]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
e165b1d3 KI |
2 | /* |
3 | * Enhanced Direct Memory Access (EDMA3) Controller | |
4 | * | |
5 | * (C) Copyright 2014 | |
6 | * Texas Instruments Incorporated, <www.ti.com> | |
7 | * | |
8 | * Author: Ivan Khoronzhuk <[email protected]> | |
e165b1d3 KI |
9 | */ |
10 | ||
11 | #include <asm/io.h> | |
12 | #include <common.h> | |
9d922450 | 13 | #include <dm.h> |
1218e5c5 | 14 | #include <dma.h> |
1218e5c5 | 15 | #include <asm/omap_common.h> |
e165b1d3 KI |
16 | #include <asm/ti-common/ti-edma3.h> |
17 | ||
18 | #define EDMA3_SL_BASE(slot) (0x4000 + ((slot) << 5)) | |
19 | #define EDMA3_SL_MAX_NUM 512 | |
20 | #define EDMA3_SLOPT_FIFO_WIDTH_MASK (0x7 << 8) | |
21 | ||
22 | #define EDMA3_QCHMAP(ch) 0x0200 + ((ch) << 2) | |
23 | #define EDMA3_CHMAP_PARSET_MASK 0x1ff | |
24 | #define EDMA3_CHMAP_PARSET_SHIFT 0x5 | |
25 | #define EDMA3_CHMAP_TRIGWORD_SHIFT 0x2 | |
26 | ||
27 | #define EDMA3_QEMCR 0x314 | |
28 | #define EDMA3_IPR 0x1068 | |
29 | #define EDMA3_IPRH 0x106c | |
30 | #define EDMA3_ICR 0x1070 | |
31 | #define EDMA3_ICRH 0x1074 | |
32 | #define EDMA3_QEECR 0x1088 | |
33 | #define EDMA3_QEESR 0x108c | |
34 | #define EDMA3_QSECR 0x1094 | |
35 | ||
72b7af5a TK |
36 | #define EDMA_FILL_BUFFER_SIZE 512 |
37 | ||
1218e5c5 M |
38 | struct ti_edma3_priv { |
39 | u32 base; | |
40 | }; | |
41 | ||
72b7af5a TK |
42 | static u8 edma_fill_buffer[EDMA_FILL_BUFFER_SIZE] __aligned(ARCH_DMA_MINALIGN); |
43 | ||
e165b1d3 KI |
44 | /** |
45 | * qedma3_start - start qdma on a channel | |
46 | * @base: base address of edma | |
47 | * @cfg: pinter to struct edma3_channel_config where you can set | |
48 | * the slot number to associate with, the chnum, which corresponds | |
49 | * your quick channel number 0-7, complete code - transfer complete code | |
50 | * and trigger slot word - which has to correspond to the word number in | |
51 | * edma3_slot_layout struct for generating event. | |
52 | * | |
53 | */ | |
54 | void qedma3_start(u32 base, struct edma3_channel_config *cfg) | |
55 | { | |
56 | u32 qchmap; | |
57 | ||
58 | /* Clear the pending int bit */ | |
59 | if (cfg->complete_code < 32) | |
60 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICR); | |
61 | else | |
62 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH); | |
63 | ||
64 | /* Map parameter set and trigger word 7 to quick channel */ | |
65 | qchmap = ((EDMA3_CHMAP_PARSET_MASK & cfg->slot) | |
66 | << EDMA3_CHMAP_PARSET_SHIFT) | | |
67 | (cfg->trigger_slot_word << EDMA3_CHMAP_TRIGWORD_SHIFT); | |
68 | ||
69 | __raw_writel(qchmap, base + EDMA3_QCHMAP(cfg->chnum)); | |
70 | ||
71 | /* Clear missed event if set*/ | |
72 | __raw_writel(1 << cfg->chnum, base + EDMA3_QSECR); | |
73 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR); | |
74 | ||
75 | /* Enable qdma channel event */ | |
76 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEESR); | |
77 | } | |
78 | ||
79 | /** | |
80 | * edma3_set_dest - set initial DMA destination address in parameter RAM slot | |
81 | * @base: base address of edma | |
82 | * @slot: parameter RAM slot being configured | |
83 | * @dst: physical address of destination (memory, controller FIFO, etc) | |
84 | * @addressMode: INCR, except in very rare cases | |
85 | * @width: ignored unless @addressMode is FIFO, else specifies the | |
86 | * width to use when addressing the fifo (e.g. W8BIT, W32BIT) | |
87 | * | |
88 | * Note that the destination address is modified during the DMA transfer | |
89 | * according to edma3_set_dest_index(). | |
90 | */ | |
91 | void edma3_set_dest(u32 base, int slot, u32 dst, enum edma3_address_mode mode, | |
92 | enum edma3_fifo_width width) | |
93 | { | |
94 | u32 opt; | |
95 | struct edma3_slot_layout *rg; | |
96 | ||
97 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
98 | ||
99 | opt = __raw_readl(&rg->opt); | |
100 | if (mode == FIFO) | |
101 | opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) | | |
102 | (EDMA3_SLOPT_DST_ADDR_CONST_MODE | | |
103 | EDMA3_SLOPT_FIFO_WIDTH_SET(width)); | |
104 | else | |
105 | opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE; | |
106 | ||
107 | __raw_writel(opt, &rg->opt); | |
108 | __raw_writel(dst, &rg->dst); | |
109 | } | |
110 | ||
111 | /** | |
112 | * edma3_set_dest_index - configure DMA destination address indexing | |
113 | * @base: base address of edma | |
114 | * @slot: parameter RAM slot being configured | |
115 | * @bidx: byte offset between destination arrays in a frame | |
116 | * @cidx: byte offset between destination frames in a block | |
117 | * | |
118 | * Offsets are specified to support either contiguous or discontiguous | |
119 | * memory transfers, or repeated access to a hardware register, as needed. | |
120 | * When accessing hardware registers, both offsets are normally zero. | |
121 | */ | |
122 | void edma3_set_dest_index(u32 base, unsigned slot, int bidx, int cidx) | |
123 | { | |
124 | u32 src_dst_bidx; | |
125 | u32 src_dst_cidx; | |
126 | struct edma3_slot_layout *rg; | |
127 | ||
128 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
129 | ||
130 | src_dst_bidx = __raw_readl(&rg->src_dst_bidx); | |
131 | src_dst_cidx = __raw_readl(&rg->src_dst_cidx); | |
132 | ||
133 | __raw_writel((src_dst_bidx & 0x0000ffff) | (bidx << 16), | |
134 | &rg->src_dst_bidx); | |
135 | __raw_writel((src_dst_cidx & 0x0000ffff) | (cidx << 16), | |
136 | &rg->src_dst_cidx); | |
137 | } | |
138 | ||
139 | /** | |
140 | * edma3_set_dest_addr - set destination address for slot only | |
141 | */ | |
142 | void edma3_set_dest_addr(u32 base, int slot, u32 dst) | |
143 | { | |
144 | struct edma3_slot_layout *rg; | |
145 | ||
146 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
147 | __raw_writel(dst, &rg->dst); | |
148 | } | |
149 | ||
150 | /** | |
151 | * edma3_set_src - set initial DMA source address in parameter RAM slot | |
152 | * @base: base address of edma | |
153 | * @slot: parameter RAM slot being configured | |
154 | * @src_port: physical address of source (memory, controller FIFO, etc) | |
155 | * @mode: INCR, except in very rare cases | |
156 | * @width: ignored unless @addressMode is FIFO, else specifies the | |
157 | * width to use when addressing the fifo (e.g. W8BIT, W32BIT) | |
158 | * | |
159 | * Note that the source address is modified during the DMA transfer | |
160 | * according to edma3_set_src_index(). | |
161 | */ | |
162 | void edma3_set_src(u32 base, int slot, u32 src, enum edma3_address_mode mode, | |
163 | enum edma3_fifo_width width) | |
164 | { | |
165 | u32 opt; | |
166 | struct edma3_slot_layout *rg; | |
167 | ||
168 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
169 | ||
170 | opt = __raw_readl(&rg->opt); | |
171 | if (mode == FIFO) | |
172 | opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) | | |
173 | (EDMA3_SLOPT_DST_ADDR_CONST_MODE | | |
174 | EDMA3_SLOPT_FIFO_WIDTH_SET(width)); | |
175 | else | |
176 | opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE; | |
177 | ||
178 | __raw_writel(opt, &rg->opt); | |
179 | __raw_writel(src, &rg->src); | |
180 | } | |
181 | ||
182 | /** | |
183 | * edma3_set_src_index - configure DMA source address indexing | |
184 | * @base: base address of edma | |
185 | * @slot: parameter RAM slot being configured | |
186 | * @bidx: byte offset between source arrays in a frame | |
187 | * @cidx: byte offset between source frames in a block | |
188 | * | |
189 | * Offsets are specified to support either contiguous or discontiguous | |
190 | * memory transfers, or repeated access to a hardware register, as needed. | |
191 | * When accessing hardware registers, both offsets are normally zero. | |
192 | */ | |
193 | void edma3_set_src_index(u32 base, unsigned slot, int bidx, int cidx) | |
194 | { | |
195 | u32 src_dst_bidx; | |
196 | u32 src_dst_cidx; | |
197 | struct edma3_slot_layout *rg; | |
198 | ||
199 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
200 | ||
201 | src_dst_bidx = __raw_readl(&rg->src_dst_bidx); | |
202 | src_dst_cidx = __raw_readl(&rg->src_dst_cidx); | |
203 | ||
204 | __raw_writel((src_dst_bidx & 0xffff0000) | bidx, | |
205 | &rg->src_dst_bidx); | |
206 | __raw_writel((src_dst_cidx & 0xffff0000) | cidx, | |
207 | &rg->src_dst_cidx); | |
208 | } | |
209 | ||
210 | /** | |
211 | * edma3_set_src_addr - set source address for slot only | |
212 | */ | |
213 | void edma3_set_src_addr(u32 base, int slot, u32 src) | |
214 | { | |
215 | struct edma3_slot_layout *rg; | |
216 | ||
217 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
218 | __raw_writel(src, &rg->src); | |
219 | } | |
220 | ||
221 | /** | |
222 | * edma3_set_transfer_params - configure DMA transfer parameters | |
223 | * @base: base address of edma | |
224 | * @slot: parameter RAM slot being configured | |
225 | * @acnt: how many bytes per array (at least one) | |
226 | * @bcnt: how many arrays per frame (at least one) | |
227 | * @ccnt: how many frames per block (at least one) | |
228 | * @bcnt_rld: used only for A-Synchronized transfers; this specifies | |
229 | * the value to reload into bcnt when it decrements to zero | |
230 | * @sync_mode: ASYNC or ABSYNC | |
231 | * | |
232 | * See the EDMA3 documentation to understand how to configure and link | |
233 | * transfers using the fields in PaRAM slots. If you are not doing it | |
234 | * all at once with edma3_write_slot(), you will use this routine | |
235 | * plus two calls each for source and destination, setting the initial | |
236 | * address and saying how to index that address. | |
237 | * | |
238 | * An example of an A-Synchronized transfer is a serial link using a | |
239 | * single word shift register. In that case, @acnt would be equal to | |
240 | * that word size; the serial controller issues a DMA synchronization | |
241 | * event to transfer each word, and memory access by the DMA transfer | |
242 | * controller will be word-at-a-time. | |
243 | * | |
244 | * An example of an AB-Synchronized transfer is a device using a FIFO. | |
245 | * In that case, @acnt equals the FIFO width and @bcnt equals its depth. | |
246 | * The controller with the FIFO issues DMA synchronization events when | |
247 | * the FIFO threshold is reached, and the DMA transfer controller will | |
248 | * transfer one frame to (or from) the FIFO. It will probably use | |
249 | * efficient burst modes to access memory. | |
250 | */ | |
251 | void edma3_set_transfer_params(u32 base, int slot, int acnt, | |
252 | int bcnt, int ccnt, u16 bcnt_rld, | |
253 | enum edma3_sync_dimension sync_mode) | |
254 | { | |
255 | u32 opt; | |
256 | u32 link_bcntrld; | |
257 | struct edma3_slot_layout *rg; | |
258 | ||
259 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
260 | ||
261 | link_bcntrld = __raw_readl(&rg->link_bcntrld); | |
262 | ||
263 | __raw_writel((bcnt_rld << 16) | (0x0000ffff & link_bcntrld), | |
264 | &rg->link_bcntrld); | |
265 | ||
266 | opt = __raw_readl(&rg->opt); | |
267 | if (sync_mode == ASYNC) | |
268 | __raw_writel(opt & ~EDMA3_SLOPT_AB_SYNC, &rg->opt); | |
269 | else | |
270 | __raw_writel(opt | EDMA3_SLOPT_AB_SYNC, &rg->opt); | |
271 | ||
272 | /* Set the acount, bcount, ccount registers */ | |
273 | __raw_writel((bcnt << 16) | (acnt & 0xffff), &rg->a_b_cnt); | |
274 | __raw_writel(0xffff & ccnt, &rg->ccnt); | |
275 | } | |
276 | ||
277 | /** | |
278 | * edma3_write_slot - write parameter RAM data for slot | |
279 | * @base: base address of edma | |
280 | * @slot: number of parameter RAM slot being modified | |
281 | * @param: data to be written into parameter RAM slot | |
282 | * | |
283 | * Use this to assign all parameters of a transfer at once. This | |
284 | * allows more efficient setup of transfers than issuing multiple | |
285 | * calls to set up those parameters in small pieces, and provides | |
286 | * complete control over all transfer options. | |
287 | */ | |
288 | void edma3_write_slot(u32 base, int slot, struct edma3_slot_layout *param) | |
289 | { | |
290 | int i; | |
291 | u32 *p = (u32 *)param; | |
292 | u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot)); | |
293 | ||
294 | for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4) | |
295 | __raw_writel(*p++, addr++); | |
296 | } | |
297 | ||
298 | /** | |
299 | * edma3_read_slot - read parameter RAM data from slot | |
300 | * @base: base address of edma | |
301 | * @slot: number of parameter RAM slot being copied | |
302 | * @param: where to store copy of parameter RAM data | |
303 | * | |
304 | * Use this to read data from a parameter RAM slot, perhaps to | |
305 | * save them as a template for later reuse. | |
306 | */ | |
307 | void edma3_read_slot(u32 base, int slot, struct edma3_slot_layout *param) | |
308 | { | |
309 | int i; | |
310 | u32 *p = (u32 *)param; | |
311 | u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot)); | |
312 | ||
313 | for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4) | |
314 | *p++ = __raw_readl(addr++); | |
315 | } | |
316 | ||
317 | void edma3_slot_configure(u32 base, int slot, struct edma3_slot_config *cfg) | |
318 | { | |
319 | struct edma3_slot_layout *rg; | |
320 | ||
321 | rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); | |
322 | ||
323 | __raw_writel(cfg->opt, &rg->opt); | |
324 | __raw_writel(cfg->src, &rg->src); | |
325 | __raw_writel((cfg->bcnt << 16) | (cfg->acnt & 0xffff), &rg->a_b_cnt); | |
326 | __raw_writel(cfg->dst, &rg->dst); | |
327 | __raw_writel((cfg->dst_bidx << 16) | | |
328 | (cfg->src_bidx & 0xffff), &rg->src_dst_bidx); | |
329 | __raw_writel((cfg->bcntrld << 16) | | |
330 | (cfg->link & 0xffff), &rg->link_bcntrld); | |
331 | __raw_writel((cfg->dst_cidx << 16) | | |
332 | (cfg->src_cidx & 0xffff), &rg->src_dst_cidx); | |
333 | __raw_writel(0xffff & cfg->ccnt, &rg->ccnt); | |
334 | } | |
335 | ||
336 | /** | |
337 | * edma3_check_for_transfer - check if transfer coplete by checking | |
338 | * interrupt pending bit. Clear interrupt pending bit if complete. | |
339 | * @base: base address of edma | |
340 | * @cfg: pinter to struct edma3_channel_config which was passed | |
341 | * to qedma3_start when you started qdma channel | |
342 | * | |
343 | * Return 0 if complete, 1 if not. | |
344 | */ | |
345 | int edma3_check_for_transfer(u32 base, struct edma3_channel_config *cfg) | |
346 | { | |
347 | u32 inum; | |
348 | u32 ipr_base; | |
349 | u32 icr_base; | |
350 | ||
351 | if (cfg->complete_code < 32) { | |
352 | ipr_base = base + EDMA3_IPR; | |
353 | icr_base = base + EDMA3_ICR; | |
354 | inum = 1 << cfg->complete_code; | |
355 | } else { | |
356 | ipr_base = base + EDMA3_IPRH; | |
357 | icr_base = base + EDMA3_ICRH; | |
358 | inum = 1 << (cfg->complete_code - 32); | |
359 | } | |
360 | ||
361 | /* check complete interrupt */ | |
362 | if (!(__raw_readl(ipr_base) & inum)) | |
363 | return 1; | |
364 | ||
365 | /* clean up the pending int bit */ | |
366 | __raw_writel(inum, icr_base); | |
367 | ||
368 | return 0; | |
369 | } | |
370 | ||
371 | /** | |
372 | * qedma3_stop - stops dma on the channel passed | |
373 | * @base: base address of edma | |
374 | * @cfg: pinter to struct edma3_channel_config which was passed | |
375 | * to qedma3_start when you started qdma channel | |
376 | */ | |
377 | void qedma3_stop(u32 base, struct edma3_channel_config *cfg) | |
378 | { | |
379 | /* Disable qdma channel event */ | |
380 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEECR); | |
381 | ||
382 | /* clean up the interrupt indication */ | |
383 | if (cfg->complete_code < 32) | |
384 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICR); | |
385 | else | |
386 | __raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH); | |
387 | ||
388 | /* Clear missed event if set*/ | |
389 | __raw_writel(1 << cfg->chnum, base + EDMA3_QSECR); | |
390 | __raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR); | |
391 | ||
392 | /* Clear the channel map */ | |
393 | __raw_writel(0, base + EDMA3_QCHMAP(cfg->chnum)); | |
394 | } | |
664ab2c9 | 395 | |
1218e5c5 | 396 | void __edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num, |
72b7af5a | 397 | void *dst, void *src, size_t len, size_t s_len) |
664ab2c9 V |
398 | { |
399 | struct edma3_slot_config slot; | |
400 | struct edma3_channel_config edma_channel; | |
401 | int b_cnt_value = 1; | |
402 | int rem_bytes = 0; | |
403 | int a_cnt_value = len; | |
404 | unsigned int addr = (unsigned int) (dst); | |
405 | unsigned int max_acnt = 0x7FFFU; | |
406 | ||
72b7af5a TK |
407 | if (len > s_len) { |
408 | b_cnt_value = (len / s_len); | |
409 | rem_bytes = (len % s_len); | |
410 | a_cnt_value = s_len; | |
411 | } else if (len > max_acnt) { | |
664ab2c9 V |
412 | b_cnt_value = (len / max_acnt); |
413 | rem_bytes = (len % max_acnt); | |
414 | a_cnt_value = max_acnt; | |
415 | } | |
416 | ||
417 | slot.opt = 0; | |
418 | slot.src = ((unsigned int) src); | |
419 | slot.acnt = a_cnt_value; | |
420 | slot.bcnt = b_cnt_value; | |
421 | slot.ccnt = 1; | |
72b7af5a TK |
422 | if (len == s_len) |
423 | slot.src_bidx = a_cnt_value; | |
424 | else | |
425 | slot.src_bidx = 0; | |
664ab2c9 V |
426 | slot.dst_bidx = a_cnt_value; |
427 | slot.src_cidx = 0; | |
428 | slot.dst_cidx = 0; | |
429 | slot.link = EDMA3_PARSET_NULL_LINK; | |
430 | slot.bcntrld = 0; | |
431 | slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | | |
432 | EDMA3_SLOPT_COMP_CODE(0) | | |
433 | EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; | |
434 | ||
435 | edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot); | |
436 | edma_channel.slot = edma_slot_num; | |
437 | edma_channel.chnum = 0; | |
438 | edma_channel.complete_code = 0; | |
439 | /* set event trigger to dst update */ | |
440 | edma_channel.trigger_slot_word = EDMA3_TWORD(dst); | |
441 | ||
442 | qedma3_start(edma3_base_addr, &edma_channel); | |
443 | edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr); | |
444 | ||
445 | while (edma3_check_for_transfer(edma3_base_addr, &edma_channel)) | |
446 | ; | |
447 | qedma3_stop(edma3_base_addr, &edma_channel); | |
448 | ||
449 | if (rem_bytes != 0) { | |
450 | slot.opt = 0; | |
72b7af5a TK |
451 | if (len == s_len) |
452 | slot.src = | |
453 | (b_cnt_value * max_acnt) + ((unsigned int) src); | |
454 | else | |
455 | slot.src = (unsigned int) src; | |
664ab2c9 V |
456 | slot.acnt = rem_bytes; |
457 | slot.bcnt = 1; | |
458 | slot.ccnt = 1; | |
459 | slot.src_bidx = rem_bytes; | |
460 | slot.dst_bidx = rem_bytes; | |
461 | slot.src_cidx = 0; | |
462 | slot.dst_cidx = 0; | |
463 | slot.link = EDMA3_PARSET_NULL_LINK; | |
464 | slot.bcntrld = 0; | |
465 | slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | | |
466 | EDMA3_SLOPT_COMP_CODE(0) | | |
467 | EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; | |
468 | edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot); | |
469 | edma_channel.slot = edma_slot_num; | |
470 | edma_channel.chnum = 0; | |
471 | edma_channel.complete_code = 0; | |
472 | /* set event trigger to dst update */ | |
473 | edma_channel.trigger_slot_word = EDMA3_TWORD(dst); | |
474 | ||
475 | qedma3_start(edma3_base_addr, &edma_channel); | |
476 | edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr + | |
477 | (max_acnt * b_cnt_value)); | |
478 | while (edma3_check_for_transfer(edma3_base_addr, &edma_channel)) | |
479 | ; | |
480 | qedma3_stop(edma3_base_addr, &edma_channel); | |
481 | } | |
482 | } | |
1218e5c5 | 483 | |
72b7af5a TK |
484 | void __edma3_fill(unsigned long edma3_base_addr, unsigned int edma_slot_num, |
485 | void *dst, u8 val, size_t len) | |
486 | { | |
487 | int xfer_len; | |
488 | int max_xfer = EDMA_FILL_BUFFER_SIZE * 65535; | |
489 | ||
490 | memset((void *)edma_fill_buffer, val, sizeof(edma_fill_buffer)); | |
491 | ||
492 | while (len) { | |
493 | xfer_len = len; | |
494 | if (xfer_len > max_xfer) | |
495 | xfer_len = max_xfer; | |
496 | ||
497 | __edma3_transfer(edma3_base_addr, edma_slot_num, dst, | |
498 | edma_fill_buffer, xfer_len, | |
499 | EDMA_FILL_BUFFER_SIZE); | |
500 | len -= xfer_len; | |
501 | dst += xfer_len; | |
502 | } | |
503 | } | |
504 | ||
1218e5c5 M |
505 | #ifndef CONFIG_DMA |
506 | ||
507 | void edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num, | |
508 | void *dst, void *src, size_t len) | |
509 | { | |
72b7af5a TK |
510 | __edma3_transfer(edma3_base_addr, edma_slot_num, dst, src, len, len); |
511 | } | |
512 | ||
513 | void edma3_fill(unsigned long edma3_base_addr, unsigned int edma_slot_num, | |
514 | void *dst, u8 val, size_t len) | |
515 | { | |
516 | __edma3_fill(edma3_base_addr, edma_slot_num, dst, val, len); | |
1218e5c5 M |
517 | } |
518 | ||
519 | #else | |
520 | ||
521 | static int ti_edma3_transfer(struct udevice *dev, int direction, void *dst, | |
522 | void *src, size_t len) | |
523 | { | |
524 | struct ti_edma3_priv *priv = dev_get_priv(dev); | |
525 | ||
526 | /* enable edma3 clocks */ | |
527 | enable_edma3_clocks(); | |
528 | ||
529 | switch (direction) { | |
530 | case DMA_MEM_TO_MEM: | |
72b7af5a | 531 | __edma3_transfer(priv->base, 1, dst, src, len, len); |
1218e5c5 M |
532 | break; |
533 | default: | |
9b643e31 | 534 | pr_err("Transfer type not implemented in DMA driver\n"); |
1218e5c5 M |
535 | break; |
536 | } | |
537 | ||
538 | /* disable edma3 clocks */ | |
539 | disable_edma3_clocks(); | |
540 | ||
541 | return 0; | |
542 | } | |
543 | ||
544 | static int ti_edma3_ofdata_to_platdata(struct udevice *dev) | |
545 | { | |
546 | struct ti_edma3_priv *priv = dev_get_priv(dev); | |
547 | ||
a821c4af | 548 | priv->base = devfdt_get_addr(dev); |
1218e5c5 M |
549 | |
550 | return 0; | |
551 | } | |
552 | ||
553 | static int ti_edma3_probe(struct udevice *dev) | |
554 | { | |
555 | struct dma_dev_priv *uc_priv = dev_get_uclass_priv(dev); | |
556 | ||
557 | uc_priv->supported = DMA_SUPPORTS_MEM_TO_MEM; | |
558 | ||
559 | return 0; | |
560 | } | |
561 | ||
562 | static const struct dma_ops ti_edma3_ops = { | |
563 | .transfer = ti_edma3_transfer, | |
564 | }; | |
565 | ||
566 | static const struct udevice_id ti_edma3_ids[] = { | |
567 | { .compatible = "ti,edma3" }, | |
568 | { } | |
569 | }; | |
570 | ||
571 | U_BOOT_DRIVER(ti_edma3) = { | |
572 | .name = "ti_edma3", | |
573 | .id = UCLASS_DMA, | |
574 | .of_match = ti_edma3_ids, | |
575 | .ops = &ti_edma3_ops, | |
576 | .ofdata_to_platdata = ti_edma3_ofdata_to_platdata, | |
577 | .probe = ti_edma3_probe, | |
578 | .priv_auto_alloc_size = sizeof(struct ti_edma3_priv), | |
579 | }; | |
580 | #endif /* CONFIG_DMA */ |