | |
1021 | f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE); | |
1022 | f->memmap_phy_size = ahb_size; | |
1023 | ||
957a3e54 | 1024 | #if CONFIG_IS_ENABLED(CLK) |
383fded7 MW |
1025 | ret = clk_get_by_name(bus, "fspi_en", &f->clk_en); |
1026 | if (ret) { | |
1027 | dev_err(bus, "failed to get fspi_en clock\n"); | |
1028 | return ret; | |
1029 | } | |
1030 | ||
1031 | ret = clk_get_by_name(bus, "fspi", &f->clk); | |
1032 | if (ret) { | |
1033 | dev_err(bus, "failed to get fspi clock\n"); | |
1034 | return ret; | |
1035 | } | |
1036 | #endif | |
1037 | ||
1038 | dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr); | |
1039 | ||
1040 | return 0; | |
1041 | } | |
1042 | ||
1043 | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { | |
1044 | .adjust_op_size = nxp_fspi_adjust_op_size, | |
1045 | .supports_op = nxp_fspi_supports_op, | |
1046 | .exec_op = nxp_fspi_exec_op, | |
1047 | }; | |
1048 | ||
1049 | static const struct dm_spi_ops nxp_fspi_ops = { | |
1050 | .claim_bus = nxp_fspi_claim_bus, | |
1051 | .set_speed = nxp_fspi_set_speed, | |
1052 | .set_mode = nxp_fspi_set_mode, | |
1053 | .mem_ops = &nxp_fspi_mem_ops, | |
1054 | }; | |
1055 | ||
1056 | static const struct udevice_id nxp_fspi_ids[] = { | |
1057 | { .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, }, | |
5fb6b824 | 1058 | { .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, }, |
e1aad512 | 1059 | { .compatible = "nxp,imx8mp-fspi", .data = (ulong)&imx8mm_data, }, |
383fded7 MW |
1060 | { } |
1061 | }; | |
1062 | ||
1063 | U_BOOT_DRIVER(nxp_fspi) = { | |
1064 | .name = "nxp_fspi", | |
1065 | .id = UCLASS_SPI, | |
1066 | .of_match = nxp_fspi_ids, | |
1067 | .ops = &nxp_fspi_ops, | |
d1998a9f | 1068 | .of_to_plat = nxp_fspi_of_to_plat, |
41575d8e | 1069 | .priv_auto = sizeof(struct nxp_fspi), |
383fded7 MW |
1070 | .probe = nxp_fspi_probe, |
1071 | }; |