]>
Commit | Line | Data |
---|---|---|
9eefe2a2 SR |
1 | /* |
2 | * This file is part of UBIFS. | |
3 | * | |
4 | * Copyright (C) 2006-2008 Nokia Corporation. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify it | |
7 | * under the terms of the GNU General Public License version 2 as published by | |
8 | * the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | * more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License along with | |
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | |
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
18 | * | |
19 | * Authors: Adrian Hunter | |
20 | * Artem Bityutskiy (Битюцкий Артём) | |
21 | */ | |
22 | ||
23 | /* | |
24 | * This file implements TNC (Tree Node Cache) which caches indexing nodes of | |
25 | * the UBIFS B-tree. | |
26 | * | |
27 | * At the moment the locking rules of the TNC tree are quite simple and | |
28 | * straightforward. We just have a mutex and lock it when we traverse the | |
29 | * tree. If a znode is not in memory, we read it from flash while still having | |
30 | * the mutex locked. | |
31 | */ | |
32 | ||
33 | #include "ubifs.h" | |
34 | ||
35 | /* | |
36 | * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions. | |
37 | * @NAME_LESS: name corresponding to the first argument is less than second | |
38 | * @NAME_MATCHES: names match | |
39 | * @NAME_GREATER: name corresponding to the second argument is greater than | |
40 | * first | |
41 | * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media | |
42 | * | |
43 | * These constants were introduce to improve readability. | |
44 | */ | |
45 | enum { | |
46 | NAME_LESS = 0, | |
47 | NAME_MATCHES = 1, | |
48 | NAME_GREATER = 2, | |
49 | NOT_ON_MEDIA = 3, | |
50 | }; | |
51 | ||
52 | /** | |
53 | * insert_old_idx - record an index node obsoleted since the last commit start. | |
54 | * @c: UBIFS file-system description object | |
55 | * @lnum: LEB number of obsoleted index node | |
56 | * @offs: offset of obsoleted index node | |
57 | * | |
58 | * Returns %0 on success, and a negative error code on failure. | |
59 | * | |
60 | * For recovery, there must always be a complete intact version of the index on | |
61 | * flash at all times. That is called the "old index". It is the index as at the | |
62 | * time of the last successful commit. Many of the index nodes in the old index | |
63 | * may be dirty, but they must not be erased until the next successful commit | |
64 | * (at which point that index becomes the old index). | |
65 | * | |
66 | * That means that the garbage collection and the in-the-gaps method of | |
67 | * committing must be able to determine if an index node is in the old index. | |
68 | * Most of the old index nodes can be found by looking up the TNC using the | |
69 | * 'lookup_znode()' function. However, some of the old index nodes may have | |
70 | * been deleted from the current index or may have been changed so much that | |
71 | * they cannot be easily found. In those cases, an entry is added to an RB-tree. | |
72 | * That is what this function does. The RB-tree is ordered by LEB number and | |
73 | * offset because they uniquely identify the old index node. | |
74 | */ | |
75 | static int insert_old_idx(struct ubifs_info *c, int lnum, int offs) | |
76 | { | |
77 | struct ubifs_old_idx *old_idx, *o; | |
78 | struct rb_node **p, *parent = NULL; | |
79 | ||
80 | old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS); | |
81 | if (unlikely(!old_idx)) | |
82 | return -ENOMEM; | |
83 | old_idx->lnum = lnum; | |
84 | old_idx->offs = offs; | |
85 | ||
86 | p = &c->old_idx.rb_node; | |
87 | while (*p) { | |
88 | parent = *p; | |
89 | o = rb_entry(parent, struct ubifs_old_idx, rb); | |
90 | if (lnum < o->lnum) | |
91 | p = &(*p)->rb_left; | |
92 | else if (lnum > o->lnum) | |
93 | p = &(*p)->rb_right; | |
94 | else if (offs < o->offs) | |
95 | p = &(*p)->rb_left; | |
96 | else if (offs > o->offs) | |
97 | p = &(*p)->rb_right; | |
98 | else { | |
99 | ubifs_err("old idx added twice!"); | |
100 | kfree(old_idx); | |
101 | return 0; | |
102 | } | |
103 | } | |
104 | rb_link_node(&old_idx->rb, parent, p); | |
105 | rb_insert_color(&old_idx->rb, &c->old_idx); | |
106 | return 0; | |
107 | } | |
108 | ||
109 | /** | |
110 | * insert_old_idx_znode - record a znode obsoleted since last commit start. | |
111 | * @c: UBIFS file-system description object | |
112 | * @znode: znode of obsoleted index node | |
113 | * | |
114 | * Returns %0 on success, and a negative error code on failure. | |
115 | */ | |
116 | int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode) | |
117 | { | |
118 | if (znode->parent) { | |
119 | struct ubifs_zbranch *zbr; | |
120 | ||
121 | zbr = &znode->parent->zbranch[znode->iip]; | |
122 | if (zbr->len) | |
123 | return insert_old_idx(c, zbr->lnum, zbr->offs); | |
124 | } else | |
125 | if (c->zroot.len) | |
126 | return insert_old_idx(c, c->zroot.lnum, | |
127 | c->zroot.offs); | |
128 | return 0; | |
129 | } | |
130 | ||
131 | /** | |
132 | * ins_clr_old_idx_znode - record a znode obsoleted since last commit start. | |
133 | * @c: UBIFS file-system description object | |
134 | * @znode: znode of obsoleted index node | |
135 | * | |
136 | * Returns %0 on success, and a negative error code on failure. | |
137 | */ | |
138 | static int ins_clr_old_idx_znode(struct ubifs_info *c, | |
139 | struct ubifs_znode *znode) | |
140 | { | |
141 | int err; | |
142 | ||
143 | if (znode->parent) { | |
144 | struct ubifs_zbranch *zbr; | |
145 | ||
146 | zbr = &znode->parent->zbranch[znode->iip]; | |
147 | if (zbr->len) { | |
148 | err = insert_old_idx(c, zbr->lnum, zbr->offs); | |
149 | if (err) | |
150 | return err; | |
151 | zbr->lnum = 0; | |
152 | zbr->offs = 0; | |
153 | zbr->len = 0; | |
154 | } | |
155 | } else | |
156 | if (c->zroot.len) { | |
157 | err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); | |
158 | if (err) | |
159 | return err; | |
160 | c->zroot.lnum = 0; | |
161 | c->zroot.offs = 0; | |
162 | c->zroot.len = 0; | |
163 | } | |
164 | return 0; | |
165 | } | |
166 | ||
167 | /** | |
168 | * destroy_old_idx - destroy the old_idx RB-tree. | |
169 | * @c: UBIFS file-system description object | |
170 | * | |
171 | * During start commit, the old_idx RB-tree is used to avoid overwriting index | |
172 | * nodes that were in the index last commit but have since been deleted. This | |
173 | * is necessary for recovery i.e. the old index must be kept intact until the | |
174 | * new index is successfully written. The old-idx RB-tree is used for the | |
175 | * in-the-gaps method of writing index nodes and is destroyed every commit. | |
176 | */ | |
177 | void destroy_old_idx(struct ubifs_info *c) | |
178 | { | |
179 | struct rb_node *this = c->old_idx.rb_node; | |
180 | struct ubifs_old_idx *old_idx; | |
181 | ||
182 | while (this) { | |
183 | if (this->rb_left) { | |
184 | this = this->rb_left; | |
185 | continue; | |
186 | } else if (this->rb_right) { | |
187 | this = this->rb_right; | |
188 | continue; | |
189 | } | |
190 | old_idx = rb_entry(this, struct ubifs_old_idx, rb); | |
191 | this = rb_parent(this); | |
192 | if (this) { | |
193 | if (this->rb_left == &old_idx->rb) | |
194 | this->rb_left = NULL; | |
195 | else | |
196 | this->rb_right = NULL; | |
197 | } | |
198 | kfree(old_idx); | |
199 | } | |
200 | c->old_idx = RB_ROOT; | |
201 | } | |
202 | ||
203 | /** | |
204 | * copy_znode - copy a dirty znode. | |
205 | * @c: UBIFS file-system description object | |
206 | * @znode: znode to copy | |
207 | * | |
208 | * A dirty znode being committed may not be changed, so it is copied. | |
209 | */ | |
210 | static struct ubifs_znode *copy_znode(struct ubifs_info *c, | |
211 | struct ubifs_znode *znode) | |
212 | { | |
213 | struct ubifs_znode *zn; | |
214 | ||
215 | zn = kmalloc(c->max_znode_sz, GFP_NOFS); | |
216 | if (unlikely(!zn)) | |
217 | return ERR_PTR(-ENOMEM); | |
218 | ||
219 | memcpy(zn, znode, c->max_znode_sz); | |
220 | zn->cnext = NULL; | |
221 | __set_bit(DIRTY_ZNODE, &zn->flags); | |
222 | __clear_bit(COW_ZNODE, &zn->flags); | |
223 | ||
224 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); | |
225 | __set_bit(OBSOLETE_ZNODE, &znode->flags); | |
226 | ||
227 | if (znode->level != 0) { | |
228 | int i; | |
229 | const int n = zn->child_cnt; | |
230 | ||
231 | /* The children now have new parent */ | |
232 | for (i = 0; i < n; i++) { | |
233 | struct ubifs_zbranch *zbr = &zn->zbranch[i]; | |
234 | ||
235 | if (zbr->znode) | |
236 | zbr->znode->parent = zn; | |
237 | } | |
238 | } | |
239 | ||
240 | atomic_long_inc(&c->dirty_zn_cnt); | |
241 | return zn; | |
242 | } | |
243 | ||
244 | /** | |
245 | * add_idx_dirt - add dirt due to a dirty znode. | |
246 | * @c: UBIFS file-system description object | |
247 | * @lnum: LEB number of index node | |
248 | * @dirt: size of index node | |
249 | * | |
250 | * This function updates lprops dirty space and the new size of the index. | |
251 | */ | |
252 | static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt) | |
253 | { | |
254 | c->calc_idx_sz -= ALIGN(dirt, 8); | |
255 | return ubifs_add_dirt(c, lnum, dirt); | |
256 | } | |
257 | ||
258 | /** | |
259 | * dirty_cow_znode - ensure a znode is not being committed. | |
260 | * @c: UBIFS file-system description object | |
261 | * @zbr: branch of znode to check | |
262 | * | |
263 | * Returns dirtied znode on success or negative error code on failure. | |
264 | */ | |
265 | static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c, | |
266 | struct ubifs_zbranch *zbr) | |
267 | { | |
268 | struct ubifs_znode *znode = zbr->znode; | |
269 | struct ubifs_znode *zn; | |
270 | int err; | |
271 | ||
272 | if (!test_bit(COW_ZNODE, &znode->flags)) { | |
273 | /* znode is not being committed */ | |
274 | if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) { | |
275 | atomic_long_inc(&c->dirty_zn_cnt); | |
276 | atomic_long_dec(&c->clean_zn_cnt); | |
277 | atomic_long_dec(&ubifs_clean_zn_cnt); | |
278 | err = add_idx_dirt(c, zbr->lnum, zbr->len); | |
279 | if (unlikely(err)) | |
280 | return ERR_PTR(err); | |
281 | } | |
282 | return znode; | |
283 | } | |
284 | ||
285 | zn = copy_znode(c, znode); | |
286 | if (IS_ERR(zn)) | |
287 | return zn; | |
288 | ||
289 | if (zbr->len) { | |
290 | err = insert_old_idx(c, zbr->lnum, zbr->offs); | |
291 | if (unlikely(err)) | |
292 | return ERR_PTR(err); | |
293 | err = add_idx_dirt(c, zbr->lnum, zbr->len); | |
294 | } else | |
295 | err = 0; | |
296 | ||
297 | zbr->znode = zn; | |
298 | zbr->lnum = 0; | |
299 | zbr->offs = 0; | |
300 | zbr->len = 0; | |
301 | ||
302 | if (unlikely(err)) | |
303 | return ERR_PTR(err); | |
304 | return zn; | |
305 | } | |
306 | ||
307 | /** | |
308 | * lnc_add - add a leaf node to the leaf node cache. | |
309 | * @c: UBIFS file-system description object | |
310 | * @zbr: zbranch of leaf node | |
311 | * @node: leaf node | |
312 | * | |
313 | * Leaf nodes are non-index nodes directory entry nodes or data nodes. The | |
314 | * purpose of the leaf node cache is to save re-reading the same leaf node over | |
315 | * and over again. Most things are cached by VFS, however the file system must | |
316 | * cache directory entries for readdir and for resolving hash collisions. The | |
317 | * present implementation of the leaf node cache is extremely simple, and | |
318 | * allows for error returns that are not used but that may be needed if a more | |
319 | * complex implementation is created. | |
320 | * | |
321 | * Note, this function does not add the @node object to LNC directly, but | |
322 | * allocates a copy of the object and adds the copy to LNC. The reason for this | |
323 | * is that @node has been allocated outside of the TNC subsystem and will be | |
324 | * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC | |
325 | * may be changed at any time, e.g. freed by the shrinker. | |
326 | */ | |
327 | static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr, | |
328 | const void *node) | |
329 | { | |
330 | int err; | |
331 | void *lnc_node; | |
332 | const struct ubifs_dent_node *dent = node; | |
333 | ||
334 | ubifs_assert(!zbr->leaf); | |
335 | ubifs_assert(zbr->len != 0); | |
336 | ubifs_assert(is_hash_key(c, &zbr->key)); | |
337 | ||
338 | err = ubifs_validate_entry(c, dent); | |
339 | if (err) { | |
340 | dbg_dump_stack(); | |
341 | dbg_dump_node(c, dent); | |
342 | return err; | |
343 | } | |
344 | ||
345 | lnc_node = kmalloc(zbr->len, GFP_NOFS); | |
346 | if (!lnc_node) | |
347 | /* We don't have to have the cache, so no error */ | |
348 | return 0; | |
349 | ||
350 | memcpy(lnc_node, node, zbr->len); | |
351 | zbr->leaf = lnc_node; | |
352 | return 0; | |
353 | } | |
354 | ||
355 | /** | |
356 | * lnc_add_directly - add a leaf node to the leaf-node-cache. | |
357 | * @c: UBIFS file-system description object | |
358 | * @zbr: zbranch of leaf node | |
359 | * @node: leaf node | |
360 | * | |
361 | * This function is similar to 'lnc_add()', but it does not create a copy of | |
362 | * @node but inserts @node to TNC directly. | |
363 | */ | |
364 | static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr, | |
365 | void *node) | |
366 | { | |
367 | int err; | |
368 | ||
369 | ubifs_assert(!zbr->leaf); | |
370 | ubifs_assert(zbr->len != 0); | |
371 | ||
372 | err = ubifs_validate_entry(c, node); | |
373 | if (err) { | |
374 | dbg_dump_stack(); | |
375 | dbg_dump_node(c, node); | |
376 | return err; | |
377 | } | |
378 | ||
379 | zbr->leaf = node; | |
380 | return 0; | |
381 | } | |
382 | ||
383 | /** | |
384 | * lnc_free - remove a leaf node from the leaf node cache. | |
385 | * @zbr: zbranch of leaf node | |
386 | * @node: leaf node | |
387 | */ | |
388 | static void lnc_free(struct ubifs_zbranch *zbr) | |
389 | { | |
390 | if (!zbr->leaf) | |
391 | return; | |
392 | kfree(zbr->leaf); | |
393 | zbr->leaf = NULL; | |
394 | } | |
395 | ||
396 | /** | |
397 | * tnc_read_node_nm - read a "hashed" leaf node. | |
398 | * @c: UBIFS file-system description object | |
399 | * @zbr: key and position of the node | |
400 | * @node: node is returned here | |
401 | * | |
402 | * This function reads a "hashed" node defined by @zbr from the leaf node cache | |
403 | * (in it is there) or from the hash media, in which case the node is also | |
404 | * added to LNC. Returns zero in case of success or a negative negative error | |
405 | * code in case of failure. | |
406 | */ | |
407 | static int tnc_read_node_nm(struct ubifs_info *c, struct ubifs_zbranch *zbr, | |
408 | void *node) | |
409 | { | |
410 | int err; | |
411 | ||
412 | ubifs_assert(is_hash_key(c, &zbr->key)); | |
413 | ||
414 | if (zbr->leaf) { | |
415 | /* Read from the leaf node cache */ | |
416 | ubifs_assert(zbr->len != 0); | |
417 | memcpy(node, zbr->leaf, zbr->len); | |
418 | return 0; | |
419 | } | |
420 | ||
421 | err = ubifs_tnc_read_node(c, zbr, node); | |
422 | if (err) | |
423 | return err; | |
424 | ||
425 | /* Add the node to the leaf node cache */ | |
426 | err = lnc_add(c, zbr, node); | |
427 | return err; | |
428 | } | |
429 | ||
430 | /** | |
431 | * try_read_node - read a node if it is a node. | |
432 | * @c: UBIFS file-system description object | |
433 | * @buf: buffer to read to | |
434 | * @type: node type | |
435 | * @len: node length (not aligned) | |
436 | * @lnum: LEB number of node to read | |
437 | * @offs: offset of node to read | |
438 | * | |
439 | * This function tries to read a node of known type and length, checks it and | |
440 | * stores it in @buf. This function returns %1 if a node is present and %0 if | |
441 | * a node is not present. A negative error code is returned for I/O errors. | |
442 | * This function performs that same function as ubifs_read_node except that | |
443 | * it does not require that there is actually a node present and instead | |
444 | * the return code indicates if a node was read. | |
445 | * | |
446 | * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc | |
447 | * is true (it is controlled by corresponding mount option). However, if | |
448 | * @c->always_chk_crc is true, @c->no_chk_data_crc is ignored and CRC is always | |
449 | * checked. | |
450 | */ | |
451 | static int try_read_node(const struct ubifs_info *c, void *buf, int type, | |
452 | int len, int lnum, int offs) | |
453 | { | |
454 | int err, node_len; | |
455 | struct ubifs_ch *ch = buf; | |
456 | uint32_t crc, node_crc; | |
457 | ||
458 | dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); | |
459 | ||
460 | err = ubi_read(c->ubi, lnum, buf, offs, len); | |
461 | if (err) { | |
462 | ubifs_err("cannot read node type %d from LEB %d:%d, error %d", | |
463 | type, lnum, offs, err); | |
464 | return err; | |
465 | } | |
466 | ||
467 | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) | |
468 | return 0; | |
469 | ||
470 | if (ch->node_type != type) | |
471 | return 0; | |
472 | ||
473 | node_len = le32_to_cpu(ch->len); | |
474 | if (node_len != len) | |
475 | return 0; | |
476 | ||
477 | if (type == UBIFS_DATA_NODE && !c->always_chk_crc && c->no_chk_data_crc) | |
478 | return 1; | |
479 | ||
480 | crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); | |
481 | node_crc = le32_to_cpu(ch->crc); | |
482 | if (crc != node_crc) | |
483 | return 0; | |
484 | ||
485 | return 1; | |
486 | } | |
487 | ||
488 | /** | |
489 | * fallible_read_node - try to read a leaf node. | |
490 | * @c: UBIFS file-system description object | |
491 | * @key: key of node to read | |
492 | * @zbr: position of node | |
493 | * @node: node returned | |
494 | * | |
495 | * This function tries to read a node and returns %1 if the node is read, %0 | |
496 | * if the node is not present, and a negative error code in the case of error. | |
497 | */ | |
498 | static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key, | |
499 | struct ubifs_zbranch *zbr, void *node) | |
500 | { | |
501 | int ret; | |
502 | ||
503 | dbg_tnc("LEB %d:%d, key %s", zbr->lnum, zbr->offs, DBGKEY(key)); | |
504 | ||
505 | ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum, | |
506 | zbr->offs); | |
507 | if (ret == 1) { | |
508 | union ubifs_key node_key; | |
509 | struct ubifs_dent_node *dent = node; | |
510 | ||
511 | /* All nodes have key in the same place */ | |
512 | key_read(c, &dent->key, &node_key); | |
513 | if (keys_cmp(c, key, &node_key) != 0) | |
514 | ret = 0; | |
515 | } | |
516 | if (ret == 0 && c->replaying) | |
517 | dbg_mnt("dangling branch LEB %d:%d len %d, key %s", | |
518 | zbr->lnum, zbr->offs, zbr->len, DBGKEY(key)); | |
519 | return ret; | |
520 | } | |
521 | ||
522 | /** | |
523 | * matches_name - determine if a direntry or xattr entry matches a given name. | |
524 | * @c: UBIFS file-system description object | |
525 | * @zbr: zbranch of dent | |
526 | * @nm: name to match | |
527 | * | |
528 | * This function checks if xentry/direntry referred by zbranch @zbr matches name | |
529 | * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by | |
530 | * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case | |
531 | * of failure, a negative error code is returned. | |
532 | */ | |
533 | static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr, | |
534 | const struct qstr *nm) | |
535 | { | |
536 | struct ubifs_dent_node *dent; | |
537 | int nlen, err; | |
538 | ||
539 | /* If possible, match against the dent in the leaf node cache */ | |
540 | if (!zbr->leaf) { | |
541 | dent = kmalloc(zbr->len, GFP_NOFS); | |
542 | if (!dent) | |
543 | return -ENOMEM; | |
544 | ||
545 | err = ubifs_tnc_read_node(c, zbr, dent); | |
546 | if (err) | |
547 | goto out_free; | |
548 | ||
549 | /* Add the node to the leaf node cache */ | |
550 | err = lnc_add_directly(c, zbr, dent); | |
551 | if (err) | |
552 | goto out_free; | |
553 | } else | |
554 | dent = zbr->leaf; | |
555 | ||
556 | nlen = le16_to_cpu(dent->nlen); | |
557 | err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); | |
558 | if (err == 0) { | |
559 | if (nlen == nm->len) | |
560 | return NAME_MATCHES; | |
561 | else if (nlen < nm->len) | |
562 | return NAME_LESS; | |
563 | else | |
564 | return NAME_GREATER; | |
565 | } else if (err < 0) | |
566 | return NAME_LESS; | |
567 | else | |
568 | return NAME_GREATER; | |
569 | ||
570 | out_free: | |
571 | kfree(dent); | |
572 | return err; | |
573 | } | |
574 | ||
575 | /** | |
576 | * get_znode - get a TNC znode that may not be loaded yet. | |
577 | * @c: UBIFS file-system description object | |
578 | * @znode: parent znode | |
579 | * @n: znode branch slot number | |
580 | * | |
581 | * This function returns the znode or a negative error code. | |
582 | */ | |
583 | static struct ubifs_znode *get_znode(struct ubifs_info *c, | |
584 | struct ubifs_znode *znode, int n) | |
585 | { | |
586 | struct ubifs_zbranch *zbr; | |
587 | ||
588 | zbr = &znode->zbranch[n]; | |
589 | if (zbr->znode) | |
590 | znode = zbr->znode; | |
591 | else | |
592 | znode = ubifs_load_znode(c, zbr, znode, n); | |
593 | return znode; | |
594 | } | |
595 | ||
596 | /** | |
597 | * tnc_next - find next TNC entry. | |
598 | * @c: UBIFS file-system description object | |
599 | * @zn: znode is passed and returned here | |
600 | * @n: znode branch slot number is passed and returned here | |
601 | * | |
602 | * This function returns %0 if the next TNC entry is found, %-ENOENT if there is | |
603 | * no next entry, or a negative error code otherwise. | |
604 | */ | |
605 | static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n) | |
606 | { | |
607 | struct ubifs_znode *znode = *zn; | |
608 | int nn = *n; | |
609 | ||
610 | nn += 1; | |
611 | if (nn < znode->child_cnt) { | |
612 | *n = nn; | |
613 | return 0; | |
614 | } | |
615 | while (1) { | |
616 | struct ubifs_znode *zp; | |
617 | ||
618 | zp = znode->parent; | |
619 | if (!zp) | |
620 | return -ENOENT; | |
621 | nn = znode->iip + 1; | |
622 | znode = zp; | |
623 | if (nn < znode->child_cnt) { | |
624 | znode = get_znode(c, znode, nn); | |
625 | if (IS_ERR(znode)) | |
626 | return PTR_ERR(znode); | |
627 | while (znode->level != 0) { | |
628 | znode = get_znode(c, znode, 0); | |
629 | if (IS_ERR(znode)) | |
630 | return PTR_ERR(znode); | |
631 | } | |
632 | nn = 0; | |
633 | break; | |
634 | } | |
635 | } | |
636 | *zn = znode; | |
637 | *n = nn; | |
638 | return 0; | |
639 | } | |
640 | ||
641 | /** | |
642 | * tnc_prev - find previous TNC entry. | |
643 | * @c: UBIFS file-system description object | |
644 | * @zn: znode is returned here | |
645 | * @n: znode branch slot number is passed and returned here | |
646 | * | |
647 | * This function returns %0 if the previous TNC entry is found, %-ENOENT if | |
648 | * there is no next entry, or a negative error code otherwise. | |
649 | */ | |
650 | static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n) | |
651 | { | |
652 | struct ubifs_znode *znode = *zn; | |
653 | int nn = *n; | |
654 | ||
655 | if (nn > 0) { | |
656 | *n = nn - 1; | |
657 | return 0; | |
658 | } | |
659 | while (1) { | |
660 | struct ubifs_znode *zp; | |
661 | ||
662 | zp = znode->parent; | |
663 | if (!zp) | |
664 | return -ENOENT; | |
665 | nn = znode->iip - 1; | |
666 | znode = zp; | |
667 | if (nn >= 0) { | |
668 | znode = get_znode(c, znode, nn); | |
669 | if (IS_ERR(znode)) | |
670 | return PTR_ERR(znode); | |
671 | while (znode->level != 0) { | |
672 | nn = znode->child_cnt - 1; | |
673 | znode = get_znode(c, znode, nn); | |
674 | if (IS_ERR(znode)) | |
675 | return PTR_ERR(znode); | |
676 | } | |
677 | nn = znode->child_cnt - 1; | |
678 | break; | |
679 | } | |
680 | } | |
681 | *zn = znode; | |
682 | *n = nn; | |
683 | return 0; | |
684 | } | |
685 | ||
686 | /** | |
687 | * resolve_collision - resolve a collision. | |
688 | * @c: UBIFS file-system description object | |
689 | * @key: key of a directory or extended attribute entry | |
690 | * @zn: znode is returned here | |
691 | * @n: zbranch number is passed and returned here | |
692 | * @nm: name of the entry | |
693 | * | |
694 | * This function is called for "hashed" keys to make sure that the found key | |
695 | * really corresponds to the looked up node (directory or extended attribute | |
696 | * entry). It returns %1 and sets @zn and @n if the collision is resolved. | |
697 | * %0 is returned if @nm is not found and @zn and @n are set to the previous | |
698 | * entry, i.e. to the entry after which @nm could follow if it were in TNC. | |
699 | * This means that @n may be set to %-1 if the leftmost key in @zn is the | |
700 | * previous one. A negative error code is returned on failures. | |
701 | */ | |
702 | static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key, | |
703 | struct ubifs_znode **zn, int *n, | |
704 | const struct qstr *nm) | |
705 | { | |
706 | int err; | |
707 | ||
708 | err = matches_name(c, &(*zn)->zbranch[*n], nm); | |
709 | if (unlikely(err < 0)) | |
710 | return err; | |
711 | if (err == NAME_MATCHES) | |
712 | return 1; | |
713 | ||
714 | if (err == NAME_GREATER) { | |
715 | /* Look left */ | |
716 | while (1) { | |
717 | err = tnc_prev(c, zn, n); | |
718 | if (err == -ENOENT) { | |
719 | ubifs_assert(*n == 0); | |
720 | *n = -1; | |
721 | return 0; | |
722 | } | |
723 | if (err < 0) | |
724 | return err; | |
725 | if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { | |
726 | /* | |
727 | * We have found the branch after which we would | |
728 | * like to insert, but inserting in this znode | |
729 | * may still be wrong. Consider the following 3 | |
730 | * znodes, in the case where we are resolving a | |
731 | * collision with Key2. | |
732 | * | |
733 | * znode zp | |
734 | * ---------------------- | |
735 | * level 1 | Key0 | Key1 | | |
736 | * ----------------------- | |
737 | * | | | |
738 | * znode za | | znode zb | |
739 | * ------------ ------------ | |
740 | * level 0 | Key0 | | Key2 | | |
741 | * ------------ ------------ | |
742 | * | |
743 | * The lookup finds Key2 in znode zb. Lets say | |
744 | * there is no match and the name is greater so | |
745 | * we look left. When we find Key0, we end up | |
746 | * here. If we return now, we will insert into | |
747 | * znode za at slot n = 1. But that is invalid | |
748 | * according to the parent's keys. Key2 must | |
749 | * be inserted into znode zb. | |
750 | * | |
751 | * Note, this problem is not relevant for the | |
752 | * case when we go right, because | |
753 | * 'tnc_insert()' would correct the parent key. | |
754 | */ | |
755 | if (*n == (*zn)->child_cnt - 1) { | |
756 | err = tnc_next(c, zn, n); | |
757 | if (err) { | |
758 | /* Should be impossible */ | |
759 | ubifs_assert(0); | |
760 | if (err == -ENOENT) | |
761 | err = -EINVAL; | |
762 | return err; | |
763 | } | |
764 | ubifs_assert(*n == 0); | |
765 | *n = -1; | |
766 | } | |
767 | return 0; | |
768 | } | |
769 | err = matches_name(c, &(*zn)->zbranch[*n], nm); | |
770 | if (err < 0) | |
771 | return err; | |
772 | if (err == NAME_LESS) | |
773 | return 0; | |
774 | if (err == NAME_MATCHES) | |
775 | return 1; | |
776 | ubifs_assert(err == NAME_GREATER); | |
777 | } | |
778 | } else { | |
779 | int nn = *n; | |
780 | struct ubifs_znode *znode = *zn; | |
781 | ||
782 | /* Look right */ | |
783 | while (1) { | |
784 | err = tnc_next(c, &znode, &nn); | |
785 | if (err == -ENOENT) | |
786 | return 0; | |
787 | if (err < 0) | |
788 | return err; | |
789 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | |
790 | return 0; | |
791 | err = matches_name(c, &znode->zbranch[nn], nm); | |
792 | if (err < 0) | |
793 | return err; | |
794 | if (err == NAME_GREATER) | |
795 | return 0; | |
796 | *zn = znode; | |
797 | *n = nn; | |
798 | if (err == NAME_MATCHES) | |
799 | return 1; | |
800 | ubifs_assert(err == NAME_LESS); | |
801 | } | |
802 | } | |
803 | } | |
804 | ||
805 | /** | |
806 | * fallible_matches_name - determine if a dent matches a given name. | |
807 | * @c: UBIFS file-system description object | |
808 | * @zbr: zbranch of dent | |
809 | * @nm: name to match | |
810 | * | |
811 | * This is a "fallible" version of 'matches_name()' function which does not | |
812 | * panic if the direntry/xentry referred by @zbr does not exist on the media. | |
813 | * | |
814 | * This function checks if xentry/direntry referred by zbranch @zbr matches name | |
815 | * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr | |
816 | * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA | |
817 | * if xentry/direntry referred by @zbr does not exist on the media. A negative | |
818 | * error code is returned in case of failure. | |
819 | */ | |
820 | static int fallible_matches_name(struct ubifs_info *c, | |
821 | struct ubifs_zbranch *zbr, | |
822 | const struct qstr *nm) | |
823 | { | |
824 | struct ubifs_dent_node *dent; | |
825 | int nlen, err; | |
826 | ||
827 | /* If possible, match against the dent in the leaf node cache */ | |
828 | if (!zbr->leaf) { | |
829 | dent = kmalloc(zbr->len, GFP_NOFS); | |
830 | if (!dent) | |
831 | return -ENOMEM; | |
832 | ||
833 | err = fallible_read_node(c, &zbr->key, zbr, dent); | |
834 | if (err < 0) | |
835 | goto out_free; | |
836 | if (err == 0) { | |
837 | /* The node was not present */ | |
838 | err = NOT_ON_MEDIA; | |
839 | goto out_free; | |
840 | } | |
841 | ubifs_assert(err == 1); | |
842 | ||
843 | err = lnc_add_directly(c, zbr, dent); | |
844 | if (err) | |
845 | goto out_free; | |
846 | } else | |
847 | dent = zbr->leaf; | |
848 | ||
849 | nlen = le16_to_cpu(dent->nlen); | |
850 | err = memcmp(dent->name, nm->name, min_t(int, nlen, nm->len)); | |
851 | if (err == 0) { | |
852 | if (nlen == nm->len) | |
853 | return NAME_MATCHES; | |
854 | else if (nlen < nm->len) | |
855 | return NAME_LESS; | |
856 | else | |
857 | return NAME_GREATER; | |
858 | } else if (err < 0) | |
859 | return NAME_LESS; | |
860 | else | |
861 | return NAME_GREATER; | |
862 | ||
863 | out_free: | |
864 | kfree(dent); | |
865 | return err; | |
866 | } | |
867 | ||
868 | /** | |
869 | * fallible_resolve_collision - resolve a collision even if nodes are missing. | |
870 | * @c: UBIFS file-system description object | |
871 | * @key: key | |
872 | * @zn: znode is returned here | |
873 | * @n: branch number is passed and returned here | |
874 | * @nm: name of directory entry | |
875 | * @adding: indicates caller is adding a key to the TNC | |
876 | * | |
877 | * This is a "fallible" version of the 'resolve_collision()' function which | |
878 | * does not panic if one of the nodes referred to by TNC does not exist on the | |
879 | * media. This may happen when replaying the journal if a deleted node was | |
880 | * Garbage-collected and the commit was not done. A branch that refers to a node | |
881 | * that is not present is called a dangling branch. The following are the return | |
882 | * codes for this function: | |
883 | * o if @nm was found, %1 is returned and @zn and @n are set to the found | |
884 | * branch; | |
885 | * o if we are @adding and @nm was not found, %0 is returned; | |
886 | * o if we are not @adding and @nm was not found, but a dangling branch was | |
887 | * found, then %1 is returned and @zn and @n are set to the dangling branch; | |
888 | * o a negative error code is returned in case of failure. | |
889 | */ | |
890 | static int fallible_resolve_collision(struct ubifs_info *c, | |
891 | const union ubifs_key *key, | |
892 | struct ubifs_znode **zn, int *n, | |
893 | const struct qstr *nm, int adding) | |
894 | { | |
895 | struct ubifs_znode *o_znode = NULL, *znode = *zn; | |
896 | int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n; | |
897 | ||
898 | cmp = fallible_matches_name(c, &znode->zbranch[nn], nm); | |
899 | if (unlikely(cmp < 0)) | |
900 | return cmp; | |
901 | if (cmp == NAME_MATCHES) | |
902 | return 1; | |
903 | if (cmp == NOT_ON_MEDIA) { | |
904 | o_znode = znode; | |
905 | o_n = nn; | |
906 | /* | |
907 | * We are unlucky and hit a dangling branch straight away. | |
908 | * Now we do not really know where to go to find the needed | |
909 | * branch - to the left or to the right. Well, let's try left. | |
910 | */ | |
911 | unsure = 1; | |
912 | } else if (!adding) | |
913 | unsure = 1; /* Remove a dangling branch wherever it is */ | |
914 | ||
915 | if (cmp == NAME_GREATER || unsure) { | |
916 | /* Look left */ | |
917 | while (1) { | |
918 | err = tnc_prev(c, zn, n); | |
919 | if (err == -ENOENT) { | |
920 | ubifs_assert(*n == 0); | |
921 | *n = -1; | |
922 | break; | |
923 | } | |
924 | if (err < 0) | |
925 | return err; | |
926 | if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) { | |
927 | /* See comments in 'resolve_collision()' */ | |
928 | if (*n == (*zn)->child_cnt - 1) { | |
929 | err = tnc_next(c, zn, n); | |
930 | if (err) { | |
931 | /* Should be impossible */ | |
932 | ubifs_assert(0); | |
933 | if (err == -ENOENT) | |
934 | err = -EINVAL; | |
935 | return err; | |
936 | } | |
937 | ubifs_assert(*n == 0); | |
938 | *n = -1; | |
939 | } | |
940 | break; | |
941 | } | |
942 | err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm); | |
943 | if (err < 0) | |
944 | return err; | |
945 | if (err == NAME_MATCHES) | |
946 | return 1; | |
947 | if (err == NOT_ON_MEDIA) { | |
948 | o_znode = *zn; | |
949 | o_n = *n; | |
950 | continue; | |
951 | } | |
952 | if (!adding) | |
953 | continue; | |
954 | if (err == NAME_LESS) | |
955 | break; | |
956 | else | |
957 | unsure = 0; | |
958 | } | |
959 | } | |
960 | ||
961 | if (cmp == NAME_LESS || unsure) { | |
962 | /* Look right */ | |
963 | *zn = znode; | |
964 | *n = nn; | |
965 | while (1) { | |
966 | err = tnc_next(c, &znode, &nn); | |
967 | if (err == -ENOENT) | |
968 | break; | |
969 | if (err < 0) | |
970 | return err; | |
971 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | |
972 | break; | |
973 | err = fallible_matches_name(c, &znode->zbranch[nn], nm); | |
974 | if (err < 0) | |
975 | return err; | |
976 | if (err == NAME_GREATER) | |
977 | break; | |
978 | *zn = znode; | |
979 | *n = nn; | |
980 | if (err == NAME_MATCHES) | |
981 | return 1; | |
982 | if (err == NOT_ON_MEDIA) { | |
983 | o_znode = znode; | |
984 | o_n = nn; | |
985 | } | |
986 | } | |
987 | } | |
988 | ||
989 | /* Never match a dangling branch when adding */ | |
990 | if (adding || !o_znode) | |
991 | return 0; | |
992 | ||
993 | dbg_mnt("dangling match LEB %d:%d len %d %s", | |
994 | o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs, | |
995 | o_znode->zbranch[o_n].len, DBGKEY(key)); | |
996 | *zn = o_znode; | |
997 | *n = o_n; | |
998 | return 1; | |
999 | } | |
1000 | ||
1001 | /** | |
1002 | * matches_position - determine if a zbranch matches a given position. | |
1003 | * @zbr: zbranch of dent | |
1004 | * @lnum: LEB number of dent to match | |
1005 | * @offs: offset of dent to match | |
1006 | * | |
1007 | * This function returns %1 if @lnum:@offs matches, and %0 otherwise. | |
1008 | */ | |
1009 | static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs) | |
1010 | { | |
1011 | if (zbr->lnum == lnum && zbr->offs == offs) | |
1012 | return 1; | |
1013 | else | |
1014 | return 0; | |
1015 | } | |
1016 | ||
1017 | /** | |
1018 | * resolve_collision_directly - resolve a collision directly. | |
1019 | * @c: UBIFS file-system description object | |
1020 | * @key: key of directory entry | |
1021 | * @zn: znode is passed and returned here | |
1022 | * @n: zbranch number is passed and returned here | |
1023 | * @lnum: LEB number of dent node to match | |
1024 | * @offs: offset of dent node to match | |
1025 | * | |
1026 | * This function is used for "hashed" keys to make sure the found directory or | |
1027 | * extended attribute entry node is what was looked for. It is used when the | |
1028 | * flash address of the right node is known (@lnum:@offs) which makes it much | |
1029 | * easier to resolve collisions (no need to read entries and match full | |
1030 | * names). This function returns %1 and sets @zn and @n if the collision is | |
1031 | * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the | |
1032 | * previous directory entry. Otherwise a negative error code is returned. | |
1033 | */ | |
1034 | static int resolve_collision_directly(struct ubifs_info *c, | |
1035 | const union ubifs_key *key, | |
1036 | struct ubifs_znode **zn, int *n, | |
1037 | int lnum, int offs) | |
1038 | { | |
1039 | struct ubifs_znode *znode; | |
1040 | int nn, err; | |
1041 | ||
1042 | znode = *zn; | |
1043 | nn = *n; | |
1044 | if (matches_position(&znode->zbranch[nn], lnum, offs)) | |
1045 | return 1; | |
1046 | ||
1047 | /* Look left */ | |
1048 | while (1) { | |
1049 | err = tnc_prev(c, &znode, &nn); | |
1050 | if (err == -ENOENT) | |
1051 | break; | |
1052 | if (err < 0) | |
1053 | return err; | |
1054 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | |
1055 | break; | |
1056 | if (matches_position(&znode->zbranch[nn], lnum, offs)) { | |
1057 | *zn = znode; | |
1058 | *n = nn; | |
1059 | return 1; | |
1060 | } | |
1061 | } | |
1062 | ||
1063 | /* Look right */ | |
1064 | znode = *zn; | |
1065 | nn = *n; | |
1066 | while (1) { | |
1067 | err = tnc_next(c, &znode, &nn); | |
1068 | if (err == -ENOENT) | |
1069 | return 0; | |
1070 | if (err < 0) | |
1071 | return err; | |
1072 | if (keys_cmp(c, &znode->zbranch[nn].key, key)) | |
1073 | return 0; | |
1074 | *zn = znode; | |
1075 | *n = nn; | |
1076 | if (matches_position(&znode->zbranch[nn], lnum, offs)) | |
1077 | return 1; | |
1078 | } | |
1079 | } | |
1080 | ||
1081 | /** | |
1082 | * dirty_cow_bottom_up - dirty a znode and its ancestors. | |
1083 | * @c: UBIFS file-system description object | |
1084 | * @znode: znode to dirty | |
1085 | * | |
1086 | * If we do not have a unique key that resides in a znode, then we cannot | |
1087 | * dirty that znode from the top down (i.e. by using lookup_level0_dirty) | |
1088 | * This function records the path back to the last dirty ancestor, and then | |
1089 | * dirties the znodes on that path. | |
1090 | */ | |
1091 | static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c, | |
1092 | struct ubifs_znode *znode) | |
1093 | { | |
1094 | struct ubifs_znode *zp; | |
1095 | int *path = c->bottom_up_buf, p = 0; | |
1096 | ||
1097 | ubifs_assert(c->zroot.znode); | |
1098 | ubifs_assert(znode); | |
1099 | if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) { | |
1100 | kfree(c->bottom_up_buf); | |
1101 | c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int), | |
1102 | GFP_NOFS); | |
1103 | if (!c->bottom_up_buf) | |
1104 | return ERR_PTR(-ENOMEM); | |
1105 | path = c->bottom_up_buf; | |
1106 | } | |
1107 | if (c->zroot.znode->level) { | |
1108 | /* Go up until parent is dirty */ | |
1109 | while (1) { | |
1110 | int n; | |
1111 | ||
1112 | zp = znode->parent; | |
1113 | if (!zp) | |
1114 | break; | |
1115 | n = znode->iip; | |
1116 | ubifs_assert(p < c->zroot.znode->level); | |
1117 | path[p++] = n; | |
1118 | if (!zp->cnext && ubifs_zn_dirty(znode)) | |
1119 | break; | |
1120 | znode = zp; | |
1121 | } | |
1122 | } | |
1123 | ||
1124 | /* Come back down, dirtying as we go */ | |
1125 | while (1) { | |
1126 | struct ubifs_zbranch *zbr; | |
1127 | ||
1128 | zp = znode->parent; | |
1129 | if (zp) { | |
1130 | ubifs_assert(path[p - 1] >= 0); | |
1131 | ubifs_assert(path[p - 1] < zp->child_cnt); | |
1132 | zbr = &zp->zbranch[path[--p]]; | |
1133 | znode = dirty_cow_znode(c, zbr); | |
1134 | } else { | |
1135 | ubifs_assert(znode == c->zroot.znode); | |
1136 | znode = dirty_cow_znode(c, &c->zroot); | |
1137 | } | |
1138 | if (IS_ERR(znode) || !p) | |
1139 | break; | |
1140 | ubifs_assert(path[p - 1] >= 0); | |
1141 | ubifs_assert(path[p - 1] < znode->child_cnt); | |
1142 | znode = znode->zbranch[path[p - 1]].znode; | |
1143 | } | |
1144 | ||
1145 | return znode; | |
1146 | } | |
1147 | ||
1148 | /** | |
1149 | * ubifs_lookup_level0 - search for zero-level znode. | |
1150 | * @c: UBIFS file-system description object | |
1151 | * @key: key to lookup | |
1152 | * @zn: znode is returned here | |
1153 | * @n: znode branch slot number is returned here | |
1154 | * | |
1155 | * This function looks up the TNC tree and search for zero-level znode which | |
1156 | * refers key @key. The found zero-level znode is returned in @zn. There are 3 | |
1157 | * cases: | |
1158 | * o exact match, i.e. the found zero-level znode contains key @key, then %1 | |
1159 | * is returned and slot number of the matched branch is stored in @n; | |
1160 | * o not exact match, which means that zero-level znode does not contain | |
1161 | * @key, then %0 is returned and slot number of the closed branch is stored | |
1162 | * in @n; | |
1163 | * o @key is so small that it is even less than the lowest key of the | |
1164 | * leftmost zero-level node, then %0 is returned and %0 is stored in @n. | |
1165 | * | |
1166 | * Note, when the TNC tree is traversed, some znodes may be absent, then this | |
1167 | * function reads corresponding indexing nodes and inserts them to TNC. In | |
1168 | * case of failure, a negative error code is returned. | |
1169 | */ | |
1170 | int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, | |
1171 | struct ubifs_znode **zn, int *n) | |
1172 | { | |
1173 | int err, exact; | |
1174 | struct ubifs_znode *znode; | |
1175 | unsigned long time = get_seconds(); | |
1176 | ||
1177 | dbg_tnc("search key %s", DBGKEY(key)); | |
1178 | ||
1179 | znode = c->zroot.znode; | |
1180 | if (unlikely(!znode)) { | |
1181 | znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | |
1182 | if (IS_ERR(znode)) | |
1183 | return PTR_ERR(znode); | |
1184 | } | |
1185 | ||
1186 | znode->time = time; | |
1187 | ||
1188 | while (1) { | |
1189 | struct ubifs_zbranch *zbr; | |
1190 | ||
1191 | exact = ubifs_search_zbranch(c, znode, key, n); | |
1192 | ||
1193 | if (znode->level == 0) | |
1194 | break; | |
1195 | ||
1196 | if (*n < 0) | |
1197 | *n = 0; | |
1198 | zbr = &znode->zbranch[*n]; | |
1199 | ||
1200 | if (zbr->znode) { | |
1201 | znode->time = time; | |
1202 | znode = zbr->znode; | |
1203 | continue; | |
1204 | } | |
1205 | ||
1206 | /* znode is not in TNC cache, load it from the media */ | |
1207 | znode = ubifs_load_znode(c, zbr, znode, *n); | |
1208 | if (IS_ERR(znode)) | |
1209 | return PTR_ERR(znode); | |
1210 | } | |
1211 | ||
1212 | *zn = znode; | |
1213 | if (exact || !is_hash_key(c, key) || *n != -1) { | |
1214 | dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); | |
1215 | return exact; | |
1216 | } | |
1217 | ||
1218 | /* | |
1219 | * Here is a tricky place. We have not found the key and this is a | |
1220 | * "hashed" key, which may collide. The rest of the code deals with | |
1221 | * situations like this: | |
1222 | * | |
1223 | * | 3 | 5 | | |
1224 | * / \ | |
1225 | * | 3 | 5 | | 6 | 7 | (x) | |
1226 | * | |
1227 | * Or more a complex example: | |
1228 | * | |
1229 | * | 1 | 5 | | |
1230 | * / \ | |
1231 | * | 1 | 3 | | 5 | 8 | | |
1232 | * \ / | |
1233 | * | 5 | 5 | | 6 | 7 | (x) | |
1234 | * | |
1235 | * In the examples, if we are looking for key "5", we may reach nodes | |
1236 | * marked with "(x)". In this case what we have do is to look at the | |
1237 | * left and see if there is "5" key there. If there is, we have to | |
1238 | * return it. | |
1239 | * | |
1240 | * Note, this whole situation is possible because we allow to have | |
1241 | * elements which are equivalent to the next key in the parent in the | |
1242 | * children of current znode. For example, this happens if we split a | |
1243 | * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something | |
1244 | * like this: | |
1245 | * | 3 | 5 | | |
1246 | * / \ | |
1247 | * | 3 | 5 | | 5 | 6 | 7 | | |
1248 | * ^ | |
1249 | * And this becomes what is at the first "picture" after key "5" marked | |
1250 | * with "^" is removed. What could be done is we could prohibit | |
1251 | * splitting in the middle of the colliding sequence. Also, when | |
1252 | * removing the leftmost key, we would have to correct the key of the | |
1253 | * parent node, which would introduce additional complications. Namely, | |
1254 | * if we changed the the leftmost key of the parent znode, the garbage | |
1255 | * collector would be unable to find it (GC is doing this when GC'ing | |
1256 | * indexing LEBs). Although we already have an additional RB-tree where | |
1257 | * we save such changed znodes (see 'ins_clr_old_idx_znode()') until | |
1258 | * after the commit. But anyway, this does not look easy to implement | |
1259 | * so we did not try this. | |
1260 | */ | |
1261 | err = tnc_prev(c, &znode, n); | |
1262 | if (err == -ENOENT) { | |
1263 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | |
1264 | *n = -1; | |
1265 | return 0; | |
1266 | } | |
1267 | if (unlikely(err < 0)) | |
1268 | return err; | |
1269 | if (keys_cmp(c, key, &znode->zbranch[*n].key)) { | |
1270 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | |
1271 | *n = -1; | |
1272 | return 0; | |
1273 | } | |
1274 | ||
1275 | dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); | |
1276 | *zn = znode; | |
1277 | return 1; | |
1278 | } | |
1279 | ||
1280 | /** | |
1281 | * lookup_level0_dirty - search for zero-level znode dirtying. | |
1282 | * @c: UBIFS file-system description object | |
1283 | * @key: key to lookup | |
1284 | * @zn: znode is returned here | |
1285 | * @n: znode branch slot number is returned here | |
1286 | * | |
1287 | * This function looks up the TNC tree and search for zero-level znode which | |
1288 | * refers key @key. The found zero-level znode is returned in @zn. There are 3 | |
1289 | * cases: | |
1290 | * o exact match, i.e. the found zero-level znode contains key @key, then %1 | |
1291 | * is returned and slot number of the matched branch is stored in @n; | |
1292 | * o not exact match, which means that zero-level znode does not contain @key | |
1293 | * then %0 is returned and slot number of the closed branch is stored in | |
1294 | * @n; | |
1295 | * o @key is so small that it is even less than the lowest key of the | |
1296 | * leftmost zero-level node, then %0 is returned and %-1 is stored in @n. | |
1297 | * | |
1298 | * Additionally all znodes in the path from the root to the located zero-level | |
1299 | * znode are marked as dirty. | |
1300 | * | |
1301 | * Note, when the TNC tree is traversed, some znodes may be absent, then this | |
1302 | * function reads corresponding indexing nodes and inserts them to TNC. In | |
1303 | * case of failure, a negative error code is returned. | |
1304 | */ | |
1305 | static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key, | |
1306 | struct ubifs_znode **zn, int *n) | |
1307 | { | |
1308 | int err, exact; | |
1309 | struct ubifs_znode *znode; | |
1310 | unsigned long time = get_seconds(); | |
1311 | ||
1312 | dbg_tnc("search and dirty key %s", DBGKEY(key)); | |
1313 | ||
1314 | znode = c->zroot.znode; | |
1315 | if (unlikely(!znode)) { | |
1316 | znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | |
1317 | if (IS_ERR(znode)) | |
1318 | return PTR_ERR(znode); | |
1319 | } | |
1320 | ||
1321 | znode = dirty_cow_znode(c, &c->zroot); | |
1322 | if (IS_ERR(znode)) | |
1323 | return PTR_ERR(znode); | |
1324 | ||
1325 | znode->time = time; | |
1326 | ||
1327 | while (1) { | |
1328 | struct ubifs_zbranch *zbr; | |
1329 | ||
1330 | exact = ubifs_search_zbranch(c, znode, key, n); | |
1331 | ||
1332 | if (znode->level == 0) | |
1333 | break; | |
1334 | ||
1335 | if (*n < 0) | |
1336 | *n = 0; | |
1337 | zbr = &znode->zbranch[*n]; | |
1338 | ||
1339 | if (zbr->znode) { | |
1340 | znode->time = time; | |
1341 | znode = dirty_cow_znode(c, zbr); | |
1342 | if (IS_ERR(znode)) | |
1343 | return PTR_ERR(znode); | |
1344 | continue; | |
1345 | } | |
1346 | ||
1347 | /* znode is not in TNC cache, load it from the media */ | |
1348 | znode = ubifs_load_znode(c, zbr, znode, *n); | |
1349 | if (IS_ERR(znode)) | |
1350 | return PTR_ERR(znode); | |
1351 | znode = dirty_cow_znode(c, zbr); | |
1352 | if (IS_ERR(znode)) | |
1353 | return PTR_ERR(znode); | |
1354 | } | |
1355 | ||
1356 | *zn = znode; | |
1357 | if (exact || !is_hash_key(c, key) || *n != -1) { | |
1358 | dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); | |
1359 | return exact; | |
1360 | } | |
1361 | ||
1362 | /* | |
1363 | * See huge comment at 'lookup_level0_dirty()' what is the rest of the | |
1364 | * code. | |
1365 | */ | |
1366 | err = tnc_prev(c, &znode, n); | |
1367 | if (err == -ENOENT) { | |
1368 | *n = -1; | |
1369 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | |
1370 | return 0; | |
1371 | } | |
1372 | if (unlikely(err < 0)) | |
1373 | return err; | |
1374 | if (keys_cmp(c, key, &znode->zbranch[*n].key)) { | |
1375 | *n = -1; | |
1376 | dbg_tnc("found 0, lvl %d, n -1", znode->level); | |
1377 | return 0; | |
1378 | } | |
1379 | ||
1380 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | |
1381 | znode = dirty_cow_bottom_up(c, znode); | |
1382 | if (IS_ERR(znode)) | |
1383 | return PTR_ERR(znode); | |
1384 | } | |
1385 | ||
1386 | dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); | |
1387 | *zn = znode; | |
1388 | return 1; | |
1389 | } | |
1390 | ||
1391 | /** | |
1392 | * maybe_leb_gced - determine if a LEB may have been garbage collected. | |
1393 | * @c: UBIFS file-system description object | |
1394 | * @lnum: LEB number | |
1395 | * @gc_seq1: garbage collection sequence number | |
1396 | * | |
1397 | * This function determines if @lnum may have been garbage collected since | |
1398 | * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise | |
1399 | * %0 is returned. | |
1400 | */ | |
1401 | static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1) | |
1402 | { | |
1403 | /* | |
1404 | * No garbage collection in the read-only U-Boot implementation | |
1405 | */ | |
1406 | return 0; | |
1407 | } | |
1408 | ||
1409 | /** | |
1410 | * ubifs_tnc_locate - look up a file-system node and return it and its location. | |
1411 | * @c: UBIFS file-system description object | |
1412 | * @key: node key to lookup | |
1413 | * @node: the node is returned here | |
1414 | * @lnum: LEB number is returned here | |
1415 | * @offs: offset is returned here | |
1416 | * | |
1417 | * This function look up and reads node with key @key. The caller has to make | |
1418 | * sure the @node buffer is large enough to fit the node. Returns zero in case | |
1419 | * of success, %-ENOENT if the node was not found, and a negative error code in | |
1420 | * case of failure. The node location can be returned in @lnum and @offs. | |
1421 | */ | |
1422 | int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, | |
1423 | void *node, int *lnum, int *offs) | |
1424 | { | |
1425 | int found, n, err, safely = 0, gc_seq1; | |
1426 | struct ubifs_znode *znode; | |
1427 | struct ubifs_zbranch zbr, *zt; | |
1428 | ||
1429 | again: | |
1430 | mutex_lock(&c->tnc_mutex); | |
1431 | found = ubifs_lookup_level0(c, key, &znode, &n); | |
1432 | if (!found) { | |
1433 | err = -ENOENT; | |
1434 | goto out; | |
1435 | } else if (found < 0) { | |
1436 | err = found; | |
1437 | goto out; | |
1438 | } | |
1439 | zt = &znode->zbranch[n]; | |
1440 | if (lnum) { | |
1441 | *lnum = zt->lnum; | |
1442 | *offs = zt->offs; | |
1443 | } | |
1444 | if (is_hash_key(c, key)) { | |
1445 | /* | |
1446 | * In this case the leaf node cache gets used, so we pass the | |
1447 | * address of the zbranch and keep the mutex locked | |
1448 | */ | |
1449 | err = tnc_read_node_nm(c, zt, node); | |
1450 | goto out; | |
1451 | } | |
1452 | if (safely) { | |
1453 | err = ubifs_tnc_read_node(c, zt, node); | |
1454 | goto out; | |
1455 | } | |
1456 | /* Drop the TNC mutex prematurely and race with garbage collection */ | |
1457 | zbr = znode->zbranch[n]; | |
1458 | gc_seq1 = c->gc_seq; | |
1459 | mutex_unlock(&c->tnc_mutex); | |
1460 | ||
1461 | err = fallible_read_node(c, key, &zbr, node); | |
1462 | if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) { | |
1463 | /* | |
1464 | * The node may have been GC'ed out from under us so try again | |
1465 | * while keeping the TNC mutex locked. | |
1466 | */ | |
1467 | safely = 1; | |
1468 | goto again; | |
1469 | } | |
1470 | return 0; | |
1471 | ||
1472 | out: | |
1473 | mutex_unlock(&c->tnc_mutex); | |
1474 | return err; | |
1475 | } | |
1476 | ||
1477 | /** | |
1478 | * ubifs_tnc_get_bu_keys - lookup keys for bulk-read. | |
1479 | * @c: UBIFS file-system description object | |
1480 | * @bu: bulk-read parameters and results | |
1481 | * | |
1482 | * Lookup consecutive data node keys for the same inode that reside | |
1483 | * consecutively in the same LEB. This function returns zero in case of success | |
1484 | * and a negative error code in case of failure. | |
1485 | * | |
1486 | * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function | |
1487 | * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares | |
1488 | * maximum possible amount of nodes for bulk-read. | |
1489 | */ | |
1490 | int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu) | |
1491 | { | |
1492 | int n, err = 0, lnum = -1, uninitialized_var(offs); | |
1493 | int uninitialized_var(len); | |
1494 | unsigned int block = key_block(c, &bu->key); | |
1495 | struct ubifs_znode *znode; | |
1496 | ||
1497 | bu->cnt = 0; | |
1498 | bu->blk_cnt = 0; | |
1499 | bu->eof = 0; | |
1500 | ||
1501 | mutex_lock(&c->tnc_mutex); | |
1502 | /* Find first key */ | |
1503 | err = ubifs_lookup_level0(c, &bu->key, &znode, &n); | |
1504 | if (err < 0) | |
1505 | goto out; | |
1506 | if (err) { | |
1507 | /* Key found */ | |
1508 | len = znode->zbranch[n].len; | |
1509 | /* The buffer must be big enough for at least 1 node */ | |
1510 | if (len > bu->buf_len) { | |
1511 | err = -EINVAL; | |
1512 | goto out; | |
1513 | } | |
1514 | /* Add this key */ | |
1515 | bu->zbranch[bu->cnt++] = znode->zbranch[n]; | |
1516 | bu->blk_cnt += 1; | |
1517 | lnum = znode->zbranch[n].lnum; | |
1518 | offs = ALIGN(znode->zbranch[n].offs + len, 8); | |
1519 | } | |
1520 | while (1) { | |
1521 | struct ubifs_zbranch *zbr; | |
1522 | union ubifs_key *key; | |
1523 | unsigned int next_block; | |
1524 | ||
1525 | /* Find next key */ | |
1526 | err = tnc_next(c, &znode, &n); | |
1527 | if (err) | |
1528 | goto out; | |
1529 | zbr = &znode->zbranch[n]; | |
1530 | key = &zbr->key; | |
1531 | /* See if there is another data key for this file */ | |
1532 | if (key_inum(c, key) != key_inum(c, &bu->key) || | |
1533 | key_type(c, key) != UBIFS_DATA_KEY) { | |
1534 | err = -ENOENT; | |
1535 | goto out; | |
1536 | } | |
1537 | if (lnum < 0) { | |
1538 | /* First key found */ | |
1539 | lnum = zbr->lnum; | |
1540 | offs = ALIGN(zbr->offs + zbr->len, 8); | |
1541 | len = zbr->len; | |
1542 | if (len > bu->buf_len) { | |
1543 | err = -EINVAL; | |
1544 | goto out; | |
1545 | } | |
1546 | } else { | |
1547 | /* | |
1548 | * The data nodes must be in consecutive positions in | |
1549 | * the same LEB. | |
1550 | */ | |
1551 | if (zbr->lnum != lnum || zbr->offs != offs) | |
1552 | goto out; | |
1553 | offs += ALIGN(zbr->len, 8); | |
1554 | len = ALIGN(len, 8) + zbr->len; | |
1555 | /* Must not exceed buffer length */ | |
1556 | if (len > bu->buf_len) | |
1557 | goto out; | |
1558 | } | |
1559 | /* Allow for holes */ | |
1560 | next_block = key_block(c, key); | |
1561 | bu->blk_cnt += (next_block - block - 1); | |
1562 | if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) | |
1563 | goto out; | |
1564 | block = next_block; | |
1565 | /* Add this key */ | |
1566 | bu->zbranch[bu->cnt++] = *zbr; | |
1567 | bu->blk_cnt += 1; | |
1568 | /* See if we have room for more */ | |
1569 | if (bu->cnt >= UBIFS_MAX_BULK_READ) | |
1570 | goto out; | |
1571 | if (bu->blk_cnt >= UBIFS_MAX_BULK_READ) | |
1572 | goto out; | |
1573 | } | |
1574 | out: | |
1575 | if (err == -ENOENT) { | |
1576 | bu->eof = 1; | |
1577 | err = 0; | |
1578 | } | |
1579 | bu->gc_seq = c->gc_seq; | |
1580 | mutex_unlock(&c->tnc_mutex); | |
1581 | if (err) | |
1582 | return err; | |
1583 | /* | |
1584 | * An enormous hole could cause bulk-read to encompass too many | |
1585 | * page cache pages, so limit the number here. | |
1586 | */ | |
1587 | if (bu->blk_cnt > UBIFS_MAX_BULK_READ) | |
1588 | bu->blk_cnt = UBIFS_MAX_BULK_READ; | |
1589 | /* | |
1590 | * Ensure that bulk-read covers a whole number of page cache | |
1591 | * pages. | |
1592 | */ | |
1593 | if (UBIFS_BLOCKS_PER_PAGE == 1 || | |
1594 | !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1))) | |
1595 | return 0; | |
1596 | if (bu->eof) { | |
1597 | /* At the end of file we can round up */ | |
1598 | bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1; | |
1599 | return 0; | |
1600 | } | |
1601 | /* Exclude data nodes that do not make up a whole page cache page */ | |
1602 | block = key_block(c, &bu->key) + bu->blk_cnt; | |
1603 | block &= ~(UBIFS_BLOCKS_PER_PAGE - 1); | |
1604 | while (bu->cnt) { | |
1605 | if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block) | |
1606 | break; | |
1607 | bu->cnt -= 1; | |
1608 | } | |
1609 | return 0; | |
1610 | } | |
1611 | ||
1612 | /** | |
1613 | * validate_data_node - validate data nodes for bulk-read. | |
1614 | * @c: UBIFS file-system description object | |
1615 | * @buf: buffer containing data node to validate | |
1616 | * @zbr: zbranch of data node to validate | |
1617 | * | |
1618 | * This functions returns %0 on success or a negative error code on failure. | |
1619 | */ | |
1620 | static int validate_data_node(struct ubifs_info *c, void *buf, | |
1621 | struct ubifs_zbranch *zbr) | |
1622 | { | |
1623 | union ubifs_key key1; | |
1624 | struct ubifs_ch *ch = buf; | |
1625 | int err, len; | |
1626 | ||
1627 | if (ch->node_type != UBIFS_DATA_NODE) { | |
1628 | ubifs_err("bad node type (%d but expected %d)", | |
1629 | ch->node_type, UBIFS_DATA_NODE); | |
1630 | goto out_err; | |
1631 | } | |
1632 | ||
1633 | err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0); | |
1634 | if (err) { | |
1635 | ubifs_err("expected node type %d", UBIFS_DATA_NODE); | |
1636 | goto out; | |
1637 | } | |
1638 | ||
1639 | len = le32_to_cpu(ch->len); | |
1640 | if (len != zbr->len) { | |
1641 | ubifs_err("bad node length %d, expected %d", len, zbr->len); | |
1642 | goto out_err; | |
1643 | } | |
1644 | ||
1645 | /* Make sure the key of the read node is correct */ | |
1646 | key_read(c, buf + UBIFS_KEY_OFFSET, &key1); | |
1647 | if (!keys_eq(c, &zbr->key, &key1)) { | |
1648 | ubifs_err("bad key in node at LEB %d:%d", | |
1649 | zbr->lnum, zbr->offs); | |
1650 | dbg_tnc("looked for key %s found node's key %s", | |
1651 | DBGKEY(&zbr->key), DBGKEY1(&key1)); | |
1652 | goto out_err; | |
1653 | } | |
1654 | ||
1655 | return 0; | |
1656 | ||
1657 | out_err: | |
1658 | err = -EINVAL; | |
1659 | out: | |
1660 | ubifs_err("bad node at LEB %d:%d", zbr->lnum, zbr->offs); | |
1661 | dbg_dump_node(c, buf); | |
1662 | dbg_dump_stack(); | |
1663 | return err; | |
1664 | } | |
1665 | ||
1666 | /** | |
1667 | * ubifs_tnc_bulk_read - read a number of data nodes in one go. | |
1668 | * @c: UBIFS file-system description object | |
1669 | * @bu: bulk-read parameters and results | |
1670 | * | |
1671 | * This functions reads and validates the data nodes that were identified by the | |
1672 | * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success, | |
1673 | * -EAGAIN to indicate a race with GC, or another negative error code on | |
1674 | * failure. | |
1675 | */ | |
1676 | int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu) | |
1677 | { | |
1678 | int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i; | |
1679 | void *buf; | |
1680 | ||
1681 | len = bu->zbranch[bu->cnt - 1].offs; | |
1682 | len += bu->zbranch[bu->cnt - 1].len - offs; | |
1683 | if (len > bu->buf_len) { | |
1684 | ubifs_err("buffer too small %d vs %d", bu->buf_len, len); | |
1685 | return -EINVAL; | |
1686 | } | |
1687 | ||
1688 | /* Do the read */ | |
1689 | err = ubi_read(c->ubi, lnum, bu->buf, offs, len); | |
1690 | ||
1691 | /* Check for a race with GC */ | |
1692 | if (maybe_leb_gced(c, lnum, bu->gc_seq)) | |
1693 | return -EAGAIN; | |
1694 | ||
1695 | if (err && err != -EBADMSG) { | |
1696 | ubifs_err("failed to read from LEB %d:%d, error %d", | |
1697 | lnum, offs, err); | |
1698 | dbg_dump_stack(); | |
1699 | dbg_tnc("key %s", DBGKEY(&bu->key)); | |
1700 | return err; | |
1701 | } | |
1702 | ||
1703 | /* Validate the nodes read */ | |
1704 | buf = bu->buf; | |
1705 | for (i = 0; i < bu->cnt; i++) { | |
1706 | err = validate_data_node(c, buf, &bu->zbranch[i]); | |
1707 | if (err) | |
1708 | return err; | |
1709 | buf = buf + ALIGN(bu->zbranch[i].len, 8); | |
1710 | } | |
1711 | ||
1712 | return 0; | |
1713 | } | |
1714 | ||
1715 | /** | |
1716 | * do_lookup_nm- look up a "hashed" node. | |
1717 | * @c: UBIFS file-system description object | |
1718 | * @key: node key to lookup | |
1719 | * @node: the node is returned here | |
1720 | * @nm: node name | |
1721 | * | |
1722 | * This function look up and reads a node which contains name hash in the key. | |
1723 | * Since the hash may have collisions, there may be many nodes with the same | |
1724 | * key, so we have to sequentially look to all of them until the needed one is | |
1725 | * found. This function returns zero in case of success, %-ENOENT if the node | |
1726 | * was not found, and a negative error code in case of failure. | |
1727 | */ | |
1728 | static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, | |
1729 | void *node, const struct qstr *nm) | |
1730 | { | |
1731 | int found, n, err; | |
1732 | struct ubifs_znode *znode; | |
1733 | ||
1734 | dbg_tnc("name '%.*s' key %s", nm->len, nm->name, DBGKEY(key)); | |
1735 | mutex_lock(&c->tnc_mutex); | |
1736 | found = ubifs_lookup_level0(c, key, &znode, &n); | |
1737 | if (!found) { | |
1738 | err = -ENOENT; | |
1739 | goto out_unlock; | |
1740 | } else if (found < 0) { | |
1741 | err = found; | |
1742 | goto out_unlock; | |
1743 | } | |
1744 | ||
1745 | ubifs_assert(n >= 0); | |
1746 | ||
1747 | err = resolve_collision(c, key, &znode, &n, nm); | |
1748 | dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); | |
1749 | if (unlikely(err < 0)) | |
1750 | goto out_unlock; | |
1751 | if (err == 0) { | |
1752 | err = -ENOENT; | |
1753 | goto out_unlock; | |
1754 | } | |
1755 | ||
1756 | err = tnc_read_node_nm(c, &znode->zbranch[n], node); | |
1757 | ||
1758 | out_unlock: | |
1759 | mutex_unlock(&c->tnc_mutex); | |
1760 | return err; | |
1761 | } | |
1762 | ||
1763 | /** | |
1764 | * ubifs_tnc_lookup_nm - look up a "hashed" node. | |
1765 | * @c: UBIFS file-system description object | |
1766 | * @key: node key to lookup | |
1767 | * @node: the node is returned here | |
1768 | * @nm: node name | |
1769 | * | |
1770 | * This function look up and reads a node which contains name hash in the key. | |
1771 | * Since the hash may have collisions, there may be many nodes with the same | |
1772 | * key, so we have to sequentially look to all of them until the needed one is | |
1773 | * found. This function returns zero in case of success, %-ENOENT if the node | |
1774 | * was not found, and a negative error code in case of failure. | |
1775 | */ | |
1776 | int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, | |
1777 | void *node, const struct qstr *nm) | |
1778 | { | |
1779 | int err, len; | |
1780 | const struct ubifs_dent_node *dent = node; | |
1781 | ||
1782 | /* | |
1783 | * We assume that in most of the cases there are no name collisions and | |
1784 | * 'ubifs_tnc_lookup()' returns us the right direntry. | |
1785 | */ | |
1786 | err = ubifs_tnc_lookup(c, key, node); | |
1787 | if (err) | |
1788 | return err; | |
1789 | ||
1790 | len = le16_to_cpu(dent->nlen); | |
1791 | if (nm->len == len && !memcmp(dent->name, nm->name, len)) | |
1792 | return 0; | |
1793 | ||
1794 | /* | |
1795 | * Unluckily, there are hash collisions and we have to iterate over | |
1796 | * them look at each direntry with colliding name hash sequentially. | |
1797 | */ | |
1798 | return do_lookup_nm(c, key, node, nm); | |
1799 | } | |
1800 | ||
1801 | /** | |
1802 | * correct_parent_keys - correct parent znodes' keys. | |
1803 | * @c: UBIFS file-system description object | |
1804 | * @znode: znode to correct parent znodes for | |
1805 | * | |
1806 | * This is a helper function for 'tnc_insert()'. When the key of the leftmost | |
1807 | * zbranch changes, keys of parent znodes have to be corrected. This helper | |
1808 | * function is called in such situations and corrects the keys if needed. | |
1809 | */ | |
1810 | static void correct_parent_keys(const struct ubifs_info *c, | |
1811 | struct ubifs_znode *znode) | |
1812 | { | |
1813 | union ubifs_key *key, *key1; | |
1814 | ||
1815 | ubifs_assert(znode->parent); | |
1816 | ubifs_assert(znode->iip == 0); | |
1817 | ||
1818 | key = &znode->zbranch[0].key; | |
1819 | key1 = &znode->parent->zbranch[0].key; | |
1820 | ||
1821 | while (keys_cmp(c, key, key1) < 0) { | |
1822 | key_copy(c, key, key1); | |
1823 | znode = znode->parent; | |
1824 | znode->alt = 1; | |
1825 | if (!znode->parent || znode->iip) | |
1826 | break; | |
1827 | key1 = &znode->parent->zbranch[0].key; | |
1828 | } | |
1829 | } | |
1830 | ||
1831 | /** | |
1832 | * insert_zbranch - insert a zbranch into a znode. | |
1833 | * @znode: znode into which to insert | |
1834 | * @zbr: zbranch to insert | |
1835 | * @n: slot number to insert to | |
1836 | * | |
1837 | * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in | |
1838 | * znode's array of zbranches and keeps zbranches consolidated, so when a new | |
1839 | * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th | |
1840 | * slot, zbranches starting from @n have to be moved right. | |
1841 | */ | |
1842 | static void insert_zbranch(struct ubifs_znode *znode, | |
1843 | const struct ubifs_zbranch *zbr, int n) | |
1844 | { | |
1845 | int i; | |
1846 | ||
1847 | ubifs_assert(ubifs_zn_dirty(znode)); | |
1848 | ||
1849 | if (znode->level) { | |
1850 | for (i = znode->child_cnt; i > n; i--) { | |
1851 | znode->zbranch[i] = znode->zbranch[i - 1]; | |
1852 | if (znode->zbranch[i].znode) | |
1853 | znode->zbranch[i].znode->iip = i; | |
1854 | } | |
1855 | if (zbr->znode) | |
1856 | zbr->znode->iip = n; | |
1857 | } else | |
1858 | for (i = znode->child_cnt; i > n; i--) | |
1859 | znode->zbranch[i] = znode->zbranch[i - 1]; | |
1860 | ||
1861 | znode->zbranch[n] = *zbr; | |
1862 | znode->child_cnt += 1; | |
1863 | ||
1864 | /* | |
1865 | * After inserting at slot zero, the lower bound of the key range of | |
1866 | * this znode may have changed. If this znode is subsequently split | |
1867 | * then the upper bound of the key range may change, and furthermore | |
1868 | * it could change to be lower than the original lower bound. If that | |
1869 | * happens, then it will no longer be possible to find this znode in the | |
1870 | * TNC using the key from the index node on flash. That is bad because | |
1871 | * if it is not found, we will assume it is obsolete and may overwrite | |
1872 | * it. Then if there is an unclean unmount, we will start using the | |
1873 | * old index which will be broken. | |
1874 | * | |
1875 | * So we first mark znodes that have insertions at slot zero, and then | |
1876 | * if they are split we add their lnum/offs to the old_idx tree. | |
1877 | */ | |
1878 | if (n == 0) | |
1879 | znode->alt = 1; | |
1880 | } | |
1881 | ||
1882 | /** | |
1883 | * tnc_insert - insert a node into TNC. | |
1884 | * @c: UBIFS file-system description object | |
1885 | * @znode: znode to insert into | |
1886 | * @zbr: branch to insert | |
1887 | * @n: slot number to insert new zbranch to | |
1888 | * | |
1889 | * This function inserts a new node described by @zbr into znode @znode. If | |
1890 | * znode does not have a free slot for new zbranch, it is split. Parent znodes | |
1891 | * are splat as well if needed. Returns zero in case of success or a negative | |
1892 | * error code in case of failure. | |
1893 | */ | |
1894 | static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, | |
1895 | struct ubifs_zbranch *zbr, int n) | |
1896 | { | |
1897 | struct ubifs_znode *zn, *zi, *zp; | |
1898 | int i, keep, move, appending = 0; | |
1899 | union ubifs_key *key = &zbr->key, *key1; | |
1900 | ||
1901 | ubifs_assert(n >= 0 && n <= c->fanout); | |
1902 | ||
1903 | /* Implement naive insert for now */ | |
1904 | again: | |
1905 | zp = znode->parent; | |
1906 | if (znode->child_cnt < c->fanout) { | |
1907 | ubifs_assert(n != c->fanout); | |
1908 | dbg_tnc("inserted at %d level %d, key %s", n, znode->level, | |
1909 | DBGKEY(key)); | |
1910 | ||
1911 | insert_zbranch(znode, zbr, n); | |
1912 | ||
1913 | /* Ensure parent's key is correct */ | |
1914 | if (n == 0 && zp && znode->iip == 0) | |
1915 | correct_parent_keys(c, znode); | |
1916 | ||
1917 | return 0; | |
1918 | } | |
1919 | ||
1920 | /* | |
1921 | * Unfortunately, @znode does not have more empty slots and we have to | |
1922 | * split it. | |
1923 | */ | |
1924 | dbg_tnc("splitting level %d, key %s", znode->level, DBGKEY(key)); | |
1925 | ||
1926 | if (znode->alt) | |
1927 | /* | |
1928 | * We can no longer be sure of finding this znode by key, so we | |
1929 | * record it in the old_idx tree. | |
1930 | */ | |
1931 | ins_clr_old_idx_znode(c, znode); | |
1932 | ||
1933 | zn = kzalloc(c->max_znode_sz, GFP_NOFS); | |
1934 | if (!zn) | |
1935 | return -ENOMEM; | |
1936 | zn->parent = zp; | |
1937 | zn->level = znode->level; | |
1938 | ||
1939 | /* Decide where to split */ | |
1940 | if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { | |
1941 | /* Try not to split consecutive data keys */ | |
1942 | if (n == c->fanout) { | |
1943 | key1 = &znode->zbranch[n - 1].key; | |
1944 | if (key_inum(c, key1) == key_inum(c, key) && | |
1945 | key_type(c, key1) == UBIFS_DATA_KEY) | |
1946 | appending = 1; | |
1947 | } else | |
1948 | goto check_split; | |
1949 | } else if (appending && n != c->fanout) { | |
1950 | /* Try not to split consecutive data keys */ | |
1951 | appending = 0; | |
1952 | check_split: | |
1953 | if (n >= (c->fanout + 1) / 2) { | |
1954 | key1 = &znode->zbranch[0].key; | |
1955 | if (key_inum(c, key1) == key_inum(c, key) && | |
1956 | key_type(c, key1) == UBIFS_DATA_KEY) { | |
1957 | key1 = &znode->zbranch[n].key; | |
1958 | if (key_inum(c, key1) != key_inum(c, key) || | |
1959 | key_type(c, key1) != UBIFS_DATA_KEY) { | |
1960 | keep = n; | |
1961 | move = c->fanout - keep; | |
1962 | zi = znode; | |
1963 | goto do_split; | |
1964 | } | |
1965 | } | |
1966 | } | |
1967 | } | |
1968 | ||
1969 | if (appending) { | |
1970 | keep = c->fanout; | |
1971 | move = 0; | |
1972 | } else { | |
1973 | keep = (c->fanout + 1) / 2; | |
1974 | move = c->fanout - keep; | |
1975 | } | |
1976 | ||
1977 | /* | |
1978 | * Although we don't at present, we could look at the neighbors and see | |
1979 | * if we can move some zbranches there. | |
1980 | */ | |
1981 | ||
1982 | if (n < keep) { | |
1983 | /* Insert into existing znode */ | |
1984 | zi = znode; | |
1985 | move += 1; | |
1986 | keep -= 1; | |
1987 | } else { | |
1988 | /* Insert into new znode */ | |
1989 | zi = zn; | |
1990 | n -= keep; | |
1991 | /* Re-parent */ | |
1992 | if (zn->level != 0) | |
1993 | zbr->znode->parent = zn; | |
1994 | } | |
1995 | ||
1996 | do_split: | |
1997 | ||
1998 | __set_bit(DIRTY_ZNODE, &zn->flags); | |
1999 | atomic_long_inc(&c->dirty_zn_cnt); | |
2000 | ||
2001 | zn->child_cnt = move; | |
2002 | znode->child_cnt = keep; | |
2003 | ||
2004 | dbg_tnc("moving %d, keeping %d", move, keep); | |
2005 | ||
2006 | /* Move zbranch */ | |
2007 | for (i = 0; i < move; i++) { | |
2008 | zn->zbranch[i] = znode->zbranch[keep + i]; | |
2009 | /* Re-parent */ | |
2010 | if (zn->level != 0) | |
2011 | if (zn->zbranch[i].znode) { | |
2012 | zn->zbranch[i].znode->parent = zn; | |
2013 | zn->zbranch[i].znode->iip = i; | |
2014 | } | |
2015 | } | |
2016 | ||
2017 | /* Insert new key and branch */ | |
2018 | dbg_tnc("inserting at %d level %d, key %s", n, zn->level, DBGKEY(key)); | |
2019 | ||
2020 | insert_zbranch(zi, zbr, n); | |
2021 | ||
2022 | /* Insert new znode (produced by spitting) into the parent */ | |
2023 | if (zp) { | |
2024 | if (n == 0 && zi == znode && znode->iip == 0) | |
2025 | correct_parent_keys(c, znode); | |
2026 | ||
2027 | /* Locate insertion point */ | |
2028 | n = znode->iip + 1; | |
2029 | ||
2030 | /* Tail recursion */ | |
2031 | zbr->key = zn->zbranch[0].key; | |
2032 | zbr->znode = zn; | |
2033 | zbr->lnum = 0; | |
2034 | zbr->offs = 0; | |
2035 | zbr->len = 0; | |
2036 | znode = zp; | |
2037 | ||
2038 | goto again; | |
2039 | } | |
2040 | ||
2041 | /* We have to split root znode */ | |
2042 | dbg_tnc("creating new zroot at level %d", znode->level + 1); | |
2043 | ||
2044 | zi = kzalloc(c->max_znode_sz, GFP_NOFS); | |
2045 | if (!zi) | |
2046 | return -ENOMEM; | |
2047 | ||
2048 | zi->child_cnt = 2; | |
2049 | zi->level = znode->level + 1; | |
2050 | ||
2051 | __set_bit(DIRTY_ZNODE, &zi->flags); | |
2052 | atomic_long_inc(&c->dirty_zn_cnt); | |
2053 | ||
2054 | zi->zbranch[0].key = znode->zbranch[0].key; | |
2055 | zi->zbranch[0].znode = znode; | |
2056 | zi->zbranch[0].lnum = c->zroot.lnum; | |
2057 | zi->zbranch[0].offs = c->zroot.offs; | |
2058 | zi->zbranch[0].len = c->zroot.len; | |
2059 | zi->zbranch[1].key = zn->zbranch[0].key; | |
2060 | zi->zbranch[1].znode = zn; | |
2061 | ||
2062 | c->zroot.lnum = 0; | |
2063 | c->zroot.offs = 0; | |
2064 | c->zroot.len = 0; | |
2065 | c->zroot.znode = zi; | |
2066 | ||
2067 | zn->parent = zi; | |
2068 | zn->iip = 1; | |
2069 | znode->parent = zi; | |
2070 | znode->iip = 0; | |
2071 | ||
2072 | return 0; | |
2073 | } | |
2074 | ||
2075 | /** | |
2076 | * ubifs_tnc_add - add a node to TNC. | |
2077 | * @c: UBIFS file-system description object | |
2078 | * @key: key to add | |
2079 | * @lnum: LEB number of node | |
2080 | * @offs: node offset | |
2081 | * @len: node length | |
2082 | * | |
2083 | * This function adds a node with key @key to TNC. The node may be new or it may | |
2084 | * obsolete some existing one. Returns %0 on success or negative error code on | |
2085 | * failure. | |
2086 | */ | |
2087 | int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, | |
2088 | int offs, int len) | |
2089 | { | |
2090 | int found, n, err = 0; | |
2091 | struct ubifs_znode *znode; | |
2092 | ||
2093 | mutex_lock(&c->tnc_mutex); | |
2094 | dbg_tnc("%d:%d, len %d, key %s", lnum, offs, len, DBGKEY(key)); | |
2095 | found = lookup_level0_dirty(c, key, &znode, &n); | |
2096 | if (!found) { | |
2097 | struct ubifs_zbranch zbr; | |
2098 | ||
2099 | zbr.znode = NULL; | |
2100 | zbr.lnum = lnum; | |
2101 | zbr.offs = offs; | |
2102 | zbr.len = len; | |
2103 | key_copy(c, key, &zbr.key); | |
2104 | err = tnc_insert(c, znode, &zbr, n + 1); | |
2105 | } else if (found == 1) { | |
2106 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; | |
2107 | ||
2108 | lnc_free(zbr); | |
2109 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | |
2110 | zbr->lnum = lnum; | |
2111 | zbr->offs = offs; | |
2112 | zbr->len = len; | |
2113 | } else | |
2114 | err = found; | |
2115 | if (!err) | |
2116 | err = dbg_check_tnc(c, 0); | |
2117 | mutex_unlock(&c->tnc_mutex); | |
2118 | ||
2119 | return err; | |
2120 | } | |
2121 | ||
2122 | /** | |
2123 | * ubifs_tnc_replace - replace a node in the TNC only if the old node is found. | |
2124 | * @c: UBIFS file-system description object | |
2125 | * @key: key to add | |
2126 | * @old_lnum: LEB number of old node | |
2127 | * @old_offs: old node offset | |
2128 | * @lnum: LEB number of node | |
2129 | * @offs: node offset | |
2130 | * @len: node length | |
2131 | * | |
2132 | * This function replaces a node with key @key in the TNC only if the old node | |
2133 | * is found. This function is called by garbage collection when node are moved. | |
2134 | * Returns %0 on success or negative error code on failure. | |
2135 | */ | |
2136 | int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, | |
2137 | int old_lnum, int old_offs, int lnum, int offs, int len) | |
2138 | { | |
2139 | int found, n, err = 0; | |
2140 | struct ubifs_znode *znode; | |
2141 | ||
2142 | mutex_lock(&c->tnc_mutex); | |
2143 | dbg_tnc("old LEB %d:%d, new LEB %d:%d, len %d, key %s", old_lnum, | |
2144 | old_offs, lnum, offs, len, DBGKEY(key)); | |
2145 | found = lookup_level0_dirty(c, key, &znode, &n); | |
2146 | if (found < 0) { | |
2147 | err = found; | |
2148 | goto out_unlock; | |
2149 | } | |
2150 | ||
2151 | if (found == 1) { | |
2152 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; | |
2153 | ||
2154 | found = 0; | |
2155 | if (zbr->lnum == old_lnum && zbr->offs == old_offs) { | |
2156 | lnc_free(zbr); | |
2157 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | |
2158 | if (err) | |
2159 | goto out_unlock; | |
2160 | zbr->lnum = lnum; | |
2161 | zbr->offs = offs; | |
2162 | zbr->len = len; | |
2163 | found = 1; | |
2164 | } else if (is_hash_key(c, key)) { | |
2165 | found = resolve_collision_directly(c, key, &znode, &n, | |
2166 | old_lnum, old_offs); | |
2167 | dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d", | |
2168 | found, znode, n, old_lnum, old_offs); | |
2169 | if (found < 0) { | |
2170 | err = found; | |
2171 | goto out_unlock; | |
2172 | } | |
2173 | ||
2174 | if (found) { | |
2175 | /* Ensure the znode is dirtied */ | |
2176 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | |
2177 | znode = dirty_cow_bottom_up(c, znode); | |
2178 | if (IS_ERR(znode)) { | |
2179 | err = PTR_ERR(znode); | |
2180 | goto out_unlock; | |
2181 | } | |
2182 | } | |
2183 | zbr = &znode->zbranch[n]; | |
2184 | lnc_free(zbr); | |
2185 | err = ubifs_add_dirt(c, zbr->lnum, | |
2186 | zbr->len); | |
2187 | if (err) | |
2188 | goto out_unlock; | |
2189 | zbr->lnum = lnum; | |
2190 | zbr->offs = offs; | |
2191 | zbr->len = len; | |
2192 | } | |
2193 | } | |
2194 | } | |
2195 | ||
2196 | if (!found) | |
2197 | err = ubifs_add_dirt(c, lnum, len); | |
2198 | ||
2199 | if (!err) | |
2200 | err = dbg_check_tnc(c, 0); | |
2201 | ||
2202 | out_unlock: | |
2203 | mutex_unlock(&c->tnc_mutex); | |
2204 | return err; | |
2205 | } | |
2206 | ||
2207 | /** | |
2208 | * ubifs_tnc_add_nm - add a "hashed" node to TNC. | |
2209 | * @c: UBIFS file-system description object | |
2210 | * @key: key to add | |
2211 | * @lnum: LEB number of node | |
2212 | * @offs: node offset | |
2213 | * @len: node length | |
2214 | * @nm: node name | |
2215 | * | |
2216 | * This is the same as 'ubifs_tnc_add()' but it should be used with keys which | |
2217 | * may have collisions, like directory entry keys. | |
2218 | */ | |
2219 | int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, | |
2220 | int lnum, int offs, int len, const struct qstr *nm) | |
2221 | { | |
2222 | int found, n, err = 0; | |
2223 | struct ubifs_znode *znode; | |
2224 | ||
2225 | mutex_lock(&c->tnc_mutex); | |
2226 | dbg_tnc("LEB %d:%d, name '%.*s', key %s", lnum, offs, nm->len, nm->name, | |
2227 | DBGKEY(key)); | |
2228 | found = lookup_level0_dirty(c, key, &znode, &n); | |
2229 | if (found < 0) { | |
2230 | err = found; | |
2231 | goto out_unlock; | |
2232 | } | |
2233 | ||
2234 | if (found == 1) { | |
2235 | if (c->replaying) | |
2236 | found = fallible_resolve_collision(c, key, &znode, &n, | |
2237 | nm, 1); | |
2238 | else | |
2239 | found = resolve_collision(c, key, &znode, &n, nm); | |
2240 | dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n); | |
2241 | if (found < 0) { | |
2242 | err = found; | |
2243 | goto out_unlock; | |
2244 | } | |
2245 | ||
2246 | /* Ensure the znode is dirtied */ | |
2247 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | |
2248 | znode = dirty_cow_bottom_up(c, znode); | |
2249 | if (IS_ERR(znode)) { | |
2250 | err = PTR_ERR(znode); | |
2251 | goto out_unlock; | |
2252 | } | |
2253 | } | |
2254 | ||
2255 | if (found == 1) { | |
2256 | struct ubifs_zbranch *zbr = &znode->zbranch[n]; | |
2257 | ||
2258 | lnc_free(zbr); | |
2259 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | |
2260 | zbr->lnum = lnum; | |
2261 | zbr->offs = offs; | |
2262 | zbr->len = len; | |
2263 | goto out_unlock; | |
2264 | } | |
2265 | } | |
2266 | ||
2267 | if (!found) { | |
2268 | struct ubifs_zbranch zbr; | |
2269 | ||
2270 | zbr.znode = NULL; | |
2271 | zbr.lnum = lnum; | |
2272 | zbr.offs = offs; | |
2273 | zbr.len = len; | |
2274 | key_copy(c, key, &zbr.key); | |
2275 | err = tnc_insert(c, znode, &zbr, n + 1); | |
2276 | if (err) | |
2277 | goto out_unlock; | |
2278 | if (c->replaying) { | |
2279 | /* | |
2280 | * We did not find it in the index so there may be a | |
2281 | * dangling branch still in the index. So we remove it | |
2282 | * by passing 'ubifs_tnc_remove_nm()' the same key but | |
2283 | * an unmatchable name. | |
2284 | */ | |
2285 | struct qstr noname = { .len = 0, .name = "" }; | |
2286 | ||
2287 | err = dbg_check_tnc(c, 0); | |
2288 | mutex_unlock(&c->tnc_mutex); | |
2289 | if (err) | |
2290 | return err; | |
2291 | return ubifs_tnc_remove_nm(c, key, &noname); | |
2292 | } | |
2293 | } | |
2294 | ||
2295 | out_unlock: | |
2296 | if (!err) | |
2297 | err = dbg_check_tnc(c, 0); | |
2298 | mutex_unlock(&c->tnc_mutex); | |
2299 | return err; | |
2300 | } | |
2301 | ||
2302 | /** | |
2303 | * tnc_delete - delete a znode form TNC. | |
2304 | * @c: UBIFS file-system description object | |
2305 | * @znode: znode to delete from | |
2306 | * @n: zbranch slot number to delete | |
2307 | * | |
2308 | * This function deletes a leaf node from @n-th slot of @znode. Returns zero in | |
2309 | * case of success and a negative error code in case of failure. | |
2310 | */ | |
2311 | static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) | |
2312 | { | |
2313 | struct ubifs_zbranch *zbr; | |
2314 | struct ubifs_znode *zp; | |
2315 | int i, err; | |
2316 | ||
2317 | /* Delete without merge for now */ | |
2318 | ubifs_assert(znode->level == 0); | |
2319 | ubifs_assert(n >= 0 && n < c->fanout); | |
2320 | dbg_tnc("deleting %s", DBGKEY(&znode->zbranch[n].key)); | |
2321 | ||
2322 | zbr = &znode->zbranch[n]; | |
2323 | lnc_free(zbr); | |
2324 | ||
2325 | err = ubifs_add_dirt(c, zbr->lnum, zbr->len); | |
2326 | if (err) { | |
2327 | dbg_dump_znode(c, znode); | |
2328 | return err; | |
2329 | } | |
2330 | ||
2331 | /* We do not "gap" zbranch slots */ | |
2332 | for (i = n; i < znode->child_cnt - 1; i++) | |
2333 | znode->zbranch[i] = znode->zbranch[i + 1]; | |
2334 | znode->child_cnt -= 1; | |
2335 | ||
2336 | if (znode->child_cnt > 0) | |
2337 | return 0; | |
2338 | ||
2339 | /* | |
2340 | * This was the last zbranch, we have to delete this znode from the | |
2341 | * parent. | |
2342 | */ | |
2343 | ||
2344 | do { | |
2345 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, &znode->flags)); | |
2346 | ubifs_assert(ubifs_zn_dirty(znode)); | |
2347 | ||
2348 | zp = znode->parent; | |
2349 | n = znode->iip; | |
2350 | ||
2351 | atomic_long_dec(&c->dirty_zn_cnt); | |
2352 | ||
2353 | err = insert_old_idx_znode(c, znode); | |
2354 | if (err) | |
2355 | return err; | |
2356 | ||
2357 | if (znode->cnext) { | |
2358 | __set_bit(OBSOLETE_ZNODE, &znode->flags); | |
2359 | atomic_long_inc(&c->clean_zn_cnt); | |
2360 | atomic_long_inc(&ubifs_clean_zn_cnt); | |
2361 | } else | |
2362 | kfree(znode); | |
2363 | znode = zp; | |
2364 | } while (znode->child_cnt == 1); /* while removing last child */ | |
2365 | ||
2366 | /* Remove from znode, entry n - 1 */ | |
2367 | znode->child_cnt -= 1; | |
2368 | ubifs_assert(znode->level != 0); | |
2369 | for (i = n; i < znode->child_cnt; i++) { | |
2370 | znode->zbranch[i] = znode->zbranch[i + 1]; | |
2371 | if (znode->zbranch[i].znode) | |
2372 | znode->zbranch[i].znode->iip = i; | |
2373 | } | |
2374 | ||
2375 | /* | |
2376 | * If this is the root and it has only 1 child then | |
2377 | * collapse the tree. | |
2378 | */ | |
2379 | if (!znode->parent) { | |
2380 | while (znode->child_cnt == 1 && znode->level != 0) { | |
2381 | zp = znode; | |
2382 | zbr = &znode->zbranch[0]; | |
2383 | znode = get_znode(c, znode, 0); | |
2384 | if (IS_ERR(znode)) | |
2385 | return PTR_ERR(znode); | |
2386 | znode = dirty_cow_znode(c, zbr); | |
2387 | if (IS_ERR(znode)) | |
2388 | return PTR_ERR(znode); | |
2389 | znode->parent = NULL; | |
2390 | znode->iip = 0; | |
2391 | if (c->zroot.len) { | |
2392 | err = insert_old_idx(c, c->zroot.lnum, | |
2393 | c->zroot.offs); | |
2394 | if (err) | |
2395 | return err; | |
2396 | } | |
2397 | c->zroot.lnum = zbr->lnum; | |
2398 | c->zroot.offs = zbr->offs; | |
2399 | c->zroot.len = zbr->len; | |
2400 | c->zroot.znode = znode; | |
2401 | ubifs_assert(!test_bit(OBSOLETE_ZNODE, | |
2402 | &zp->flags)); | |
2403 | ubifs_assert(test_bit(DIRTY_ZNODE, &zp->flags)); | |
2404 | atomic_long_dec(&c->dirty_zn_cnt); | |
2405 | ||
2406 | if (zp->cnext) { | |
2407 | __set_bit(OBSOLETE_ZNODE, &zp->flags); | |
2408 | atomic_long_inc(&c->clean_zn_cnt); | |
2409 | atomic_long_inc(&ubifs_clean_zn_cnt); | |
2410 | } else | |
2411 | kfree(zp); | |
2412 | } | |
2413 | } | |
2414 | ||
2415 | return 0; | |
2416 | } | |
2417 | ||
2418 | /** | |
2419 | * ubifs_tnc_remove - remove an index entry of a node. | |
2420 | * @c: UBIFS file-system description object | |
2421 | * @key: key of node | |
2422 | * | |
2423 | * Returns %0 on success or negative error code on failure. | |
2424 | */ | |
2425 | int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key) | |
2426 | { | |
2427 | int found, n, err = 0; | |
2428 | struct ubifs_znode *znode; | |
2429 | ||
2430 | mutex_lock(&c->tnc_mutex); | |
2431 | dbg_tnc("key %s", DBGKEY(key)); | |
2432 | found = lookup_level0_dirty(c, key, &znode, &n); | |
2433 | if (found < 0) { | |
2434 | err = found; | |
2435 | goto out_unlock; | |
2436 | } | |
2437 | if (found == 1) | |
2438 | err = tnc_delete(c, znode, n); | |
2439 | if (!err) | |
2440 | err = dbg_check_tnc(c, 0); | |
2441 | ||
2442 | out_unlock: | |
2443 | mutex_unlock(&c->tnc_mutex); | |
2444 | return err; | |
2445 | } | |
2446 | ||
2447 | /** | |
2448 | * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node. | |
2449 | * @c: UBIFS file-system description object | |
2450 | * @key: key of node | |
2451 | * @nm: directory entry name | |
2452 | * | |
2453 | * Returns %0 on success or negative error code on failure. | |
2454 | */ | |
2455 | int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, | |
2456 | const struct qstr *nm) | |
2457 | { | |
2458 | int n, err; | |
2459 | struct ubifs_znode *znode; | |
2460 | ||
2461 | mutex_lock(&c->tnc_mutex); | |
2462 | dbg_tnc("%.*s, key %s", nm->len, nm->name, DBGKEY(key)); | |
2463 | err = lookup_level0_dirty(c, key, &znode, &n); | |
2464 | if (err < 0) | |
2465 | goto out_unlock; | |
2466 | ||
2467 | if (err) { | |
2468 | if (c->replaying) | |
2469 | err = fallible_resolve_collision(c, key, &znode, &n, | |
2470 | nm, 0); | |
2471 | else | |
2472 | err = resolve_collision(c, key, &znode, &n, nm); | |
2473 | dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n); | |
2474 | if (err < 0) | |
2475 | goto out_unlock; | |
2476 | if (err) { | |
2477 | /* Ensure the znode is dirtied */ | |
2478 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | |
2479 | znode = dirty_cow_bottom_up(c, znode); | |
2480 | if (IS_ERR(znode)) { | |
2481 | err = PTR_ERR(znode); | |
2482 | goto out_unlock; | |
2483 | } | |
2484 | } | |
2485 | err = tnc_delete(c, znode, n); | |
2486 | } | |
2487 | } | |
2488 | ||
2489 | out_unlock: | |
2490 | if (!err) | |
2491 | err = dbg_check_tnc(c, 0); | |
2492 | mutex_unlock(&c->tnc_mutex); | |
2493 | return err; | |
2494 | } | |
2495 | ||
2496 | /** | |
2497 | * key_in_range - determine if a key falls within a range of keys. | |
2498 | * @c: UBIFS file-system description object | |
2499 | * @key: key to check | |
2500 | * @from_key: lowest key in range | |
2501 | * @to_key: highest key in range | |
2502 | * | |
2503 | * This function returns %1 if the key is in range and %0 otherwise. | |
2504 | */ | |
2505 | static int key_in_range(struct ubifs_info *c, union ubifs_key *key, | |
2506 | union ubifs_key *from_key, union ubifs_key *to_key) | |
2507 | { | |
2508 | if (keys_cmp(c, key, from_key) < 0) | |
2509 | return 0; | |
2510 | if (keys_cmp(c, key, to_key) > 0) | |
2511 | return 0; | |
2512 | return 1; | |
2513 | } | |
2514 | ||
2515 | /** | |
2516 | * ubifs_tnc_remove_range - remove index entries in range. | |
2517 | * @c: UBIFS file-system description object | |
2518 | * @from_key: lowest key to remove | |
2519 | * @to_key: highest key to remove | |
2520 | * | |
2521 | * This function removes index entries starting at @from_key and ending at | |
2522 | * @to_key. This function returns zero in case of success and a negative error | |
2523 | * code in case of failure. | |
2524 | */ | |
2525 | int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, | |
2526 | union ubifs_key *to_key) | |
2527 | { | |
2528 | int i, n, k, err = 0; | |
2529 | struct ubifs_znode *znode; | |
2530 | union ubifs_key *key; | |
2531 | ||
2532 | mutex_lock(&c->tnc_mutex); | |
2533 | while (1) { | |
2534 | /* Find first level 0 znode that contains keys to remove */ | |
2535 | err = ubifs_lookup_level0(c, from_key, &znode, &n); | |
2536 | if (err < 0) | |
2537 | goto out_unlock; | |
2538 | ||
2539 | if (err) | |
2540 | key = from_key; | |
2541 | else { | |
2542 | err = tnc_next(c, &znode, &n); | |
2543 | if (err == -ENOENT) { | |
2544 | err = 0; | |
2545 | goto out_unlock; | |
2546 | } | |
2547 | if (err < 0) | |
2548 | goto out_unlock; | |
2549 | key = &znode->zbranch[n].key; | |
2550 | if (!key_in_range(c, key, from_key, to_key)) { | |
2551 | err = 0; | |
2552 | goto out_unlock; | |
2553 | } | |
2554 | } | |
2555 | ||
2556 | /* Ensure the znode is dirtied */ | |
2557 | if (znode->cnext || !ubifs_zn_dirty(znode)) { | |
2558 | znode = dirty_cow_bottom_up(c, znode); | |
2559 | if (IS_ERR(znode)) { | |
2560 | err = PTR_ERR(znode); | |
2561 | goto out_unlock; | |
2562 | } | |
2563 | } | |
2564 | ||
2565 | /* Remove all keys in range except the first */ | |
2566 | for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) { | |
2567 | key = &znode->zbranch[i].key; | |
2568 | if (!key_in_range(c, key, from_key, to_key)) | |
2569 | break; | |
2570 | lnc_free(&znode->zbranch[i]); | |
2571 | err = ubifs_add_dirt(c, znode->zbranch[i].lnum, | |
2572 | znode->zbranch[i].len); | |
2573 | if (err) { | |
2574 | dbg_dump_znode(c, znode); | |
2575 | goto out_unlock; | |
2576 | } | |
2577 | dbg_tnc("removing %s", DBGKEY(key)); | |
2578 | } | |
2579 | if (k) { | |
2580 | for (i = n + 1 + k; i < znode->child_cnt; i++) | |
2581 | znode->zbranch[i - k] = znode->zbranch[i]; | |
2582 | znode->child_cnt -= k; | |
2583 | } | |
2584 | ||
2585 | /* Now delete the first */ | |
2586 | err = tnc_delete(c, znode, n); | |
2587 | if (err) | |
2588 | goto out_unlock; | |
2589 | } | |
2590 | ||
2591 | out_unlock: | |
2592 | if (!err) | |
2593 | err = dbg_check_tnc(c, 0); | |
2594 | mutex_unlock(&c->tnc_mutex); | |
2595 | return err; | |
2596 | } | |
2597 | ||
2598 | /** | |
2599 | * ubifs_tnc_remove_ino - remove an inode from TNC. | |
2600 | * @c: UBIFS file-system description object | |
2601 | * @inum: inode number to remove | |
2602 | * | |
2603 | * This function remove inode @inum and all the extended attributes associated | |
2604 | * with the anode from TNC and returns zero in case of success or a negative | |
2605 | * error code in case of failure. | |
2606 | */ | |
2607 | int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum) | |
2608 | { | |
2609 | union ubifs_key key1, key2; | |
2610 | struct ubifs_dent_node *xent, *pxent = NULL; | |
2611 | struct qstr nm = { .name = NULL }; | |
2612 | ||
2613 | dbg_tnc("ino %lu", (unsigned long)inum); | |
2614 | ||
2615 | /* | |
2616 | * Walk all extended attribute entries and remove them together with | |
2617 | * corresponding extended attribute inodes. | |
2618 | */ | |
2619 | lowest_xent_key(c, &key1, inum); | |
2620 | while (1) { | |
2621 | ino_t xattr_inum; | |
2622 | int err; | |
2623 | ||
2624 | xent = ubifs_tnc_next_ent(c, &key1, &nm); | |
2625 | if (IS_ERR(xent)) { | |
2626 | err = PTR_ERR(xent); | |
2627 | if (err == -ENOENT) | |
2628 | break; | |
2629 | return err; | |
2630 | } | |
2631 | ||
2632 | xattr_inum = le64_to_cpu(xent->inum); | |
2633 | dbg_tnc("xent '%s', ino %lu", xent->name, | |
2634 | (unsigned long)xattr_inum); | |
2635 | ||
2636 | nm.name = (char *)xent->name; | |
2637 | nm.len = le16_to_cpu(xent->nlen); | |
2638 | err = ubifs_tnc_remove_nm(c, &key1, &nm); | |
2639 | if (err) { | |
2640 | kfree(xent); | |
2641 | return err; | |
2642 | } | |
2643 | ||
2644 | lowest_ino_key(c, &key1, xattr_inum); | |
2645 | highest_ino_key(c, &key2, xattr_inum); | |
2646 | err = ubifs_tnc_remove_range(c, &key1, &key2); | |
2647 | if (err) { | |
2648 | kfree(xent); | |
2649 | return err; | |
2650 | } | |
2651 | ||
2652 | kfree(pxent); | |
2653 | pxent = xent; | |
2654 | key_read(c, &xent->key, &key1); | |
2655 | } | |
2656 | ||
2657 | kfree(pxent); | |
2658 | lowest_ino_key(c, &key1, inum); | |
2659 | highest_ino_key(c, &key2, inum); | |
2660 | ||
2661 | return ubifs_tnc_remove_range(c, &key1, &key2); | |
2662 | } | |
2663 | ||
2664 | /** | |
2665 | * ubifs_tnc_next_ent - walk directory or extended attribute entries. | |
2666 | * @c: UBIFS file-system description object | |
2667 | * @key: key of last entry | |
2668 | * @nm: name of last entry found or %NULL | |
2669 | * | |
2670 | * This function finds and reads the next directory or extended attribute entry | |
2671 | * after the given key (@key) if there is one. @nm is used to resolve | |
2672 | * collisions. | |
2673 | * | |
2674 | * If the name of the current entry is not known and only the key is known, | |
2675 | * @nm->name has to be %NULL. In this case the semantics of this function is a | |
2676 | * little bit different and it returns the entry corresponding to this key, not | |
2677 | * the next one. If the key was not found, the closest "right" entry is | |
2678 | * returned. | |
2679 | * | |
2680 | * If the fist entry has to be found, @key has to contain the lowest possible | |
2681 | * key value for this inode and @name has to be %NULL. | |
2682 | * | |
2683 | * This function returns the found directory or extended attribute entry node | |
2684 | * in case of success, %-ENOENT is returned if no entry was found, and a | |
2685 | * negative error code is returned in case of failure. | |
2686 | */ | |
2687 | struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, | |
2688 | union ubifs_key *key, | |
2689 | const struct qstr *nm) | |
2690 | { | |
2691 | int n, err, type = key_type(c, key); | |
2692 | struct ubifs_znode *znode; | |
2693 | struct ubifs_dent_node *dent; | |
2694 | struct ubifs_zbranch *zbr; | |
2695 | union ubifs_key *dkey; | |
2696 | ||
2697 | dbg_tnc("%s %s", nm->name ? (char *)nm->name : "(lowest)", DBGKEY(key)); | |
2698 | ubifs_assert(is_hash_key(c, key)); | |
2699 | ||
2700 | mutex_lock(&c->tnc_mutex); | |
2701 | err = ubifs_lookup_level0(c, key, &znode, &n); | |
2702 | if (unlikely(err < 0)) | |
2703 | goto out_unlock; | |
2704 | ||
2705 | if (nm->name) { | |
2706 | if (err) { | |
2707 | /* Handle collisions */ | |
2708 | err = resolve_collision(c, key, &znode, &n, nm); | |
2709 | dbg_tnc("rc returned %d, znode %p, n %d", | |
2710 | err, znode, n); | |
2711 | if (unlikely(err < 0)) | |
2712 | goto out_unlock; | |
2713 | } | |
2714 | ||
2715 | /* Now find next entry */ | |
2716 | err = tnc_next(c, &znode, &n); | |
2717 | if (unlikely(err)) | |
2718 | goto out_unlock; | |
2719 | } else { | |
2720 | /* | |
2721 | * The full name of the entry was not given, in which case the | |
2722 | * behavior of this function is a little different and it | |
2723 | * returns current entry, not the next one. | |
2724 | */ | |
2725 | if (!err) { | |
2726 | /* | |
2727 | * However, the given key does not exist in the TNC | |
2728 | * tree and @znode/@n variables contain the closest | |
2729 | * "preceding" element. Switch to the next one. | |
2730 | */ | |
2731 | err = tnc_next(c, &znode, &n); | |
2732 | if (err) | |
2733 | goto out_unlock; | |
2734 | } | |
2735 | } | |
2736 | ||
2737 | zbr = &znode->zbranch[n]; | |
2738 | dent = kmalloc(zbr->len, GFP_NOFS); | |
2739 | if (unlikely(!dent)) { | |
2740 | err = -ENOMEM; | |
2741 | goto out_unlock; | |
2742 | } | |
2743 | ||
2744 | /* | |
2745 | * The above 'tnc_next()' call could lead us to the next inode, check | |
2746 | * this. | |
2747 | */ | |
2748 | dkey = &zbr->key; | |
2749 | if (key_inum(c, dkey) != key_inum(c, key) || | |
2750 | key_type(c, dkey) != type) { | |
2751 | err = -ENOENT; | |
2752 | goto out_free; | |
2753 | } | |
2754 | ||
2755 | err = tnc_read_node_nm(c, zbr, dent); | |
2756 | if (unlikely(err)) | |
2757 | goto out_free; | |
2758 | ||
2759 | mutex_unlock(&c->tnc_mutex); | |
2760 | return dent; | |
2761 | ||
2762 | out_free: | |
2763 | kfree(dent); | |
2764 | out_unlock: | |
2765 | mutex_unlock(&c->tnc_mutex); | |
2766 | return ERR_PTR(err); | |
2767 | } |