]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: GPL-2.0+ |
682011ff | 2 | /************************************************************************** |
ac3315c2 | 3 | Intel Pro 1000 for ppcboot/das-u-boot |
682011ff WD |
4 | Drivers are port from Intel's Linux driver e1000-4.3.15 |
5 | and from Etherboot pro 1000 driver by mrakes at vivato dot net | |
6 | tested on both gig copper and gig fiber boards | |
7 | ***************************************************************************/ | |
8 | /******************************************************************************* | |
9 | ||
8bde7f77 | 10 | |
682011ff | 11 | Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. |
8bde7f77 | 12 | |
8bde7f77 | 13 | |
682011ff WD |
14 | Contact Information: |
15 | Linux NICS <[email protected]> | |
16 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | |
17 | ||
18 | *******************************************************************************/ | |
19 | /* | |
20 | * Copyright (C) Archway Digital Solutions. | |
21 | * | |
22 | * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> | |
23 | * 2/9/2002 | |
24 | * | |
25 | * Copyright (C) Linux Networx. | |
26 | * Massive upgrade to work with the new intel gigabit NICs. | |
27 | * <ebiederman at lnxi dot com> | |
2c2668f9 RZ |
28 | * |
29 | * Copyright 2011 Freescale Semiconductor, Inc. | |
682011ff WD |
30 | */ |
31 | ||
c752cd2a | 32 | #include <common.h> |
09140113 | 33 | #include <command.h> |
1eb69ae4 | 34 | #include <cpu_func.h> |
c6d80a15 | 35 | #include <dm.h> |
5c5e707a | 36 | #include <errno.h> |
f7ae49fc | 37 | #include <log.h> |
336d4615 | 38 | #include <malloc.h> |
cf92e05c | 39 | #include <memalign.h> |
90526e9f | 40 | #include <net.h> |
5c5e707a | 41 | #include <pci.h> |
c05ed00a | 42 | #include <linux/delay.h> |
682011ff | 43 | #include "e1000.h" |
90526e9f | 44 | #include <asm/cache.h> |
682011ff | 45 | |
682011ff WD |
46 | #define TOUT_LOOP 100000 |
47 | ||
9ea005fb RZ |
48 | #define E1000_DEFAULT_PCI_PBA 0x00000030 |
49 | #define E1000_DEFAULT_PCIE_PBA 0x000a0026 | |
682011ff WD |
50 | |
51 | /* NIC specific static variables go here */ | |
52 | ||
873e8e01 MV |
53 | /* Intel i210 needs the DMA descriptor rings aligned to 128b */ |
54 | #define E1000_BUFFER_ALIGN 128 | |
682011ff | 55 | |
c6d80a15 SG |
56 | /* |
57 | * TODO([email protected]): Even with driver model we share these buffers. | |
58 | * Concurrent receiving on multiple active Ethernet devices will not work. | |
59 | * Normally U-Boot does not support this anyway. To fix it in this driver, | |
60 | * move these buffers and the tx/rx pointers to struct e1000_hw. | |
61 | */ | |
873e8e01 MV |
62 | DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN); |
63 | DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN); | |
64 | DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN); | |
682011ff WD |
65 | |
66 | static int tx_tail; | |
67 | static int rx_tail, rx_last; | |
c6d80a15 | 68 | static int num_cards; /* Number of E1000 devices seen so far */ |
682011ff | 69 | |
d60626f8 | 70 | static struct pci_device_id e1000_supported[] = { |
5c5e707a SG |
71 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) }, |
72 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) }, | |
73 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) }, | |
74 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) }, | |
75 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) }, | |
76 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) }, | |
77 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) }, | |
78 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) }, | |
79 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) }, | |
80 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) }, | |
81 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) }, | |
82 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) }, | |
83 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) }, | |
84 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) }, | |
85 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) }, | |
86 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) }, | |
87 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) }, | |
aa070789 | 88 | /* E1000 PCIe card */ |
5c5e707a SG |
89 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) }, |
90 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) }, | |
91 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) }, | |
92 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) }, | |
93 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) }, | |
94 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) }, | |
95 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) }, | |
96 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) }, | |
97 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) }, | |
98 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) }, | |
99 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) }, | |
100 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) }, | |
101 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) }, | |
102 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) }, | |
103 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) }, | |
104 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) }, | |
105 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) }, | |
106 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) }, | |
107 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) }, | |
108 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) }, | |
109 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) }, | |
110 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) }, | |
111 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) }, | |
112 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) }, | |
113 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) }, | |
114 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) }, | |
115 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) }, | |
116 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) }, | |
117 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) }, | |
118 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) }, | |
85d44e42 MA |
119 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I225_UNPROGRAMMED) }, |
120 | { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I225_IT) }, | |
95186063 | 121 | |
1bc43437 | 122 | {} |
682011ff WD |
123 | }; |
124 | ||
125 | /* Function forward declarations */ | |
5c5e707a SG |
126 | static int e1000_setup_link(struct e1000_hw *hw); |
127 | static int e1000_setup_fiber_link(struct e1000_hw *hw); | |
128 | static int e1000_setup_copper_link(struct e1000_hw *hw); | |
682011ff WD |
129 | static int e1000_phy_setup_autoneg(struct e1000_hw *hw); |
130 | static void e1000_config_collision_dist(struct e1000_hw *hw); | |
131 | static int e1000_config_mac_to_phy(struct e1000_hw *hw); | |
132 | static int e1000_config_fc_after_link_up(struct e1000_hw *hw); | |
5c5e707a | 133 | static int e1000_check_for_link(struct e1000_hw *hw); |
682011ff | 134 | static int e1000_wait_autoneg(struct e1000_hw *hw); |
aa070789 | 135 | static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, |
682011ff WD |
136 | uint16_t * duplex); |
137 | static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, | |
138 | uint16_t * phy_data); | |
139 | static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, | |
140 | uint16_t phy_data); | |
aa070789 | 141 | static int32_t e1000_phy_hw_reset(struct e1000_hw *hw); |
682011ff WD |
142 | static int e1000_phy_reset(struct e1000_hw *hw); |
143 | static int e1000_detect_gig_phy(struct e1000_hw *hw); | |
aa070789 RZ |
144 | static void e1000_set_media_type(struct e1000_hw *hw); |
145 | ||
146 | static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); | |
7e2d991d | 147 | static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); |
aa070789 | 148 | static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); |
682011ff | 149 | |
8712adfd RI |
150 | #ifndef CONFIG_E1000_NO_NVM |
151 | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); | |
f1bcad22 | 152 | static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); |
ecbd2078 RZ |
153 | static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, |
154 | uint16_t words, | |
155 | uint16_t *data); | |
682011ff WD |
156 | /****************************************************************************** |
157 | * Raises the EEPROM's clock input. | |
158 | * | |
159 | * hw - Struct containing variables accessed by shared code | |
160 | * eecd - EECD's current value | |
161 | *****************************************************************************/ | |
2326a94d | 162 | void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
682011ff WD |
163 | { |
164 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | |
165 | * wait 50 microseconds. | |
166 | */ | |
167 | *eecd = *eecd | E1000_EECD_SK; | |
168 | E1000_WRITE_REG(hw, EECD, *eecd); | |
169 | E1000_WRITE_FLUSH(hw); | |
170 | udelay(50); | |
171 | } | |
172 | ||
173 | /****************************************************************************** | |
174 | * Lowers the EEPROM's clock input. | |
175 | * | |
8bde7f77 | 176 | * hw - Struct containing variables accessed by shared code |
682011ff WD |
177 | * eecd - EECD's current value |
178 | *****************************************************************************/ | |
2326a94d | 179 | void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
682011ff | 180 | { |
8bde7f77 WD |
181 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
182 | * wait 50 microseconds. | |
682011ff WD |
183 | */ |
184 | *eecd = *eecd & ~E1000_EECD_SK; | |
185 | E1000_WRITE_REG(hw, EECD, *eecd); | |
186 | E1000_WRITE_FLUSH(hw); | |
187 | udelay(50); | |
188 | } | |
189 | ||
190 | /****************************************************************************** | |
191 | * Shift data bits out to the EEPROM. | |
192 | * | |
193 | * hw - Struct containing variables accessed by shared code | |
194 | * data - data to send to the EEPROM | |
195 | * count - number of bits to shift out | |
196 | *****************************************************************************/ | |
197 | static void | |
198 | e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) | |
199 | { | |
200 | uint32_t eecd; | |
201 | uint32_t mask; | |
202 | ||
203 | /* We need to shift "count" bits out to the EEPROM. So, value in the | |
204 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | |
8bde7f77 | 205 | * In order to do this, "data" must be broken down into bits. |
682011ff WD |
206 | */ |
207 | mask = 0x01 << (count - 1); | |
208 | eecd = E1000_READ_REG(hw, EECD); | |
209 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | |
210 | do { | |
211 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | |
212 | * and then raising and then lowering the clock (the SK bit controls | |
213 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM | |
214 | * by setting "DI" to "0" and then raising and then lowering the clock. | |
215 | */ | |
216 | eecd &= ~E1000_EECD_DI; | |
217 | ||
218 | if (data & mask) | |
219 | eecd |= E1000_EECD_DI; | |
220 | ||
221 | E1000_WRITE_REG(hw, EECD, eecd); | |
222 | E1000_WRITE_FLUSH(hw); | |
223 | ||
224 | udelay(50); | |
225 | ||
226 | e1000_raise_ee_clk(hw, &eecd); | |
227 | e1000_lower_ee_clk(hw, &eecd); | |
228 | ||
229 | mask = mask >> 1; | |
230 | ||
231 | } while (mask); | |
232 | ||
233 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | |
234 | eecd &= ~E1000_EECD_DI; | |
235 | E1000_WRITE_REG(hw, EECD, eecd); | |
236 | } | |
237 | ||
238 | /****************************************************************************** | |
239 | * Shift data bits in from the EEPROM | |
240 | * | |
241 | * hw - Struct containing variables accessed by shared code | |
242 | *****************************************************************************/ | |
243 | static uint16_t | |
aa070789 | 244 | e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count) |
682011ff WD |
245 | { |
246 | uint32_t eecd; | |
247 | uint32_t i; | |
248 | uint16_t data; | |
249 | ||
aa070789 RZ |
250 | /* In order to read a register from the EEPROM, we need to shift 'count' |
251 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | |
252 | * input to the EEPROM (setting the SK bit), and then reading the | |
253 | * value of the "DO" bit. During this "shifting in" process the | |
254 | * "DI" bit should always be clear. | |
682011ff WD |
255 | */ |
256 | ||
257 | eecd = E1000_READ_REG(hw, EECD); | |
258 | ||
259 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | |
260 | data = 0; | |
261 | ||
aa070789 | 262 | for (i = 0; i < count; i++) { |
682011ff WD |
263 | data = data << 1; |
264 | e1000_raise_ee_clk(hw, &eecd); | |
265 | ||
266 | eecd = E1000_READ_REG(hw, EECD); | |
267 | ||
268 | eecd &= ~(E1000_EECD_DI); | |
269 | if (eecd & E1000_EECD_DO) | |
270 | data |= 1; | |
271 | ||
272 | e1000_lower_ee_clk(hw, &eecd); | |
273 | } | |
274 | ||
275 | return data; | |
276 | } | |
277 | ||
278 | /****************************************************************************** | |
aa070789 | 279 | * Returns EEPROM to a "standby" state |
682011ff WD |
280 | * |
281 | * hw - Struct containing variables accessed by shared code | |
682011ff | 282 | *****************************************************************************/ |
2326a94d | 283 | void e1000_standby_eeprom(struct e1000_hw *hw) |
682011ff | 284 | { |
aa070789 | 285 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
682011ff WD |
286 | uint32_t eecd; |
287 | ||
288 | eecd = E1000_READ_REG(hw, EECD); | |
289 | ||
aa070789 RZ |
290 | if (eeprom->type == e1000_eeprom_microwire) { |
291 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | |
292 | E1000_WRITE_REG(hw, EECD, eecd); | |
293 | E1000_WRITE_FLUSH(hw); | |
294 | udelay(eeprom->delay_usec); | |
682011ff | 295 | |
aa070789 RZ |
296 | /* Clock high */ |
297 | eecd |= E1000_EECD_SK; | |
298 | E1000_WRITE_REG(hw, EECD, eecd); | |
299 | E1000_WRITE_FLUSH(hw); | |
300 | udelay(eeprom->delay_usec); | |
301 | ||
302 | /* Select EEPROM */ | |
303 | eecd |= E1000_EECD_CS; | |
304 | E1000_WRITE_REG(hw, EECD, eecd); | |
305 | E1000_WRITE_FLUSH(hw); | |
306 | udelay(eeprom->delay_usec); | |
307 | ||
308 | /* Clock low */ | |
309 | eecd &= ~E1000_EECD_SK; | |
310 | E1000_WRITE_REG(hw, EECD, eecd); | |
311 | E1000_WRITE_FLUSH(hw); | |
312 | udelay(eeprom->delay_usec); | |
313 | } else if (eeprom->type == e1000_eeprom_spi) { | |
314 | /* Toggle CS to flush commands */ | |
315 | eecd |= E1000_EECD_CS; | |
316 | E1000_WRITE_REG(hw, EECD, eecd); | |
317 | E1000_WRITE_FLUSH(hw); | |
318 | udelay(eeprom->delay_usec); | |
319 | eecd &= ~E1000_EECD_CS; | |
320 | E1000_WRITE_REG(hw, EECD, eecd); | |
321 | E1000_WRITE_FLUSH(hw); | |
322 | udelay(eeprom->delay_usec); | |
323 | } | |
324 | } | |
325 | ||
326 | /*************************************************************************** | |
327 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | |
328 | * | |
329 | * hw - Struct containing variables accessed by shared code | |
330 | ****************************************************************************/ | |
472d5460 | 331 | static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) |
aa070789 RZ |
332 | { |
333 | uint32_t eecd = 0; | |
334 | ||
335 | DEBUGFUNC(); | |
336 | ||
337 | if (hw->mac_type == e1000_ich8lan) | |
472d5460 | 338 | return false; |
aa070789 | 339 | |
2c2668f9 | 340 | if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) { |
aa070789 RZ |
341 | eecd = E1000_READ_REG(hw, EECD); |
342 | ||
343 | /* Isolate bits 15 & 16 */ | |
344 | eecd = ((eecd >> 15) & 0x03); | |
345 | ||
346 | /* If both bits are set, device is Flash type */ | |
347 | if (eecd == 0x03) | |
472d5460 | 348 | return false; |
aa070789 | 349 | } |
472d5460 | 350 | return true; |
682011ff WD |
351 | } |
352 | ||
353 | /****************************************************************************** | |
aa070789 | 354 | * Prepares EEPROM for access |
8bde7f77 | 355 | * |
682011ff | 356 | * hw - Struct containing variables accessed by shared code |
aa070789 RZ |
357 | * |
358 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | |
359 | * function should be called before issuing a command to the EEPROM. | |
682011ff | 360 | *****************************************************************************/ |
2326a94d | 361 | int32_t e1000_acquire_eeprom(struct e1000_hw *hw) |
682011ff | 362 | { |
aa070789 RZ |
363 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
364 | uint32_t eecd, i = 0; | |
682011ff | 365 | |
f81ecb5d | 366 | DEBUGFUNC(); |
aa070789 RZ |
367 | |
368 | if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) | |
369 | return -E1000_ERR_SWFW_SYNC; | |
682011ff WD |
370 | eecd = E1000_READ_REG(hw, EECD); |
371 | ||
95186063 | 372 | if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) { |
aa070789 RZ |
373 | /* Request EEPROM Access */ |
374 | if (hw->mac_type > e1000_82544) { | |
375 | eecd |= E1000_EECD_REQ; | |
376 | E1000_WRITE_REG(hw, EECD, eecd); | |
377 | eecd = E1000_READ_REG(hw, EECD); | |
378 | while ((!(eecd & E1000_EECD_GNT)) && | |
379 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | |
380 | i++; | |
381 | udelay(5); | |
382 | eecd = E1000_READ_REG(hw, EECD); | |
383 | } | |
384 | if (!(eecd & E1000_EECD_GNT)) { | |
385 | eecd &= ~E1000_EECD_REQ; | |
386 | E1000_WRITE_REG(hw, EECD, eecd); | |
387 | DEBUGOUT("Could not acquire EEPROM grant\n"); | |
388 | return -E1000_ERR_EEPROM; | |
389 | } | |
390 | } | |
391 | } | |
682011ff | 392 | |
aa070789 | 393 | /* Setup EEPROM for Read/Write */ |
682011ff | 394 | |
aa070789 RZ |
395 | if (eeprom->type == e1000_eeprom_microwire) { |
396 | /* Clear SK and DI */ | |
397 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | |
398 | E1000_WRITE_REG(hw, EECD, eecd); | |
682011ff | 399 | |
aa070789 RZ |
400 | /* Set CS */ |
401 | eecd |= E1000_EECD_CS; | |
402 | E1000_WRITE_REG(hw, EECD, eecd); | |
403 | } else if (eeprom->type == e1000_eeprom_spi) { | |
404 | /* Clear SK and CS */ | |
405 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | |
406 | E1000_WRITE_REG(hw, EECD, eecd); | |
407 | udelay(1); | |
408 | } | |
409 | ||
410 | return E1000_SUCCESS; | |
682011ff WD |
411 | } |
412 | ||
413 | /****************************************************************************** | |
aa070789 RZ |
414 | * Sets up eeprom variables in the hw struct. Must be called after mac_type |
415 | * is configured. Additionally, if this is ICH8, the flash controller GbE | |
416 | * registers must be mapped, or this will crash. | |
682011ff WD |
417 | * |
418 | * hw - Struct containing variables accessed by shared code | |
682011ff | 419 | *****************************************************************************/ |
aa070789 | 420 | static int32_t e1000_init_eeprom_params(struct e1000_hw *hw) |
682011ff | 421 | { |
aa070789 | 422 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
95186063 | 423 | uint32_t eecd; |
aa070789 RZ |
424 | int32_t ret_val = E1000_SUCCESS; |
425 | uint16_t eeprom_size; | |
682011ff | 426 | |
95186063 MV |
427 | if (hw->mac_type == e1000_igb) |
428 | eecd = E1000_READ_REG(hw, I210_EECD); | |
429 | else | |
430 | eecd = E1000_READ_REG(hw, EECD); | |
431 | ||
f81ecb5d | 432 | DEBUGFUNC(); |
aa070789 RZ |
433 | |
434 | switch (hw->mac_type) { | |
435 | case e1000_82542_rev2_0: | |
436 | case e1000_82542_rev2_1: | |
437 | case e1000_82543: | |
438 | case e1000_82544: | |
439 | eeprom->type = e1000_eeprom_microwire; | |
440 | eeprom->word_size = 64; | |
441 | eeprom->opcode_bits = 3; | |
442 | eeprom->address_bits = 6; | |
443 | eeprom->delay_usec = 50; | |
472d5460 YS |
444 | eeprom->use_eerd = false; |
445 | eeprom->use_eewr = false; | |
aa070789 RZ |
446 | break; |
447 | case e1000_82540: | |
448 | case e1000_82545: | |
449 | case e1000_82545_rev_3: | |
450 | case e1000_82546: | |
451 | case e1000_82546_rev_3: | |
452 | eeprom->type = e1000_eeprom_microwire; | |
453 | eeprom->opcode_bits = 3; | |
454 | eeprom->delay_usec = 50; | |
455 | if (eecd & E1000_EECD_SIZE) { | |
456 | eeprom->word_size = 256; | |
457 | eeprom->address_bits = 8; | |
458 | } else { | |
459 | eeprom->word_size = 64; | |
460 | eeprom->address_bits = 6; | |
461 | } | |
472d5460 YS |
462 | eeprom->use_eerd = false; |
463 | eeprom->use_eewr = false; | |
aa070789 RZ |
464 | break; |
465 | case e1000_82541: | |
466 | case e1000_82541_rev_2: | |
467 | case e1000_82547: | |
468 | case e1000_82547_rev_2: | |
469 | if (eecd & E1000_EECD_TYPE) { | |
470 | eeprom->type = e1000_eeprom_spi; | |
471 | eeprom->opcode_bits = 8; | |
472 | eeprom->delay_usec = 1; | |
473 | if (eecd & E1000_EECD_ADDR_BITS) { | |
474 | eeprom->page_size = 32; | |
475 | eeprom->address_bits = 16; | |
476 | } else { | |
477 | eeprom->page_size = 8; | |
478 | eeprom->address_bits = 8; | |
479 | } | |
480 | } else { | |
481 | eeprom->type = e1000_eeprom_microwire; | |
482 | eeprom->opcode_bits = 3; | |
483 | eeprom->delay_usec = 50; | |
484 | if (eecd & E1000_EECD_ADDR_BITS) { | |
485 | eeprom->word_size = 256; | |
486 | eeprom->address_bits = 8; | |
487 | } else { | |
488 | eeprom->word_size = 64; | |
489 | eeprom->address_bits = 6; | |
490 | } | |
491 | } | |
472d5460 YS |
492 | eeprom->use_eerd = false; |
493 | eeprom->use_eewr = false; | |
aa070789 RZ |
494 | break; |
495 | case e1000_82571: | |
496 | case e1000_82572: | |
497 | eeprom->type = e1000_eeprom_spi; | |
498 | eeprom->opcode_bits = 8; | |
499 | eeprom->delay_usec = 1; | |
500 | if (eecd & E1000_EECD_ADDR_BITS) { | |
501 | eeprom->page_size = 32; | |
502 | eeprom->address_bits = 16; | |
503 | } else { | |
504 | eeprom->page_size = 8; | |
505 | eeprom->address_bits = 8; | |
506 | } | |
472d5460 YS |
507 | eeprom->use_eerd = false; |
508 | eeprom->use_eewr = false; | |
aa070789 RZ |
509 | break; |
510 | case e1000_82573: | |
2c2668f9 | 511 | case e1000_82574: |
aa070789 RZ |
512 | eeprom->type = e1000_eeprom_spi; |
513 | eeprom->opcode_bits = 8; | |
514 | eeprom->delay_usec = 1; | |
515 | if (eecd & E1000_EECD_ADDR_BITS) { | |
516 | eeprom->page_size = 32; | |
517 | eeprom->address_bits = 16; | |
518 | } else { | |
519 | eeprom->page_size = 8; | |
520 | eeprom->address_bits = 8; | |
682011ff | 521 | } |
472d5460 | 522 | if (e1000_is_onboard_nvm_eeprom(hw) == false) { |
95186063 MV |
523 | eeprom->use_eerd = true; |
524 | eeprom->use_eewr = true; | |
525 | ||
aa070789 RZ |
526 | eeprom->type = e1000_eeprom_flash; |
527 | eeprom->word_size = 2048; | |
528 | ||
529 | /* Ensure that the Autonomous FLASH update bit is cleared due to | |
530 | * Flash update issue on parts which use a FLASH for NVM. */ | |
531 | eecd &= ~E1000_EECD_AUPDEN; | |
682011ff | 532 | E1000_WRITE_REG(hw, EECD, eecd); |
682011ff | 533 | } |
aa070789 RZ |
534 | break; |
535 | case e1000_80003es2lan: | |
536 | eeprom->type = e1000_eeprom_spi; | |
537 | eeprom->opcode_bits = 8; | |
538 | eeprom->delay_usec = 1; | |
539 | if (eecd & E1000_EECD_ADDR_BITS) { | |
540 | eeprom->page_size = 32; | |
541 | eeprom->address_bits = 16; | |
542 | } else { | |
543 | eeprom->page_size = 8; | |
544 | eeprom->address_bits = 8; | |
545 | } | |
472d5460 YS |
546 | eeprom->use_eerd = true; |
547 | eeprom->use_eewr = false; | |
aa070789 | 548 | break; |
95186063 MV |
549 | case e1000_igb: |
550 | /* i210 has 4k of iNVM mapped as EEPROM */ | |
551 | eeprom->type = e1000_eeprom_invm; | |
552 | eeprom->opcode_bits = 8; | |
553 | eeprom->delay_usec = 1; | |
554 | eeprom->page_size = 32; | |
555 | eeprom->address_bits = 16; | |
556 | eeprom->use_eerd = true; | |
557 | eeprom->use_eewr = false; | |
558 | break; | |
aa070789 RZ |
559 | default: |
560 | break; | |
682011ff WD |
561 | } |
562 | ||
95186063 MV |
563 | if (eeprom->type == e1000_eeprom_spi || |
564 | eeprom->type == e1000_eeprom_invm) { | |
aa070789 RZ |
565 | /* eeprom_size will be an enum [0..8] that maps |
566 | * to eeprom sizes 128B to | |
567 | * 32KB (incremented by powers of 2). | |
568 | */ | |
569 | if (hw->mac_type <= e1000_82547_rev_2) { | |
570 | /* Set to default value for initial eeprom read. */ | |
571 | eeprom->word_size = 64; | |
572 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, | |
573 | &eeprom_size); | |
574 | if (ret_val) | |
575 | return ret_val; | |
576 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) | |
577 | >> EEPROM_SIZE_SHIFT; | |
578 | /* 256B eeprom size was not supported in earlier | |
579 | * hardware, so we bump eeprom_size up one to | |
580 | * ensure that "1" (which maps to 256B) is never | |
581 | * the result used in the shifting logic below. */ | |
582 | if (eeprom_size) | |
583 | eeprom_size++; | |
584 | } else { | |
585 | eeprom_size = (uint16_t)((eecd & | |
586 | E1000_EECD_SIZE_EX_MASK) >> | |
587 | E1000_EECD_SIZE_EX_SHIFT); | |
588 | } | |
589 | ||
590 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | |
591 | } | |
592 | return ret_val; | |
682011ff WD |
593 | } |
594 | ||
aa070789 RZ |
595 | /****************************************************************************** |
596 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | |
597 | * | |
598 | * hw - Struct containing variables accessed by shared code | |
599 | *****************************************************************************/ | |
600 | static int32_t | |
601 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | |
682011ff | 602 | { |
aa070789 RZ |
603 | uint32_t attempts = 100000; |
604 | uint32_t i, reg = 0; | |
605 | int32_t done = E1000_ERR_EEPROM; | |
682011ff | 606 | |
aa070789 | 607 | for (i = 0; i < attempts; i++) { |
95186063 MV |
608 | if (eerd == E1000_EEPROM_POLL_READ) { |
609 | if (hw->mac_type == e1000_igb) | |
610 | reg = E1000_READ_REG(hw, I210_EERD); | |
611 | else | |
612 | reg = E1000_READ_REG(hw, EERD); | |
613 | } else { | |
614 | if (hw->mac_type == e1000_igb) | |
615 | reg = E1000_READ_REG(hw, I210_EEWR); | |
616 | else | |
617 | reg = E1000_READ_REG(hw, EEWR); | |
618 | } | |
aa070789 RZ |
619 | |
620 | if (reg & E1000_EEPROM_RW_REG_DONE) { | |
621 | done = E1000_SUCCESS; | |
622 | break; | |
623 | } | |
624 | udelay(5); | |
625 | } | |
626 | ||
627 | return done; | |
682011ff WD |
628 | } |
629 | ||
aa070789 RZ |
630 | /****************************************************************************** |
631 | * Reads a 16 bit word from the EEPROM using the EERD register. | |
632 | * | |
633 | * hw - Struct containing variables accessed by shared code | |
634 | * offset - offset of word in the EEPROM to read | |
635 | * data - word read from the EEPROM | |
636 | * words - number of words to read | |
637 | *****************************************************************************/ | |
638 | static int32_t | |
639 | e1000_read_eeprom_eerd(struct e1000_hw *hw, | |
640 | uint16_t offset, | |
641 | uint16_t words, | |
642 | uint16_t *data) | |
682011ff | 643 | { |
aa070789 RZ |
644 | uint32_t i, eerd = 0; |
645 | int32_t error = 0; | |
646 | ||
647 | for (i = 0; i < words; i++) { | |
648 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | |
649 | E1000_EEPROM_RW_REG_START; | |
650 | ||
95186063 MV |
651 | if (hw->mac_type == e1000_igb) |
652 | E1000_WRITE_REG(hw, I210_EERD, eerd); | |
653 | else | |
654 | E1000_WRITE_REG(hw, EERD, eerd); | |
655 | ||
aa070789 RZ |
656 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); |
657 | ||
658 | if (error) | |
659 | break; | |
95186063 MV |
660 | |
661 | if (hw->mac_type == e1000_igb) { | |
662 | data[i] = (E1000_READ_REG(hw, I210_EERD) >> | |
663 | E1000_EEPROM_RW_REG_DATA); | |
664 | } else { | |
665 | data[i] = (E1000_READ_REG(hw, EERD) >> | |
aa070789 | 666 | E1000_EEPROM_RW_REG_DATA); |
95186063 | 667 | } |
682011ff | 668 | |
682011ff | 669 | } |
aa070789 RZ |
670 | |
671 | return error; | |
682011ff WD |
672 | } |
673 | ||
2326a94d | 674 | void e1000_release_eeprom(struct e1000_hw *hw) |
682011ff WD |
675 | { |
676 | uint32_t eecd; | |
682011ff | 677 | |
aa070789 RZ |
678 | DEBUGFUNC(); |
679 | ||
680 | eecd = E1000_READ_REG(hw, EECD); | |
681 | ||
682 | if (hw->eeprom.type == e1000_eeprom_spi) { | |
683 | eecd |= E1000_EECD_CS; /* Pull CS high */ | |
684 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | |
685 | ||
682011ff | 686 | E1000_WRITE_REG(hw, EECD, eecd); |
aa070789 RZ |
687 | |
688 | udelay(hw->eeprom.delay_usec); | |
689 | } else if (hw->eeprom.type == e1000_eeprom_microwire) { | |
690 | /* cleanup eeprom */ | |
691 | ||
692 | /* CS on Microwire is active-high */ | |
693 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | |
694 | ||
695 | E1000_WRITE_REG(hw, EECD, eecd); | |
696 | ||
697 | /* Rising edge of clock */ | |
698 | eecd |= E1000_EECD_SK; | |
699 | E1000_WRITE_REG(hw, EECD, eecd); | |
700 | E1000_WRITE_FLUSH(hw); | |
701 | udelay(hw->eeprom.delay_usec); | |
702 | ||
703 | /* Falling edge of clock */ | |
704 | eecd &= ~E1000_EECD_SK; | |
705 | E1000_WRITE_REG(hw, EECD, eecd); | |
706 | E1000_WRITE_FLUSH(hw); | |
707 | udelay(hw->eeprom.delay_usec); | |
682011ff | 708 | } |
682011ff WD |
709 | |
710 | /* Stop requesting EEPROM access */ | |
711 | if (hw->mac_type > e1000_82544) { | |
682011ff WD |
712 | eecd &= ~E1000_EECD_REQ; |
713 | E1000_WRITE_REG(hw, EECD, eecd); | |
714 | } | |
7e2d991d TH |
715 | |
716 | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | |
682011ff | 717 | } |
7e2d991d | 718 | |
682011ff | 719 | /****************************************************************************** |
aa070789 | 720 | * Reads a 16 bit word from the EEPROM. |
8bde7f77 | 721 | * |
682011ff | 722 | * hw - Struct containing variables accessed by shared code |
682011ff | 723 | *****************************************************************************/ |
aa070789 RZ |
724 | static int32_t |
725 | e1000_spi_eeprom_ready(struct e1000_hw *hw) | |
682011ff | 726 | { |
aa070789 RZ |
727 | uint16_t retry_count = 0; |
728 | uint8_t spi_stat_reg; | |
682011ff WD |
729 | |
730 | DEBUGFUNC(); | |
731 | ||
aa070789 RZ |
732 | /* Read "Status Register" repeatedly until the LSB is cleared. The |
733 | * EEPROM will signal that the command has been completed by clearing | |
734 | * bit 0 of the internal status register. If it's not cleared within | |
735 | * 5 milliseconds, then error out. | |
736 | */ | |
737 | retry_count = 0; | |
738 | do { | |
739 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | |
740 | hw->eeprom.opcode_bits); | |
741 | spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); | |
742 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | |
743 | break; | |
8bde7f77 | 744 | |
aa070789 RZ |
745 | udelay(5); |
746 | retry_count += 5; | |
747 | ||
748 | e1000_standby_eeprom(hw); | |
749 | } while (retry_count < EEPROM_MAX_RETRY_SPI); | |
750 | ||
751 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | |
752 | * only 0-5mSec on 5V devices) | |
753 | */ | |
754 | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | |
755 | DEBUGOUT("SPI EEPROM Status error\n"); | |
682011ff WD |
756 | return -E1000_ERR_EEPROM; |
757 | } | |
aa070789 RZ |
758 | |
759 | return E1000_SUCCESS; | |
682011ff WD |
760 | } |
761 | ||
762 | /****************************************************************************** | |
aa070789 | 763 | * Reads a 16 bit word from the EEPROM. |
682011ff | 764 | * |
aa070789 RZ |
765 | * hw - Struct containing variables accessed by shared code |
766 | * offset - offset of word in the EEPROM to read | |
767 | * data - word read from the EEPROM | |
682011ff | 768 | *****************************************************************************/ |
aa070789 RZ |
769 | static int32_t |
770 | e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, | |
771 | uint16_t words, uint16_t *data) | |
682011ff | 772 | { |
aa070789 RZ |
773 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
774 | uint32_t i = 0; | |
682011ff WD |
775 | |
776 | DEBUGFUNC(); | |
777 | ||
aa070789 RZ |
778 | /* If eeprom is not yet detected, do so now */ |
779 | if (eeprom->word_size == 0) | |
780 | e1000_init_eeprom_params(hw); | |
781 | ||
782 | /* A check for invalid values: offset too large, too many words, | |
783 | * and not enough words. | |
784 | */ | |
785 | if ((offset >= eeprom->word_size) || | |
786 | (words > eeprom->word_size - offset) || | |
787 | (words == 0)) { | |
788 | DEBUGOUT("\"words\" parameter out of bounds." | |
789 | "Words = %d, size = %d\n", offset, eeprom->word_size); | |
790 | return -E1000_ERR_EEPROM; | |
791 | } | |
792 | ||
793 | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI | |
794 | * directly. In this case, we need to acquire the EEPROM so that | |
795 | * FW or other port software does not interrupt. | |
796 | */ | |
472d5460 YS |
797 | if (e1000_is_onboard_nvm_eeprom(hw) == true && |
798 | hw->eeprom.use_eerd == false) { | |
aa070789 RZ |
799 | |
800 | /* Prepare the EEPROM for bit-bang reading */ | |
801 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | |
802 | return -E1000_ERR_EEPROM; | |
803 | } | |
804 | ||
805 | /* Eerd register EEPROM access requires no eeprom aquire/release */ | |
472d5460 | 806 | if (eeprom->use_eerd == true) |
aa070789 RZ |
807 | return e1000_read_eeprom_eerd(hw, offset, words, data); |
808 | ||
aa070789 RZ |
809 | /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have |
810 | * acquired the EEPROM at this point, so any returns should relase it */ | |
811 | if (eeprom->type == e1000_eeprom_spi) { | |
812 | uint16_t word_in; | |
813 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | |
814 | ||
815 | if (e1000_spi_eeprom_ready(hw)) { | |
816 | e1000_release_eeprom(hw); | |
817 | return -E1000_ERR_EEPROM; | |
818 | } | |
819 | ||
820 | e1000_standby_eeprom(hw); | |
821 | ||
822 | /* Some SPI eeproms use the 8th address bit embedded in | |
823 | * the opcode */ | |
824 | if ((eeprom->address_bits == 8) && (offset >= 128)) | |
825 | read_opcode |= EEPROM_A8_OPCODE_SPI; | |
826 | ||
827 | /* Send the READ command (opcode + addr) */ | |
828 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | |
829 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), | |
830 | eeprom->address_bits); | |
831 | ||
832 | /* Read the data. The address of the eeprom internally | |
833 | * increments with each byte (spi) being read, saving on the | |
834 | * overhead of eeprom setup and tear-down. The address | |
835 | * counter will roll over if reading beyond the size of | |
836 | * the eeprom, thus allowing the entire memory to be read | |
837 | * starting from any offset. */ | |
838 | for (i = 0; i < words; i++) { | |
839 | word_in = e1000_shift_in_ee_bits(hw, 16); | |
840 | data[i] = (word_in >> 8) | (word_in << 8); | |
841 | } | |
842 | } else if (eeprom->type == e1000_eeprom_microwire) { | |
843 | for (i = 0; i < words; i++) { | |
844 | /* Send the READ command (opcode + addr) */ | |
845 | e1000_shift_out_ee_bits(hw, | |
846 | EEPROM_READ_OPCODE_MICROWIRE, | |
847 | eeprom->opcode_bits); | |
848 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), | |
849 | eeprom->address_bits); | |
850 | ||
851 | /* Read the data. For microwire, each word requires | |
852 | * the overhead of eeprom setup and tear-down. */ | |
853 | data[i] = e1000_shift_in_ee_bits(hw, 16); | |
854 | e1000_standby_eeprom(hw); | |
855 | } | |
856 | } | |
857 | ||
858 | /* End this read operation */ | |
859 | e1000_release_eeprom(hw); | |
860 | ||
861 | return E1000_SUCCESS; | |
862 | } | |
863 | ||
f1bcad22 HL |
864 | /****************************************************************************** |
865 | * e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR | |
866 | * @hw: pointer to the HW structure | |
867 | * @offset: offset within the Shadow Ram to be written to | |
868 | * @words: number of words to write | |
869 | * @data: 16 bit word(s) to be written to the Shadow Ram | |
870 | * | |
871 | * Writes data to Shadow Ram at offset using EEWR register. | |
872 | * | |
873 | * If e1000_update_eeprom_checksum_i210 is not called after this function, the | |
874 | * Shadow Ram will most likely contain an invalid checksum. | |
875 | *****************************************************************************/ | |
876 | static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset, | |
877 | uint16_t words, uint16_t *data) | |
878 | { | |
879 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | |
880 | uint32_t i, k, eewr = 0; | |
881 | uint32_t attempts = 100000; | |
882 | int32_t ret_val = 0; | |
883 | ||
884 | /* A check for invalid values: offset too large, too many words, | |
885 | * too many words for the offset, and not enough words. | |
886 | */ | |
887 | if ((offset >= eeprom->word_size) || | |
888 | (words > (eeprom->word_size - offset)) || (words == 0)) { | |
889 | DEBUGOUT("nvm parameter(s) out of bounds\n"); | |
890 | ret_val = -E1000_ERR_EEPROM; | |
891 | goto out; | |
892 | } | |
893 | ||
894 | for (i = 0; i < words; i++) { | |
895 | eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) | |
896 | | (data[i] << E1000_EEPROM_RW_REG_DATA) | | |
897 | E1000_EEPROM_RW_REG_START; | |
898 | ||
899 | E1000_WRITE_REG(hw, I210_EEWR, eewr); | |
900 | ||
901 | for (k = 0; k < attempts; k++) { | |
902 | if (E1000_EEPROM_RW_REG_DONE & | |
903 | E1000_READ_REG(hw, I210_EEWR)) { | |
904 | ret_val = 0; | |
905 | break; | |
906 | } | |
907 | udelay(5); | |
908 | } | |
909 | ||
910 | if (ret_val) { | |
911 | DEBUGOUT("Shadow RAM write EEWR timed out\n"); | |
912 | break; | |
913 | } | |
914 | } | |
915 | ||
916 | out: | |
917 | return ret_val; | |
918 | } | |
919 | ||
920 | /****************************************************************************** | |
921 | * e1000_pool_flash_update_done_i210 - Pool FLUDONE status. | |
922 | * @hw: pointer to the HW structure | |
923 | * | |
924 | *****************************************************************************/ | |
925 | static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw) | |
926 | { | |
927 | int32_t ret_val = -E1000_ERR_EEPROM; | |
928 | uint32_t i, reg; | |
929 | ||
930 | for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) { | |
931 | reg = E1000_READ_REG(hw, EECD); | |
932 | if (reg & E1000_EECD_FLUDONE_I210) { | |
933 | ret_val = 0; | |
934 | break; | |
935 | } | |
936 | udelay(5); | |
937 | } | |
938 | ||
939 | return ret_val; | |
940 | } | |
941 | ||
942 | /****************************************************************************** | |
943 | * e1000_update_flash_i210 - Commit EEPROM to the flash | |
944 | * @hw: pointer to the HW structure | |
945 | * | |
946 | *****************************************************************************/ | |
947 | static int32_t e1000_update_flash_i210(struct e1000_hw *hw) | |
948 | { | |
949 | int32_t ret_val = 0; | |
950 | uint32_t flup; | |
951 | ||
952 | ret_val = e1000_pool_flash_update_done_i210(hw); | |
953 | if (ret_val == -E1000_ERR_EEPROM) { | |
954 | DEBUGOUT("Flash update time out\n"); | |
955 | goto out; | |
956 | } | |
957 | ||
958 | flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210; | |
959 | E1000_WRITE_REG(hw, EECD, flup); | |
960 | ||
961 | ret_val = e1000_pool_flash_update_done_i210(hw); | |
962 | if (ret_val) | |
963 | DEBUGOUT("Flash update time out\n"); | |
964 | else | |
965 | DEBUGOUT("Flash update complete\n"); | |
966 | ||
967 | out: | |
968 | return ret_val; | |
969 | } | |
970 | ||
971 | /****************************************************************************** | |
972 | * e1000_update_eeprom_checksum_i210 - Update EEPROM checksum | |
973 | * @hw: pointer to the HW structure | |
974 | * | |
975 | * Updates the EEPROM checksum by reading/adding each word of the EEPROM | |
976 | * up to the checksum. Then calculates the EEPROM checksum and writes the | |
977 | * value to the EEPROM. Next commit EEPROM data onto the Flash. | |
978 | *****************************************************************************/ | |
979 | static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw) | |
980 | { | |
981 | int32_t ret_val = 0; | |
982 | uint16_t checksum = 0; | |
983 | uint16_t i, nvm_data; | |
984 | ||
985 | /* Read the first word from the EEPROM. If this times out or fails, do | |
986 | * not continue or we could be in for a very long wait while every | |
987 | * EEPROM read fails | |
988 | */ | |
989 | ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data); | |
990 | if (ret_val) { | |
991 | DEBUGOUT("EEPROM read failed\n"); | |
992 | goto out; | |
993 | } | |
994 | ||
995 | if (!(e1000_get_hw_eeprom_semaphore(hw))) { | |
996 | /* Do not use hw->nvm.ops.write, hw->nvm.ops.read | |
997 | * because we do not want to take the synchronization | |
998 | * semaphores twice here. | |
999 | */ | |
1000 | ||
1001 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | |
1002 | ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data); | |
1003 | if (ret_val) { | |
1004 | e1000_put_hw_eeprom_semaphore(hw); | |
1005 | DEBUGOUT("EEPROM Read Error while updating checksum.\n"); | |
1006 | goto out; | |
1007 | } | |
1008 | checksum += nvm_data; | |
1009 | } | |
1010 | checksum = (uint16_t)EEPROM_SUM - checksum; | |
1011 | ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1, | |
1012 | &checksum); | |
1013 | if (ret_val) { | |
1014 | e1000_put_hw_eeprom_semaphore(hw); | |
1015 | DEBUGOUT("EEPROM Write Error while updating checksum.\n"); | |
1016 | goto out; | |
1017 | } | |
1018 | ||
1019 | e1000_put_hw_eeprom_semaphore(hw); | |
1020 | ||
1021 | ret_val = e1000_update_flash_i210(hw); | |
1022 | } else { | |
1023 | ret_val = -E1000_ERR_SWFW_SYNC; | |
1024 | } | |
1025 | ||
1026 | out: | |
1027 | return ret_val; | |
1028 | } | |
f1bcad22 | 1029 | |
aa070789 RZ |
1030 | /****************************************************************************** |
1031 | * Verifies that the EEPROM has a valid checksum | |
1032 | * | |
1033 | * hw - Struct containing variables accessed by shared code | |
1034 | * | |
1035 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | |
1036 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | |
1037 | * valid. | |
1038 | *****************************************************************************/ | |
114d7fc0 | 1039 | static int e1000_validate_eeprom_checksum(struct e1000_hw *hw) |
aa070789 | 1040 | { |
114d7fc0 | 1041 | uint16_t i, checksum, checksum_reg, *buf; |
aa070789 RZ |
1042 | |
1043 | DEBUGFUNC(); | |
1044 | ||
114d7fc0 KM |
1045 | /* Allocate a temporary buffer */ |
1046 | buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1)); | |
1047 | if (!buf) { | |
5c5e707a | 1048 | E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n"); |
114d7fc0 | 1049 | return -E1000_ERR_EEPROM; |
aa070789 RZ |
1050 | } |
1051 | ||
114d7fc0 KM |
1052 | /* Read the EEPROM */ |
1053 | if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) { | |
5c5e707a | 1054 | E1000_ERR(hw, "Unable to read EEPROM!\n"); |
aa070789 RZ |
1055 | return -E1000_ERR_EEPROM; |
1056 | } | |
114d7fc0 KM |
1057 | |
1058 | /* Compute the checksum */ | |
7a341066 | 1059 | checksum = 0; |
114d7fc0 KM |
1060 | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) |
1061 | checksum += buf[i]; | |
1062 | checksum = ((uint16_t)EEPROM_SUM) - checksum; | |
1063 | checksum_reg = buf[i]; | |
1064 | ||
1065 | /* Verify it! */ | |
1066 | if (checksum == checksum_reg) | |
1067 | return 0; | |
1068 | ||
1069 | /* Hrm, verification failed, print an error */ | |
5c5e707a SG |
1070 | E1000_ERR(hw, "EEPROM checksum is incorrect!\n"); |
1071 | E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n", | |
1072 | checksum_reg, checksum); | |
114d7fc0 KM |
1073 | |
1074 | return -E1000_ERR_EEPROM; | |
aa070789 | 1075 | } |
8712adfd | 1076 | #endif /* CONFIG_E1000_NO_NVM */ |
ecbd2078 RZ |
1077 | |
1078 | /***************************************************************************** | |
1079 | * Set PHY to class A mode | |
1080 | * Assumes the following operations will follow to enable the new class mode. | |
1081 | * 1. Do a PHY soft reset | |
1082 | * 2. Restart auto-negotiation or force link. | |
1083 | * | |
1084 | * hw - Struct containing variables accessed by shared code | |
1085 | ****************************************************************************/ | |
1086 | static int32_t | |
1087 | e1000_set_phy_mode(struct e1000_hw *hw) | |
1088 | { | |
8712adfd | 1089 | #ifndef CONFIG_E1000_NO_NVM |
ecbd2078 RZ |
1090 | int32_t ret_val; |
1091 | uint16_t eeprom_data; | |
1092 | ||
1093 | DEBUGFUNC(); | |
1094 | ||
1095 | if ((hw->mac_type == e1000_82545_rev_3) && | |
1096 | (hw->media_type == e1000_media_type_copper)) { | |
1097 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, | |
1098 | 1, &eeprom_data); | |
1099 | if (ret_val) | |
1100 | return ret_val; | |
1101 | ||
1102 | if ((eeprom_data != EEPROM_RESERVED_WORD) && | |
1103 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | |
1104 | ret_val = e1000_write_phy_reg(hw, | |
1105 | M88E1000_PHY_PAGE_SELECT, 0x000B); | |
1106 | if (ret_val) | |
1107 | return ret_val; | |
1108 | ret_val = e1000_write_phy_reg(hw, | |
1109 | M88E1000_PHY_GEN_CONTROL, 0x8104); | |
1110 | if (ret_val) | |
1111 | return ret_val; | |
1112 | ||
472d5460 | 1113 | hw->phy_reset_disable = false; |
ecbd2078 RZ |
1114 | } |
1115 | } | |
8712adfd | 1116 | #endif |
ecbd2078 RZ |
1117 | return E1000_SUCCESS; |
1118 | } | |
aa070789 | 1119 | |
8712adfd | 1120 | #ifndef CONFIG_E1000_NO_NVM |
aa070789 RZ |
1121 | /*************************************************************************** |
1122 | * | |
1123 | * Obtaining software semaphore bit (SMBI) before resetting PHY. | |
1124 | * | |
1125 | * hw: Struct containing variables accessed by shared code | |
1126 | * | |
1127 | * returns: - E1000_ERR_RESET if fail to obtain semaphore. | |
1128 | * E1000_SUCCESS at any other case. | |
1129 | * | |
1130 | ***************************************************************************/ | |
1131 | static int32_t | |
1132 | e1000_get_software_semaphore(struct e1000_hw *hw) | |
1133 | { | |
1134 | int32_t timeout = hw->eeprom.word_size + 1; | |
1135 | uint32_t swsm; | |
1136 | ||
1137 | DEBUGFUNC(); | |
1138 | ||
f1bcad22 | 1139 | if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb) |
aa070789 RZ |
1140 | return E1000_SUCCESS; |
1141 | ||
1142 | while (timeout) { | |
1143 | swsm = E1000_READ_REG(hw, SWSM); | |
1144 | /* If SMBI bit cleared, it is now set and we hold | |
1145 | * the semaphore */ | |
1146 | if (!(swsm & E1000_SWSM_SMBI)) | |
1147 | break; | |
1148 | mdelay(1); | |
1149 | timeout--; | |
1150 | } | |
1151 | ||
1152 | if (!timeout) { | |
1153 | DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); | |
1154 | return -E1000_ERR_RESET; | |
1155 | } | |
1156 | ||
1157 | return E1000_SUCCESS; | |
1158 | } | |
8712adfd | 1159 | #endif |
aa070789 RZ |
1160 | |
1161 | /*************************************************************************** | |
1162 | * This function clears HW semaphore bits. | |
1163 | * | |
1164 | * hw: Struct containing variables accessed by shared code | |
1165 | * | |
1166 | * returns: - None. | |
1167 | * | |
1168 | ***************************************************************************/ | |
1169 | static void | |
1170 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | |
1171 | { | |
8712adfd | 1172 | #ifndef CONFIG_E1000_NO_NVM |
aa070789 RZ |
1173 | uint32_t swsm; |
1174 | ||
1175 | DEBUGFUNC(); | |
1176 | ||
1177 | if (!hw->eeprom_semaphore_present) | |
1178 | return; | |
1179 | ||
1180 | swsm = E1000_READ_REG(hw, SWSM); | |
8f5672ea | 1181 | if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) { |
aa070789 RZ |
1182 | /* Release both semaphores. */ |
1183 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | |
1184 | } else | |
1185 | swsm &= ~(E1000_SWSM_SWESMBI); | |
1186 | E1000_WRITE_REG(hw, SWSM, swsm); | |
8712adfd | 1187 | #endif |
aa070789 RZ |
1188 | } |
1189 | ||
1190 | /*************************************************************************** | |
1191 | * | |
1192 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | |
1193 | * adapter or Eeprom access. | |
1194 | * | |
1195 | * hw: Struct containing variables accessed by shared code | |
1196 | * | |
1197 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | |
1198 | * E1000_SUCCESS at any other case. | |
1199 | * | |
1200 | ***************************************************************************/ | |
1201 | static int32_t | |
1202 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | |
1203 | { | |
8712adfd | 1204 | #ifndef CONFIG_E1000_NO_NVM |
aa070789 RZ |
1205 | int32_t timeout; |
1206 | uint32_t swsm; | |
1207 | ||
1208 | DEBUGFUNC(); | |
1209 | ||
1210 | if (!hw->eeprom_semaphore_present) | |
1211 | return E1000_SUCCESS; | |
1212 | ||
f1bcad22 | 1213 | if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) { |
aa070789 RZ |
1214 | /* Get the SW semaphore. */ |
1215 | if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) | |
1216 | return -E1000_ERR_EEPROM; | |
1217 | } | |
1218 | ||
1219 | /* Get the FW semaphore. */ | |
1220 | timeout = hw->eeprom.word_size + 1; | |
1221 | while (timeout) { | |
1222 | swsm = E1000_READ_REG(hw, SWSM); | |
1223 | swsm |= E1000_SWSM_SWESMBI; | |
1224 | E1000_WRITE_REG(hw, SWSM, swsm); | |
1225 | /* if we managed to set the bit we got the semaphore. */ | |
1226 | swsm = E1000_READ_REG(hw, SWSM); | |
1227 | if (swsm & E1000_SWSM_SWESMBI) | |
1228 | break; | |
1229 | ||
1230 | udelay(50); | |
1231 | timeout--; | |
1232 | } | |
1233 | ||
1234 | if (!timeout) { | |
1235 | /* Release semaphores */ | |
1236 | e1000_put_hw_eeprom_semaphore(hw); | |
1237 | DEBUGOUT("Driver can't access the Eeprom - " | |
1238 | "SWESMBI bit is set.\n"); | |
1239 | return -E1000_ERR_EEPROM; | |
1240 | } | |
8712adfd | 1241 | #endif |
aa070789 RZ |
1242 | return E1000_SUCCESS; |
1243 | } | |
1244 | ||
7e2d991d | 1245 | /* Take ownership of the PHY */ |
aa070789 RZ |
1246 | static int32_t |
1247 | e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask) | |
1248 | { | |
1249 | uint32_t swfw_sync = 0; | |
1250 | uint32_t swmask = mask; | |
1251 | uint32_t fwmask = mask << 16; | |
1252 | int32_t timeout = 200; | |
1253 | ||
1254 | DEBUGFUNC(); | |
1255 | while (timeout) { | |
1256 | if (e1000_get_hw_eeprom_semaphore(hw)) | |
1257 | return -E1000_ERR_SWFW_SYNC; | |
1258 | ||
3c63dd53 | 1259 | swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); |
76f8cdb2 | 1260 | if (!(swfw_sync & (fwmask | swmask))) |
aa070789 RZ |
1261 | break; |
1262 | ||
1263 | /* firmware currently using resource (fwmask) */ | |
1264 | /* or other software thread currently using resource (swmask) */ | |
1265 | e1000_put_hw_eeprom_semaphore(hw); | |
1266 | mdelay(5); | |
1267 | timeout--; | |
1268 | } | |
1269 | ||
1270 | if (!timeout) { | |
1271 | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); | |
1272 | return -E1000_ERR_SWFW_SYNC; | |
1273 | } | |
1274 | ||
1275 | swfw_sync |= swmask; | |
1276 | E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); | |
1277 | ||
1278 | e1000_put_hw_eeprom_semaphore(hw); | |
1279 | return E1000_SUCCESS; | |
1280 | } | |
1281 | ||
7e2d991d TH |
1282 | static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask) |
1283 | { | |
1284 | uint32_t swfw_sync = 0; | |
1285 | ||
1286 | DEBUGFUNC(); | |
1287 | while (e1000_get_hw_eeprom_semaphore(hw)) | |
1288 | ; /* Empty */ | |
1289 | ||
1290 | swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC); | |
1291 | swfw_sync &= ~mask; | |
1292 | E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync); | |
1293 | ||
1294 | e1000_put_hw_eeprom_semaphore(hw); | |
1295 | } | |
1296 | ||
472d5460 | 1297 | static bool e1000_is_second_port(struct e1000_hw *hw) |
987b43a1 KM |
1298 | { |
1299 | switch (hw->mac_type) { | |
1300 | case e1000_80003es2lan: | |
1301 | case e1000_82546: | |
1302 | case e1000_82571: | |
1303 | if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) | |
472d5460 | 1304 | return true; |
987b43a1 KM |
1305 | /* Fallthrough */ |
1306 | default: | |
472d5460 | 1307 | return false; |
987b43a1 KM |
1308 | } |
1309 | } | |
1310 | ||
8712adfd | 1311 | #ifndef CONFIG_E1000_NO_NVM |
aa070789 | 1312 | /****************************************************************************** |
e0a75fed | 1313 | * Reads the adapter's MAC address from the EEPROM |
aa070789 | 1314 | * |
e0a75fed HL |
1315 | * hw - Struct containing variables accessed by shared code |
1316 | * enetaddr - buffering where the MAC address will be stored | |
aa070789 | 1317 | *****************************************************************************/ |
e0a75fed HL |
1318 | static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw, |
1319 | unsigned char enetaddr[6]) | |
aa070789 | 1320 | { |
aa070789 RZ |
1321 | uint16_t offset; |
1322 | uint16_t eeprom_data; | |
1323 | int i; | |
1324 | ||
aa070789 RZ |
1325 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
1326 | offset = i >> 1; | |
e0a75fed | 1327 | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { |
682011ff WD |
1328 | DEBUGOUT("EEPROM Read Error\n"); |
1329 | return -E1000_ERR_EEPROM; | |
1330 | } | |
5c5e707a SG |
1331 | enetaddr[i] = eeprom_data & 0xff; |
1332 | enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; | |
682011ff | 1333 | } |
987b43a1 | 1334 | |
e0a75fed HL |
1335 | return 0; |
1336 | } | |
1337 | ||
1338 | /****************************************************************************** | |
1339 | * Reads the adapter's MAC address from the RAL/RAH registers | |
1340 | * | |
1341 | * hw - Struct containing variables accessed by shared code | |
1342 | * enetaddr - buffering where the MAC address will be stored | |
1343 | *****************************************************************************/ | |
1344 | static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw, | |
1345 | unsigned char enetaddr[6]) | |
1346 | { | |
1347 | uint16_t offset, tmp; | |
1348 | uint32_t reg_data = 0; | |
1349 | int i; | |
1350 | ||
1351 | if (hw->mac_type != e1000_igb) | |
1352 | return -E1000_ERR_MAC_TYPE; | |
1353 | ||
1354 | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | |
1355 | offset = i >> 1; | |
1356 | ||
1357 | if (offset == 0) | |
1358 | reg_data = E1000_READ_REG_ARRAY(hw, RA, 0); | |
1359 | else if (offset == 1) | |
1360 | reg_data >>= 16; | |
1361 | else if (offset == 2) | |
1362 | reg_data = E1000_READ_REG_ARRAY(hw, RA, 1); | |
1363 | tmp = reg_data & 0xffff; | |
1364 | ||
1365 | enetaddr[i] = tmp & 0xff; | |
1366 | enetaddr[i + 1] = (tmp >> 8) & 0xff; | |
1367 | } | |
1368 | ||
1369 | return 0; | |
1370 | } | |
1371 | ||
1372 | /****************************************************************************** | |
1373 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | |
1374 | * second function of dual function devices | |
1375 | * | |
1376 | * hw - Struct containing variables accessed by shared code | |
1377 | * enetaddr - buffering where the MAC address will be stored | |
1378 | *****************************************************************************/ | |
1379 | static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6]) | |
1380 | { | |
1381 | int ret_val; | |
1382 | ||
1383 | if (hw->mac_type == e1000_igb) { | |
1384 | /* i210 preloads MAC address into RAL/RAH registers */ | |
1385 | ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr); | |
1386 | } else { | |
1387 | ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr); | |
1388 | } | |
1389 | if (ret_val) | |
1390 | return ret_val; | |
1391 | ||
987b43a1 KM |
1392 | /* Invert the last bit if this is the second device */ |
1393 | if (e1000_is_second_port(hw)) | |
5c5e707a | 1394 | enetaddr[5] ^= 1; |
987b43a1 | 1395 | |
682011ff WD |
1396 | return 0; |
1397 | } | |
8712adfd | 1398 | #endif |
682011ff WD |
1399 | |
1400 | /****************************************************************************** | |
1401 | * Initializes receive address filters. | |
1402 | * | |
8bde7f77 | 1403 | * hw - Struct containing variables accessed by shared code |
682011ff WD |
1404 | * |
1405 | * Places the MAC address in receive address register 0 and clears the rest | |
1406 | * of the receive addresss registers. Clears the multicast table. Assumes | |
1407 | * the receiver is in reset when the routine is called. | |
1408 | *****************************************************************************/ | |
1409 | static void | |
5c5e707a | 1410 | e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6]) |
682011ff | 1411 | { |
682011ff WD |
1412 | uint32_t i; |
1413 | uint32_t addr_low; | |
1414 | uint32_t addr_high; | |
1415 | ||
1416 | DEBUGFUNC(); | |
1417 | ||
1418 | /* Setup the receive address. */ | |
1419 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | |
5c5e707a SG |
1420 | addr_low = (enetaddr[0] | |
1421 | (enetaddr[1] << 8) | | |
1422 | (enetaddr[2] << 16) | (enetaddr[3] << 24)); | |
682011ff | 1423 | |
5c5e707a | 1424 | addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV); |
682011ff WD |
1425 | |
1426 | E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); | |
1427 | E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); | |
1428 | ||
1429 | /* Zero out the other 15 receive addresses. */ | |
1430 | DEBUGOUT("Clearing RAR[1-15]\n"); | |
1431 | for (i = 1; i < E1000_RAR_ENTRIES; i++) { | |
1432 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | |
1433 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | |
1434 | } | |
1435 | } | |
1436 | ||
1437 | /****************************************************************************** | |
1438 | * Clears the VLAN filer table | |
1439 | * | |
1440 | * hw - Struct containing variables accessed by shared code | |
1441 | *****************************************************************************/ | |
1442 | static void | |
1443 | e1000_clear_vfta(struct e1000_hw *hw) | |
1444 | { | |
1445 | uint32_t offset; | |
1446 | ||
1447 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) | |
1448 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | |
1449 | } | |
1450 | ||
1451 | /****************************************************************************** | |
1452 | * Set the mac type member in the hw struct. | |
8bde7f77 | 1453 | * |
682011ff WD |
1454 | * hw - Struct containing variables accessed by shared code |
1455 | *****************************************************************************/ | |
aa070789 | 1456 | int32_t |
682011ff WD |
1457 | e1000_set_mac_type(struct e1000_hw *hw) |
1458 | { | |
1459 | DEBUGFUNC(); | |
1460 | ||
1461 | switch (hw->device_id) { | |
1462 | case E1000_DEV_ID_82542: | |
1463 | switch (hw->revision_id) { | |
1464 | case E1000_82542_2_0_REV_ID: | |
1465 | hw->mac_type = e1000_82542_rev2_0; | |
1466 | break; | |
1467 | case E1000_82542_2_1_REV_ID: | |
1468 | hw->mac_type = e1000_82542_rev2_1; | |
1469 | break; | |
1470 | default: | |
1471 | /* Invalid 82542 revision ID */ | |
1472 | return -E1000_ERR_MAC_TYPE; | |
1473 | } | |
1474 | break; | |
1475 | case E1000_DEV_ID_82543GC_FIBER: | |
1476 | case E1000_DEV_ID_82543GC_COPPER: | |
1477 | hw->mac_type = e1000_82543; | |
1478 | break; | |
1479 | case E1000_DEV_ID_82544EI_COPPER: | |
1480 | case E1000_DEV_ID_82544EI_FIBER: | |
1481 | case E1000_DEV_ID_82544GC_COPPER: | |
1482 | case E1000_DEV_ID_82544GC_LOM: | |
1483 | hw->mac_type = e1000_82544; | |
1484 | break; | |
1485 | case E1000_DEV_ID_82540EM: | |
1486 | case E1000_DEV_ID_82540EM_LOM: | |
aa070789 RZ |
1487 | case E1000_DEV_ID_82540EP: |
1488 | case E1000_DEV_ID_82540EP_LOM: | |
1489 | case E1000_DEV_ID_82540EP_LP: | |
682011ff WD |
1490 | hw->mac_type = e1000_82540; |
1491 | break; | |
1492 | case E1000_DEV_ID_82545EM_COPPER: | |
1493 | case E1000_DEV_ID_82545EM_FIBER: | |
1494 | hw->mac_type = e1000_82545; | |
1495 | break; | |
aa070789 RZ |
1496 | case E1000_DEV_ID_82545GM_COPPER: |
1497 | case E1000_DEV_ID_82545GM_FIBER: | |
1498 | case E1000_DEV_ID_82545GM_SERDES: | |
1499 | hw->mac_type = e1000_82545_rev_3; | |
1500 | break; | |
682011ff WD |
1501 | case E1000_DEV_ID_82546EB_COPPER: |
1502 | case E1000_DEV_ID_82546EB_FIBER: | |
aa070789 | 1503 | case E1000_DEV_ID_82546EB_QUAD_COPPER: |
682011ff WD |
1504 | hw->mac_type = e1000_82546; |
1505 | break; | |
aa070789 RZ |
1506 | case E1000_DEV_ID_82546GB_COPPER: |
1507 | case E1000_DEV_ID_82546GB_FIBER: | |
1508 | case E1000_DEV_ID_82546GB_SERDES: | |
1509 | case E1000_DEV_ID_82546GB_PCIE: | |
1510 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | |
1511 | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | |
1512 | hw->mac_type = e1000_82546_rev_3; | |
1513 | break; | |
1514 | case E1000_DEV_ID_82541EI: | |
1515 | case E1000_DEV_ID_82541EI_MOBILE: | |
1516 | case E1000_DEV_ID_82541ER_LOM: | |
1517 | hw->mac_type = e1000_82541; | |
1518 | break; | |
ac3315c2 | 1519 | case E1000_DEV_ID_82541ER: |
aa070789 | 1520 | case E1000_DEV_ID_82541GI: |
aa3b8bf9 | 1521 | case E1000_DEV_ID_82541GI_LF: |
aa070789 | 1522 | case E1000_DEV_ID_82541GI_MOBILE: |
1aeed8d7 WD |
1523 | hw->mac_type = e1000_82541_rev_2; |
1524 | break; | |
aa070789 RZ |
1525 | case E1000_DEV_ID_82547EI: |
1526 | case E1000_DEV_ID_82547EI_MOBILE: | |
1527 | hw->mac_type = e1000_82547; | |
1528 | break; | |
1529 | case E1000_DEV_ID_82547GI: | |
1530 | hw->mac_type = e1000_82547_rev_2; | |
1531 | break; | |
1532 | case E1000_DEV_ID_82571EB_COPPER: | |
1533 | case E1000_DEV_ID_82571EB_FIBER: | |
1534 | case E1000_DEV_ID_82571EB_SERDES: | |
1535 | case E1000_DEV_ID_82571EB_SERDES_DUAL: | |
1536 | case E1000_DEV_ID_82571EB_SERDES_QUAD: | |
1537 | case E1000_DEV_ID_82571EB_QUAD_COPPER: | |
1538 | case E1000_DEV_ID_82571PT_QUAD_COPPER: | |
1539 | case E1000_DEV_ID_82571EB_QUAD_FIBER: | |
1540 | case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: | |
1541 | hw->mac_type = e1000_82571; | |
1542 | break; | |
1543 | case E1000_DEV_ID_82572EI_COPPER: | |
1544 | case E1000_DEV_ID_82572EI_FIBER: | |
1545 | case E1000_DEV_ID_82572EI_SERDES: | |
1546 | case E1000_DEV_ID_82572EI: | |
1547 | hw->mac_type = e1000_82572; | |
1548 | break; | |
1549 | case E1000_DEV_ID_82573E: | |
1550 | case E1000_DEV_ID_82573E_IAMT: | |
1551 | case E1000_DEV_ID_82573L: | |
1552 | hw->mac_type = e1000_82573; | |
1553 | break; | |
2c2668f9 RZ |
1554 | case E1000_DEV_ID_82574L: |
1555 | hw->mac_type = e1000_82574; | |
1556 | break; | |
aa070789 RZ |
1557 | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: |
1558 | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: | |
1559 | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: | |
1560 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | |
1561 | hw->mac_type = e1000_80003es2lan; | |
1562 | break; | |
1563 | case E1000_DEV_ID_ICH8_IGP_M_AMT: | |
1564 | case E1000_DEV_ID_ICH8_IGP_AMT: | |
1565 | case E1000_DEV_ID_ICH8_IGP_C: | |
1566 | case E1000_DEV_ID_ICH8_IFE: | |
1567 | case E1000_DEV_ID_ICH8_IFE_GT: | |
1568 | case E1000_DEV_ID_ICH8_IFE_G: | |
1569 | case E1000_DEV_ID_ICH8_IGP_M: | |
1570 | hw->mac_type = e1000_ich8lan; | |
1571 | break; | |
6c499abe MZ |
1572 | case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED: |
1573 | case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED: | |
95186063 | 1574 | case PCI_DEVICE_ID_INTEL_I210_COPPER: |
6c499abe | 1575 | case PCI_DEVICE_ID_INTEL_I211_COPPER: |
95186063 MV |
1576 | case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS: |
1577 | case PCI_DEVICE_ID_INTEL_I210_SERDES: | |
1578 | case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS: | |
1579 | case PCI_DEVICE_ID_INTEL_I210_1000BASEKX: | |
85d44e42 MA |
1580 | case PCI_DEVICE_ID_INTEL_I225_UNPROGRAMMED: |
1581 | case PCI_DEVICE_ID_INTEL_I225_IT: | |
95186063 MV |
1582 | hw->mac_type = e1000_igb; |
1583 | break; | |
682011ff WD |
1584 | default: |
1585 | /* Should never have loaded on this device */ | |
1586 | return -E1000_ERR_MAC_TYPE; | |
1587 | } | |
1588 | return E1000_SUCCESS; | |
1589 | } | |
1590 | ||
1591 | /****************************************************************************** | |
1592 | * Reset the transmit and receive units; mask and clear all interrupts. | |
1593 | * | |
1594 | * hw - Struct containing variables accessed by shared code | |
1595 | *****************************************************************************/ | |
1596 | void | |
1597 | e1000_reset_hw(struct e1000_hw *hw) | |
1598 | { | |
1599 | uint32_t ctrl; | |
1600 | uint32_t ctrl_ext; | |
682011ff | 1601 | uint32_t manc; |
9ea005fb | 1602 | uint32_t pba = 0; |
95186063 | 1603 | uint32_t reg; |
682011ff WD |
1604 | |
1605 | DEBUGFUNC(); | |
1606 | ||
9ea005fb RZ |
1607 | /* get the correct pba value for both PCI and PCIe*/ |
1608 | if (hw->mac_type < e1000_82571) | |
1609 | pba = E1000_DEFAULT_PCI_PBA; | |
1610 | else | |
1611 | pba = E1000_DEFAULT_PCIE_PBA; | |
1612 | ||
682011ff WD |
1613 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
1614 | if (hw->mac_type == e1000_82542_rev2_0) { | |
1615 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | |
81dab9af BM |
1616 | dm_pci_write_config16(hw->pdev, PCI_COMMAND, |
1617 | hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE); | |
682011ff WD |
1618 | } |
1619 | ||
1620 | /* Clear interrupt mask to stop board from generating interrupts */ | |
1621 | DEBUGOUT("Masking off all interrupts\n"); | |
95186063 MV |
1622 | if (hw->mac_type == e1000_igb) |
1623 | E1000_WRITE_REG(hw, I210_IAM, 0); | |
682011ff WD |
1624 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
1625 | ||
1626 | /* Disable the Transmit and Receive units. Then delay to allow | |
1627 | * any pending transactions to complete before we hit the MAC with | |
1628 | * the global reset. | |
1629 | */ | |
1630 | E1000_WRITE_REG(hw, RCTL, 0); | |
1631 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); | |
1632 | E1000_WRITE_FLUSH(hw); | |
1633 | ||
c90778ad CG |
1634 | if (hw->mac_type == e1000_igb) { |
1635 | E1000_WRITE_REG(hw, RXPBS, I210_RXPBSIZE_DEFAULT); | |
1636 | E1000_WRITE_REG(hw, TXPBS, I210_TXPBSIZE_DEFAULT); | |
1637 | } | |
1638 | ||
682011ff | 1639 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
472d5460 | 1640 | hw->tbi_compatibility_on = false; |
682011ff WD |
1641 | |
1642 | /* Delay to allow any outstanding PCI transactions to complete before | |
1643 | * resetting the device | |
1644 | */ | |
1645 | mdelay(10); | |
1646 | ||
1647 | /* Issue a global reset to the MAC. This will reset the chip's | |
1648 | * transmit, receive, DMA, and link units. It will not effect | |
1649 | * the current PCI configuration. The global reset bit is self- | |
1650 | * clearing, and should clear within a microsecond. | |
1651 | */ | |
1652 | DEBUGOUT("Issuing a global reset to MAC\n"); | |
1653 | ctrl = E1000_READ_REG(hw, CTRL); | |
1654 | ||
aa070789 | 1655 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
682011ff WD |
1656 | |
1657 | /* Force a reload from the EEPROM if necessary */ | |
95186063 MV |
1658 | if (hw->mac_type == e1000_igb) { |
1659 | mdelay(20); | |
1660 | reg = E1000_READ_REG(hw, STATUS); | |
1661 | if (reg & E1000_STATUS_PF_RST_DONE) | |
1662 | DEBUGOUT("PF OK\n"); | |
1663 | reg = E1000_READ_REG(hw, I210_EECD); | |
1664 | if (reg & E1000_EECD_AUTO_RD) | |
1665 | DEBUGOUT("EEC OK\n"); | |
1666 | } else if (hw->mac_type < e1000_82540) { | |
682011ff WD |
1667 | /* Wait for reset to complete */ |
1668 | udelay(10); | |
1669 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | |
1670 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | |
1671 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | |
1672 | E1000_WRITE_FLUSH(hw); | |
1673 | /* Wait for EEPROM reload */ | |
1674 | mdelay(2); | |
1675 | } else { | |
1676 | /* Wait for EEPROM reload (it happens automatically) */ | |
1677 | mdelay(4); | |
1678 | /* Dissable HW ARPs on ASF enabled adapters */ | |
1679 | manc = E1000_READ_REG(hw, MANC); | |
1680 | manc &= ~(E1000_MANC_ARP_EN); | |
1681 | E1000_WRITE_REG(hw, MANC, manc); | |
1682 | } | |
1683 | ||
1684 | /* Clear interrupt mask to stop board from generating interrupts */ | |
1685 | DEBUGOUT("Masking off all interrupts\n"); | |
95186063 MV |
1686 | if (hw->mac_type == e1000_igb) |
1687 | E1000_WRITE_REG(hw, I210_IAM, 0); | |
682011ff WD |
1688 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
1689 | ||
1690 | /* Clear any pending interrupt events. */ | |
56b13b1e | 1691 | E1000_READ_REG(hw, ICR); |
682011ff WD |
1692 | |
1693 | /* If MWI was previously enabled, reenable it. */ | |
1694 | if (hw->mac_type == e1000_82542_rev2_0) { | |
81dab9af | 1695 | dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
682011ff | 1696 | } |
95186063 MV |
1697 | if (hw->mac_type != e1000_igb) |
1698 | E1000_WRITE_REG(hw, PBA, pba); | |
aa070789 RZ |
1699 | } |
1700 | ||
1701 | /****************************************************************************** | |
1702 | * | |
1703 | * Initialize a number of hardware-dependent bits | |
1704 | * | |
1705 | * hw: Struct containing variables accessed by shared code | |
1706 | * | |
1707 | * This function contains hardware limitation workarounds for PCI-E adapters | |
1708 | * | |
1709 | *****************************************************************************/ | |
1710 | static void | |
1711 | e1000_initialize_hardware_bits(struct e1000_hw *hw) | |
1712 | { | |
1713 | if ((hw->mac_type >= e1000_82571) && | |
1714 | (!hw->initialize_hw_bits_disable)) { | |
1715 | /* Settings common to all PCI-express silicon */ | |
1716 | uint32_t reg_ctrl, reg_ctrl_ext; | |
1717 | uint32_t reg_tarc0, reg_tarc1; | |
1718 | uint32_t reg_tctl; | |
1719 | uint32_t reg_txdctl, reg_txdctl1; | |
1720 | ||
1721 | /* link autonegotiation/sync workarounds */ | |
1722 | reg_tarc0 = E1000_READ_REG(hw, TARC0); | |
1723 | reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); | |
1724 | ||
1725 | /* Enable not-done TX descriptor counting */ | |
1726 | reg_txdctl = E1000_READ_REG(hw, TXDCTL); | |
1727 | reg_txdctl |= E1000_TXDCTL_COUNT_DESC; | |
1728 | E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); | |
1729 | ||
1730 | reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1); | |
1731 | reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; | |
1732 | E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1); | |
1733 | ||
95186063 | 1734 | |
aa070789 | 1735 | switch (hw->mac_type) { |
063bb708 AP |
1736 | case e1000_igb: /* IGB is cool */ |
1737 | return; | |
aa070789 RZ |
1738 | case e1000_82571: |
1739 | case e1000_82572: | |
1740 | /* Clear PHY TX compatible mode bits */ | |
1741 | reg_tarc1 = E1000_READ_REG(hw, TARC1); | |
1742 | reg_tarc1 &= ~((1 << 30)|(1 << 29)); | |
1743 | ||
1744 | /* link autonegotiation/sync workarounds */ | |
1745 | reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); | |
1746 | ||
1747 | /* TX ring control fixes */ | |
1748 | reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); | |
1749 | ||
1750 | /* Multiple read bit is reversed polarity */ | |
1751 | reg_tctl = E1000_READ_REG(hw, TCTL); | |
1752 | if (reg_tctl & E1000_TCTL_MULR) | |
1753 | reg_tarc1 &= ~(1 << 28); | |
1754 | else | |
1755 | reg_tarc1 |= (1 << 28); | |
1756 | ||
1757 | E1000_WRITE_REG(hw, TARC1, reg_tarc1); | |
1758 | break; | |
1759 | case e1000_82573: | |
2c2668f9 | 1760 | case e1000_82574: |
aa070789 RZ |
1761 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
1762 | reg_ctrl_ext &= ~(1 << 23); | |
1763 | reg_ctrl_ext |= (1 << 22); | |
1764 | ||
1765 | /* TX byte count fix */ | |
1766 | reg_ctrl = E1000_READ_REG(hw, CTRL); | |
1767 | reg_ctrl &= ~(1 << 29); | |
1768 | ||
1769 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); | |
1770 | E1000_WRITE_REG(hw, CTRL, reg_ctrl); | |
1771 | break; | |
1772 | case e1000_80003es2lan: | |
1773 | /* improve small packet performace for fiber/serdes */ | |
1774 | if ((hw->media_type == e1000_media_type_fiber) | |
1775 | || (hw->media_type == | |
1776 | e1000_media_type_internal_serdes)) { | |
1777 | reg_tarc0 &= ~(1 << 20); | |
1778 | } | |
1779 | ||
1780 | /* Multiple read bit is reversed polarity */ | |
1781 | reg_tctl = E1000_READ_REG(hw, TCTL); | |
1782 | reg_tarc1 = E1000_READ_REG(hw, TARC1); | |
1783 | if (reg_tctl & E1000_TCTL_MULR) | |
1784 | reg_tarc1 &= ~(1 << 28); | |
1785 | else | |
1786 | reg_tarc1 |= (1 << 28); | |
1787 | ||
1788 | E1000_WRITE_REG(hw, TARC1, reg_tarc1); | |
1789 | break; | |
1790 | case e1000_ich8lan: | |
1791 | /* Reduce concurrent DMA requests to 3 from 4 */ | |
1792 | if ((hw->revision_id < 3) || | |
1793 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | |
1794 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) | |
1795 | reg_tarc0 |= ((1 << 29)|(1 << 28)); | |
1796 | ||
1797 | reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | |
1798 | reg_ctrl_ext |= (1 << 22); | |
1799 | E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext); | |
1800 | ||
1801 | /* workaround TX hang with TSO=on */ | |
1802 | reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); | |
1803 | ||
1804 | /* Multiple read bit is reversed polarity */ | |
1805 | reg_tctl = E1000_READ_REG(hw, TCTL); | |
1806 | reg_tarc1 = E1000_READ_REG(hw, TARC1); | |
1807 | if (reg_tctl & E1000_TCTL_MULR) | |
1808 | reg_tarc1 &= ~(1 << 28); | |
1809 | else | |
1810 | reg_tarc1 |= (1 << 28); | |
1811 | ||
1812 | /* workaround TX hang with TSO=on */ | |
1813 | reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); | |
1814 | ||
1815 | E1000_WRITE_REG(hw, TARC1, reg_tarc1); | |
1816 | break; | |
1817 | default: | |
1818 | break; | |
1819 | } | |
1820 | ||
1821 | E1000_WRITE_REG(hw, TARC0, reg_tarc0); | |
1822 | } | |
682011ff WD |
1823 | } |
1824 | ||
1825 | /****************************************************************************** | |
1826 | * Performs basic configuration of the adapter. | |
1827 | * | |
1828 | * hw - Struct containing variables accessed by shared code | |
8bde7f77 WD |
1829 | * |
1830 | * Assumes that the controller has previously been reset and is in a | |
682011ff WD |
1831 | * post-reset uninitialized state. Initializes the receive address registers, |
1832 | * multicast table, and VLAN filter table. Calls routines to setup link | |
1833 | * configuration and flow control settings. Clears all on-chip counters. Leaves | |
1834 | * the transmit and receive units disabled and uninitialized. | |
1835 | *****************************************************************************/ | |
1836 | static int | |
5c5e707a | 1837 | e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6]) |
682011ff | 1838 | { |
aa070789 | 1839 | uint32_t ctrl; |
682011ff WD |
1840 | uint32_t i; |
1841 | int32_t ret_val; | |
1842 | uint16_t pcix_cmd_word; | |
1843 | uint16_t pcix_stat_hi_word; | |
1844 | uint16_t cmd_mmrbc; | |
1845 | uint16_t stat_mmrbc; | |
aa070789 RZ |
1846 | uint32_t mta_size; |
1847 | uint32_t reg_data; | |
1848 | uint32_t ctrl_ext; | |
682011ff | 1849 | DEBUGFUNC(); |
aa070789 RZ |
1850 | /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ |
1851 | if ((hw->mac_type == e1000_ich8lan) && | |
1852 | ((hw->revision_id < 3) || | |
1853 | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | |
1854 | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { | |
1855 | reg_data = E1000_READ_REG(hw, STATUS); | |
1856 | reg_data &= ~0x80000000; | |
1857 | E1000_WRITE_REG(hw, STATUS, reg_data); | |
682011ff | 1858 | } |
aa070789 | 1859 | /* Do not need initialize Identification LED */ |
682011ff | 1860 | |
aa070789 RZ |
1861 | /* Set the media type and TBI compatibility */ |
1862 | e1000_set_media_type(hw); | |
1863 | ||
1864 | /* Must be called after e1000_set_media_type | |
1865 | * because media_type is used */ | |
1866 | e1000_initialize_hardware_bits(hw); | |
682011ff WD |
1867 | |
1868 | /* Disabling VLAN filtering. */ | |
1869 | DEBUGOUT("Initializing the IEEE VLAN\n"); | |
aa070789 RZ |
1870 | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ |
1871 | if (hw->mac_type != e1000_ich8lan) { | |
1872 | if (hw->mac_type < e1000_82545_rev_3) | |
1873 | E1000_WRITE_REG(hw, VET, 0); | |
1874 | e1000_clear_vfta(hw); | |
1875 | } | |
682011ff WD |
1876 | |
1877 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | |
1878 | if (hw->mac_type == e1000_82542_rev2_0) { | |
1879 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | |
81dab9af BM |
1880 | dm_pci_write_config16(hw->pdev, PCI_COMMAND, |
1881 | hw-> | |
1882 | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); | |
682011ff WD |
1883 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
1884 | E1000_WRITE_FLUSH(hw); | |
1885 | mdelay(5); | |
1886 | } | |
1887 | ||
1888 | /* Setup the receive address. This involves initializing all of the Receive | |
1889 | * Address Registers (RARs 0 - 15). | |
1890 | */ | |
5c5e707a | 1891 | e1000_init_rx_addrs(hw, enetaddr); |
682011ff WD |
1892 | |
1893 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | |
1894 | if (hw->mac_type == e1000_82542_rev2_0) { | |
1895 | E1000_WRITE_REG(hw, RCTL, 0); | |
1896 | E1000_WRITE_FLUSH(hw); | |
1897 | mdelay(1); | |
81dab9af | 1898 | dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
682011ff WD |
1899 | } |
1900 | ||
1901 | /* Zero out the Multicast HASH table */ | |
1902 | DEBUGOUT("Zeroing the MTA\n"); | |
aa070789 RZ |
1903 | mta_size = E1000_MC_TBL_SIZE; |
1904 | if (hw->mac_type == e1000_ich8lan) | |
1905 | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; | |
1906 | for (i = 0; i < mta_size; i++) { | |
682011ff | 1907 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
aa070789 RZ |
1908 | /* use write flush to prevent Memory Write Block (MWB) from |
1909 | * occuring when accessing our register space */ | |
1910 | E1000_WRITE_FLUSH(hw); | |
1911 | } | |
e97f7fbb | 1912 | |
aa070789 RZ |
1913 | switch (hw->mac_type) { |
1914 | case e1000_82545_rev_3: | |
1915 | case e1000_82546_rev_3: | |
95186063 | 1916 | case e1000_igb: |
aa070789 RZ |
1917 | break; |
1918 | default: | |
682011ff | 1919 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
aa070789 | 1920 | if (hw->bus_type == e1000_bus_type_pcix) { |
81dab9af BM |
1921 | dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER, |
1922 | &pcix_cmd_word); | |
1923 | dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI, | |
1924 | &pcix_stat_hi_word); | |
682011ff WD |
1925 | cmd_mmrbc = |
1926 | (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> | |
1927 | PCIX_COMMAND_MMRBC_SHIFT; | |
1928 | stat_mmrbc = | |
1929 | (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> | |
1930 | PCIX_STATUS_HI_MMRBC_SHIFT; | |
1931 | if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) | |
1932 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; | |
1933 | if (cmd_mmrbc > stat_mmrbc) { | |
1934 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; | |
1935 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; | |
81dab9af BM |
1936 | dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER, |
1937 | pcix_cmd_word); | |
682011ff WD |
1938 | } |
1939 | } | |
aa070789 RZ |
1940 | break; |
1941 | } | |
1942 | ||
1943 | /* More time needed for PHY to initialize */ | |
1944 | if (hw->mac_type == e1000_ich8lan) | |
1945 | mdelay(15); | |
95186063 MV |
1946 | if (hw->mac_type == e1000_igb) |
1947 | mdelay(15); | |
682011ff WD |
1948 | |
1949 | /* Call a subroutine to configure the link and setup flow control. */ | |
5c5e707a | 1950 | ret_val = e1000_setup_link(hw); |
682011ff WD |
1951 | |
1952 | /* Set the transmit descriptor write-back policy */ | |
1953 | if (hw->mac_type > e1000_82544) { | |
1954 | ctrl = E1000_READ_REG(hw, TXDCTL); | |
1955 | ctrl = | |
1956 | (ctrl & ~E1000_TXDCTL_WTHRESH) | | |
1957 | E1000_TXDCTL_FULL_TX_DESC_WB; | |
1958 | E1000_WRITE_REG(hw, TXDCTL, ctrl); | |
1959 | } | |
aa070789 | 1960 | |
776e66e8 | 1961 | /* Set the receive descriptor write back policy */ |
776e66e8 RG |
1962 | if (hw->mac_type >= e1000_82571) { |
1963 | ctrl = E1000_READ_REG(hw, RXDCTL); | |
1964 | ctrl = | |
1965 | (ctrl & ~E1000_RXDCTL_WTHRESH) | | |
1966 | E1000_RXDCTL_FULL_RX_DESC_WB; | |
1967 | E1000_WRITE_REG(hw, RXDCTL, ctrl); | |
1968 | } | |
1969 | ||
aa070789 RZ |
1970 | switch (hw->mac_type) { |
1971 | default: | |
1972 | break; | |
1973 | case e1000_80003es2lan: | |
1974 | /* Enable retransmit on late collisions */ | |
1975 | reg_data = E1000_READ_REG(hw, TCTL); | |
1976 | reg_data |= E1000_TCTL_RTLC; | |
1977 | E1000_WRITE_REG(hw, TCTL, reg_data); | |
1978 | ||
1979 | /* Configure Gigabit Carry Extend Padding */ | |
1980 | reg_data = E1000_READ_REG(hw, TCTL_EXT); | |
1981 | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; | |
1982 | reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; | |
1983 | E1000_WRITE_REG(hw, TCTL_EXT, reg_data); | |
1984 | ||
1985 | /* Configure Transmit Inter-Packet Gap */ | |
1986 | reg_data = E1000_READ_REG(hw, TIPG); | |
1987 | reg_data &= ~E1000_TIPG_IPGT_MASK; | |
1988 | reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | |
1989 | E1000_WRITE_REG(hw, TIPG, reg_data); | |
1990 | ||
1991 | reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); | |
1992 | reg_data &= ~0x00100000; | |
1993 | E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); | |
1994 | /* Fall through */ | |
1995 | case e1000_82571: | |
1996 | case e1000_82572: | |
1997 | case e1000_ich8lan: | |
1998 | ctrl = E1000_READ_REG(hw, TXDCTL1); | |
1999 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | |
2000 | | E1000_TXDCTL_FULL_TX_DESC_WB; | |
2001 | E1000_WRITE_REG(hw, TXDCTL1, ctrl); | |
2002 | break; | |
2c2668f9 RZ |
2003 | case e1000_82573: |
2004 | case e1000_82574: | |
2005 | reg_data = E1000_READ_REG(hw, GCR); | |
2006 | reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | |
2007 | E1000_WRITE_REG(hw, GCR, reg_data); | |
95186063 MV |
2008 | case e1000_igb: |
2009 | break; | |
aa070789 RZ |
2010 | } |
2011 | ||
aa070789 RZ |
2012 | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || |
2013 | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | |
2014 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | |
2015 | /* Relaxed ordering must be disabled to avoid a parity | |
2016 | * error crash in a PCI slot. */ | |
2017 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | |
2018 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | |
2019 | } | |
2020 | ||
682011ff WD |
2021 | return ret_val; |
2022 | } | |
2023 | ||
2024 | /****************************************************************************** | |
2025 | * Configures flow control and link settings. | |
8bde7f77 | 2026 | * |
682011ff | 2027 | * hw - Struct containing variables accessed by shared code |
8bde7f77 | 2028 | * |
682011ff WD |
2029 | * Determines which flow control settings to use. Calls the apropriate media- |
2030 | * specific link configuration function. Configures the flow control settings. | |
2031 | * Assuming the adapter has a valid link partner, a valid link should be | |
8bde7f77 | 2032 | * established. Assumes the hardware has previously been reset and the |
682011ff WD |
2033 | * transmitter and receiver are not enabled. |
2034 | *****************************************************************************/ | |
2035 | static int | |
5c5e707a | 2036 | e1000_setup_link(struct e1000_hw *hw) |
682011ff | 2037 | { |
682011ff | 2038 | int32_t ret_val; |
8712adfd RI |
2039 | #ifndef CONFIG_E1000_NO_NVM |
2040 | uint32_t ctrl_ext; | |
682011ff | 2041 | uint16_t eeprom_data; |
8712adfd | 2042 | #endif |
682011ff WD |
2043 | |
2044 | DEBUGFUNC(); | |
2045 | ||
aa070789 RZ |
2046 | /* In the case of the phy reset being blocked, we already have a link. |
2047 | * We do not have to set it up again. */ | |
2048 | if (e1000_check_phy_reset_block(hw)) | |
2049 | return E1000_SUCCESS; | |
2050 | ||
8712adfd | 2051 | #ifndef CONFIG_E1000_NO_NVM |
682011ff WD |
2052 | /* Read and store word 0x0F of the EEPROM. This word contains bits |
2053 | * that determine the hardware's default PAUSE (flow control) mode, | |
2054 | * a bit that determines whether the HW defaults to enabling or | |
2055 | * disabling auto-negotiation, and the direction of the | |
2056 | * SW defined pins. If there is no SW over-ride of the flow | |
2057 | * control setting, then the variable hw->fc will | |
2058 | * be initialized based on a value in the EEPROM. | |
2059 | */ | |
aa070789 RZ |
2060 | if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, |
2061 | &eeprom_data) < 0) { | |
682011ff WD |
2062 | DEBUGOUT("EEPROM Read Error\n"); |
2063 | return -E1000_ERR_EEPROM; | |
2064 | } | |
8712adfd | 2065 | #endif |
682011ff | 2066 | if (hw->fc == e1000_fc_default) { |
aa070789 RZ |
2067 | switch (hw->mac_type) { |
2068 | case e1000_ich8lan: | |
2069 | case e1000_82573: | |
2c2668f9 | 2070 | case e1000_82574: |
95186063 | 2071 | case e1000_igb: |
682011ff | 2072 | hw->fc = e1000_fc_full; |
aa070789 RZ |
2073 | break; |
2074 | default: | |
8712adfd | 2075 | #ifndef CONFIG_E1000_NO_NVM |
aa070789 RZ |
2076 | ret_val = e1000_read_eeprom(hw, |
2077 | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | |
2078 | if (ret_val) { | |
2079 | DEBUGOUT("EEPROM Read Error\n"); | |
2080 | return -E1000_ERR_EEPROM; | |
2081 | } | |
aa070789 RZ |
2082 | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
2083 | hw->fc = e1000_fc_none; | |
2084 | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | |
2085 | EEPROM_WORD0F_ASM_DIR) | |
2086 | hw->fc = e1000_fc_tx_pause; | |
2087 | else | |
8712adfd | 2088 | #endif |
aa070789 RZ |
2089 | hw->fc = e1000_fc_full; |
2090 | break; | |
2091 | } | |
682011ff WD |
2092 | } |
2093 | ||
2094 | /* We want to save off the original Flow Control configuration just | |
2095 | * in case we get disconnected and then reconnected into a different | |
2096 | * hub or switch with different Flow Control capabilities. | |
2097 | */ | |
2098 | if (hw->mac_type == e1000_82542_rev2_0) | |
2099 | hw->fc &= (~e1000_fc_tx_pause); | |
2100 | ||
2101 | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | |
2102 | hw->fc &= (~e1000_fc_rx_pause); | |
2103 | ||
2104 | hw->original_fc = hw->fc; | |
2105 | ||
2106 | DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); | |
2107 | ||
8712adfd | 2108 | #ifndef CONFIG_E1000_NO_NVM |
682011ff WD |
2109 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
2110 | * polarity value for the SW controlled pins, and setup the | |
2111 | * Extended Device Control reg with that info. | |
2112 | * This is needed because one of the SW controlled pins is used for | |
2113 | * signal detection. So this should be done before e1000_setup_pcs_link() | |
2114 | * or e1000_phy_setup() is called. | |
2115 | */ | |
2116 | if (hw->mac_type == e1000_82543) { | |
2117 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | |
2118 | SWDPIO__EXT_SHIFT); | |
2119 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | |
2120 | } | |
8712adfd | 2121 | #endif |
682011ff WD |
2122 | |
2123 | /* Call the necessary subroutine to configure the link. */ | |
2124 | ret_val = (hw->media_type == e1000_media_type_fiber) ? | |
5c5e707a | 2125 | e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw); |
682011ff WD |
2126 | if (ret_val < 0) { |
2127 | return ret_val; | |
2128 | } | |
2129 | ||
2130 | /* Initialize the flow control address, type, and PAUSE timer | |
2131 | * registers to their default values. This is done even if flow | |
2132 | * control is disabled, because it does not hurt anything to | |
2133 | * initialize these registers. | |
2134 | */ | |
aa070789 RZ |
2135 | DEBUGOUT("Initializing the Flow Control address, type" |
2136 | "and timer regs\n"); | |
2137 | ||
2138 | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ | |
2139 | if (hw->mac_type != e1000_ich8lan) { | |
2140 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | |
2141 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | |
2142 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | |
2143 | } | |
682011ff | 2144 | |
682011ff WD |
2145 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
2146 | ||
2147 | /* Set the flow control receive threshold registers. Normally, | |
2148 | * these registers will be set to a default threshold that may be | |
2149 | * adjusted later by the driver's runtime code. However, if the | |
2150 | * ability to transmit pause frames in not enabled, then these | |
8bde7f77 | 2151 | * registers will be set to 0. |
682011ff WD |
2152 | */ |
2153 | if (!(hw->fc & e1000_fc_tx_pause)) { | |
2154 | E1000_WRITE_REG(hw, FCRTL, 0); | |
2155 | E1000_WRITE_REG(hw, FCRTH, 0); | |
2156 | } else { | |
2157 | /* We need to set up the Receive Threshold high and low water marks | |
2158 | * as well as (optionally) enabling the transmission of XON frames. | |
2159 | */ | |
2160 | if (hw->fc_send_xon) { | |
2161 | E1000_WRITE_REG(hw, FCRTL, | |
2162 | (hw->fc_low_water | E1000_FCRTL_XONE)); | |
2163 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | |
2164 | } else { | |
2165 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); | |
2166 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | |
2167 | } | |
2168 | } | |
2169 | return ret_val; | |
2170 | } | |
2171 | ||
2172 | /****************************************************************************** | |
2173 | * Sets up link for a fiber based adapter | |
2174 | * | |
2175 | * hw - Struct containing variables accessed by shared code | |
2176 | * | |
2177 | * Manipulates Physical Coding Sublayer functions in order to configure | |
2178 | * link. Assumes the hardware has been previously reset and the transmitter | |
2179 | * and receiver are not enabled. | |
2180 | *****************************************************************************/ | |
2181 | static int | |
5c5e707a | 2182 | e1000_setup_fiber_link(struct e1000_hw *hw) |
682011ff | 2183 | { |
682011ff WD |
2184 | uint32_t ctrl; |
2185 | uint32_t status; | |
2186 | uint32_t txcw = 0; | |
2187 | uint32_t i; | |
2188 | uint32_t signal; | |
2189 | int32_t ret_val; | |
2190 | ||
2191 | DEBUGFUNC(); | |
8bde7f77 WD |
2192 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
2193 | * set when the optics detect a signal. On older adapters, it will be | |
682011ff WD |
2194 | * cleared when there is a signal |
2195 | */ | |
2196 | ctrl = E1000_READ_REG(hw, CTRL); | |
2197 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) | |
2198 | signal = E1000_CTRL_SWDPIN1; | |
2199 | else | |
2200 | signal = 0; | |
2201 | ||
5c5e707a | 2202 | printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal, |
682011ff WD |
2203 | ctrl); |
2204 | /* Take the link out of reset */ | |
2205 | ctrl &= ~(E1000_CTRL_LRST); | |
2206 | ||
2207 | e1000_config_collision_dist(hw); | |
2208 | ||
2209 | /* Check for a software override of the flow control settings, and setup | |
2210 | * the device accordingly. If auto-negotiation is enabled, then software | |
2211 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | |
2212 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if | |
8bde7f77 | 2213 | * auto-negotiation is disabled, then software will have to manually |
682011ff WD |
2214 | * configure the two flow control enable bits in the CTRL register. |
2215 | * | |
2216 | * The possible values of the "fc" parameter are: | |
1aeed8d7 WD |
2217 | * 0: Flow control is completely disabled |
2218 | * 1: Rx flow control is enabled (we can receive pause frames, but | |
2219 | * not send pause frames). | |
2220 | * 2: Tx flow control is enabled (we can send pause frames but we do | |
2221 | * not support receiving pause frames). | |
2222 | * 3: Both Rx and TX flow control (symmetric) are enabled. | |
682011ff WD |
2223 | */ |
2224 | switch (hw->fc) { | |
2225 | case e1000_fc_none: | |
2226 | /* Flow control is completely disabled by a software over-ride. */ | |
2227 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | |
2228 | break; | |
2229 | case e1000_fc_rx_pause: | |
8bde7f77 WD |
2230 | /* RX Flow control is enabled and TX Flow control is disabled by a |
2231 | * software over-ride. Since there really isn't a way to advertise | |
682011ff WD |
2232 | * that we are capable of RX Pause ONLY, we will advertise that we |
2233 | * support both symmetric and asymmetric RX PAUSE. Later, we will | |
2234 | * disable the adapter's ability to send PAUSE frames. | |
2235 | */ | |
2236 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | |
2237 | break; | |
2238 | case e1000_fc_tx_pause: | |
8bde7f77 | 2239 | /* TX Flow control is enabled, and RX Flow control is disabled, by a |
682011ff WD |
2240 | * software over-ride. |
2241 | */ | |
2242 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | |
2243 | break; | |
2244 | case e1000_fc_full: | |
2245 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | |
2246 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | |
2247 | break; | |
2248 | default: | |
2249 | DEBUGOUT("Flow control param set incorrectly\n"); | |
2250 | return -E1000_ERR_CONFIG; | |
2251 | break; | |
2252 | } | |
2253 | ||
2254 | /* Since auto-negotiation is enabled, take the link out of reset (the link | |
2255 | * will be in reset, because we previously reset the chip). This will | |
2256 | * restart auto-negotiation. If auto-neogtiation is successful then the | |
2257 | * link-up status bit will be set and the flow control enable bits (RFCE | |
2258 | * and TFCE) will be set according to their negotiated value. | |
2259 | */ | |
2260 | DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); | |
2261 | ||
2262 | E1000_WRITE_REG(hw, TXCW, txcw); | |
2263 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
2264 | E1000_WRITE_FLUSH(hw); | |
2265 | ||
2266 | hw->txcw = txcw; | |
2267 | mdelay(1); | |
2268 | ||
2269 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | |
8bde7f77 WD |
2270 | * indication in the Device Status Register. Time-out if a link isn't |
2271 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | |
682011ff WD |
2272 | * less than 500 milliseconds even if the other end is doing it in SW). |
2273 | */ | |
2274 | if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { | |
2275 | DEBUGOUT("Looking for Link\n"); | |
2276 | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | |
2277 | mdelay(10); | |
2278 | status = E1000_READ_REG(hw, STATUS); | |
2279 | if (status & E1000_STATUS_LU) | |
2280 | break; | |
2281 | } | |
2282 | if (i == (LINK_UP_TIMEOUT / 10)) { | |
8bde7f77 | 2283 | /* AutoNeg failed to achieve a link, so we'll call |
682011ff WD |
2284 | * e1000_check_for_link. This routine will force the link up if we |
2285 | * detect a signal. This will allow us to communicate with | |
2286 | * non-autonegotiating link partners. | |
2287 | */ | |
2288 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | |
2289 | hw->autoneg_failed = 1; | |
5c5e707a | 2290 | ret_val = e1000_check_for_link(hw); |
682011ff WD |
2291 | if (ret_val < 0) { |
2292 | DEBUGOUT("Error while checking for link\n"); | |
2293 | return ret_val; | |
2294 | } | |
2295 | hw->autoneg_failed = 0; | |
2296 | } else { | |
2297 | hw->autoneg_failed = 0; | |
2298 | DEBUGOUT("Valid Link Found\n"); | |
2299 | } | |
aa070789 RZ |
2300 | } else { |
2301 | DEBUGOUT("No Signal Detected\n"); | |
2302 | return -E1000_ERR_NOLINK; | |
2303 | } | |
2304 | return 0; | |
2305 | } | |
2306 | ||
aa070789 RZ |
2307 | /****************************************************************************** |
2308 | * Make sure we have a valid PHY and change PHY mode before link setup. | |
2309 | * | |
2310 | * hw - Struct containing variables accessed by shared code | |
2311 | ******************************************************************************/ | |
2312 | static int32_t | |
2313 | e1000_copper_link_preconfig(struct e1000_hw *hw) | |
2314 | { | |
2315 | uint32_t ctrl; | |
2316 | int32_t ret_val; | |
2317 | uint16_t phy_data; | |
2318 | ||
2319 | DEBUGFUNC(); | |
2320 | ||
2321 | ctrl = E1000_READ_REG(hw, CTRL); | |
2322 | /* With 82543, we need to force speed and duplex on the MAC equal to what | |
2323 | * the PHY speed and duplex configuration is. In addition, we need to | |
2324 | * perform a hardware reset on the PHY to take it out of reset. | |
2325 | */ | |
2326 | if (hw->mac_type > e1000_82543) { | |
2327 | ctrl |= E1000_CTRL_SLU; | |
2328 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | |
2329 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
2330 | } else { | |
2331 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | |
2332 | | E1000_CTRL_SLU); | |
2333 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
2334 | ret_val = e1000_phy_hw_reset(hw); | |
2335 | if (ret_val) | |
2336 | return ret_val; | |
2337 | } | |
2338 | ||
2339 | /* Make sure we have a valid PHY */ | |
2340 | ret_val = e1000_detect_gig_phy(hw); | |
2341 | if (ret_val) { | |
2342 | DEBUGOUT("Error, did not detect valid phy.\n"); | |
2343 | return ret_val; | |
2344 | } | |
5abf13e4 | 2345 | DEBUGOUT("Phy ID = %x\n", hw->phy_id); |
aa070789 | 2346 | |
aa070789 RZ |
2347 | /* Set PHY to class A mode (if necessary) */ |
2348 | ret_val = e1000_set_phy_mode(hw); | |
2349 | if (ret_val) | |
2350 | return ret_val; | |
aa070789 RZ |
2351 | if ((hw->mac_type == e1000_82545_rev_3) || |
2352 | (hw->mac_type == e1000_82546_rev_3)) { | |
2353 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | |
2354 | &phy_data); | |
2355 | phy_data |= 0x00000008; | |
2356 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | |
2357 | phy_data); | |
2358 | } | |
2359 | ||
2360 | if (hw->mac_type <= e1000_82543 || | |
2361 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | |
2362 | hw->mac_type == e1000_82541_rev_2 | |
2363 | || hw->mac_type == e1000_82547_rev_2) | |
472d5460 | 2364 | hw->phy_reset_disable = false; |
aa070789 RZ |
2365 | |
2366 | return E1000_SUCCESS; | |
2367 | } | |
2368 | ||
2369 | /***************************************************************************** | |
2370 | * | |
2371 | * This function sets the lplu state according to the active flag. When | |
2372 | * activating lplu this function also disables smart speed and vise versa. | |
2373 | * lplu will not be activated unless the device autonegotiation advertisment | |
2374 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | |
2375 | * hw: Struct containing variables accessed by shared code | |
2376 | * active - true to enable lplu false to disable lplu. | |
2377 | * | |
2378 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | |
2379 | * E1000_SUCCESS at any other case. | |
2380 | * | |
2381 | ****************************************************************************/ | |
2382 | ||
2383 | static int32_t | |
472d5460 | 2384 | e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) |
aa070789 RZ |
2385 | { |
2386 | uint32_t phy_ctrl = 0; | |
2387 | int32_t ret_val; | |
2388 | uint16_t phy_data; | |
2389 | DEBUGFUNC(); | |
2390 | ||
2391 | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 | |
2392 | && hw->phy_type != e1000_phy_igp_3) | |
2393 | return E1000_SUCCESS; | |
2394 | ||
2395 | /* During driver activity LPLU should not be used or it will attain link | |
2396 | * from the lowest speeds starting from 10Mbps. The capability is used | |
2397 | * for Dx transitions and states */ | |
2398 | if (hw->mac_type == e1000_82541_rev_2 | |
2399 | || hw->mac_type == e1000_82547_rev_2) { | |
2400 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | |
2401 | &phy_data); | |
2402 | if (ret_val) | |
2403 | return ret_val; | |
2404 | } else if (hw->mac_type == e1000_ich8lan) { | |
2405 | /* MAC writes into PHY register based on the state transition | |
2406 | * and start auto-negotiation. SW driver can overwrite the | |
2407 | * settings in CSR PHY power control E1000_PHY_CTRL register. */ | |
2408 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | |
2409 | } else { | |
2410 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | |
2411 | &phy_data); | |
2412 | if (ret_val) | |
2413 | return ret_val; | |
2414 | } | |
2415 | ||
2416 | if (!active) { | |
2417 | if (hw->mac_type == e1000_82541_rev_2 || | |
2418 | hw->mac_type == e1000_82547_rev_2) { | |
2419 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | |
2420 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | |
2421 | phy_data); | |
2422 | if (ret_val) | |
2423 | return ret_val; | |
2424 | } else { | |
2425 | if (hw->mac_type == e1000_ich8lan) { | |
2426 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | |
2427 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | |
2428 | } else { | |
2429 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | |
2430 | ret_val = e1000_write_phy_reg(hw, | |
2431 | IGP02E1000_PHY_POWER_MGMT, phy_data); | |
2432 | if (ret_val) | |
2433 | return ret_val; | |
2434 | } | |
2435 | } | |
2436 | ||
2437 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | |
2438 | * Dx states where the power conservation is most important. During | |
2439 | * driver activity we should enable SmartSpeed, so performance is | |
2440 | * maintained. */ | |
2441 | if (hw->smart_speed == e1000_smart_speed_on) { | |
2442 | ret_val = e1000_read_phy_reg(hw, | |
2443 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); | |
2444 | if (ret_val) | |
2445 | return ret_val; | |
2446 | ||
2447 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | |
2448 | ret_val = e1000_write_phy_reg(hw, | |
2449 | IGP01E1000_PHY_PORT_CONFIG, phy_data); | |
2450 | if (ret_val) | |
2451 | return ret_val; | |
2452 | } else if (hw->smart_speed == e1000_smart_speed_off) { | |
2453 | ret_val = e1000_read_phy_reg(hw, | |
2454 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); | |
2455 | if (ret_val) | |
2456 | return ret_val; | |
2457 | ||
2458 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | |
2459 | ret_val = e1000_write_phy_reg(hw, | |
2460 | IGP01E1000_PHY_PORT_CONFIG, phy_data); | |
2461 | if (ret_val) | |
2462 | return ret_val; | |
2463 | } | |
2464 | ||
2465 | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) | |
2466 | || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) || | |
2467 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | |
2468 | ||
2469 | if (hw->mac_type == e1000_82541_rev_2 || | |
2470 | hw->mac_type == e1000_82547_rev_2) { | |
2471 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | |
2472 | ret_val = e1000_write_phy_reg(hw, | |
2473 | IGP01E1000_GMII_FIFO, phy_data); | |
2474 | if (ret_val) | |
2475 | return ret_val; | |
2476 | } else { | |
2477 | if (hw->mac_type == e1000_ich8lan) { | |
2478 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | |
2479 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | |
2480 | } else { | |
2481 | phy_data |= IGP02E1000_PM_D3_LPLU; | |
2482 | ret_val = e1000_write_phy_reg(hw, | |
2483 | IGP02E1000_PHY_POWER_MGMT, phy_data); | |
2484 | if (ret_val) | |
2485 | return ret_val; | |
2486 | } | |
2487 | } | |
2488 | ||
2489 | /* When LPLU is enabled we should disable SmartSpeed */ | |
2490 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | |
2491 | &phy_data); | |
2492 | if (ret_val) | |
2493 | return ret_val; | |
2494 | ||
2495 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | |
2496 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | |
2497 | phy_data); | |
2498 | if (ret_val) | |
2499 | return ret_val; | |
2500 | } | |
2501 | return E1000_SUCCESS; | |
2502 | } | |
2503 | ||
2504 | /***************************************************************************** | |
2505 | * | |
2506 | * This function sets the lplu d0 state according to the active flag. When | |
2507 | * activating lplu this function also disables smart speed and vise versa. | |
2508 | * lplu will not be activated unless the device autonegotiation advertisment | |
2509 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | |
2510 | * hw: Struct containing variables accessed by shared code | |
2511 | * active - true to enable lplu false to disable lplu. | |
2512 | * | |
2513 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | |
2514 | * E1000_SUCCESS at any other case. | |
2515 | * | |
2516 | ****************************************************************************/ | |
2517 | ||
2518 | static int32_t | |
472d5460 | 2519 | e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) |
aa070789 RZ |
2520 | { |
2521 | uint32_t phy_ctrl = 0; | |
2522 | int32_t ret_val; | |
2523 | uint16_t phy_data; | |
2524 | DEBUGFUNC(); | |
2525 | ||
2526 | if (hw->mac_type <= e1000_82547_rev_2) | |
2527 | return E1000_SUCCESS; | |
2528 | ||
2529 | if (hw->mac_type == e1000_ich8lan) { | |
2530 | phy_ctrl = E1000_READ_REG(hw, PHY_CTRL); | |
95186063 MV |
2531 | } else if (hw->mac_type == e1000_igb) { |
2532 | phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL); | |
aa070789 RZ |
2533 | } else { |
2534 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | |
2535 | &phy_data); | |
2536 | if (ret_val) | |
2537 | return ret_val; | |
2538 | } | |
2539 | ||
2540 | if (!active) { | |
2541 | if (hw->mac_type == e1000_ich8lan) { | |
2542 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | |
2543 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | |
95186063 MV |
2544 | } else if (hw->mac_type == e1000_igb) { |
2545 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | |
2546 | E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); | |
aa070789 RZ |
2547 | } else { |
2548 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | |
2549 | ret_val = e1000_write_phy_reg(hw, | |
2550 | IGP02E1000_PHY_POWER_MGMT, phy_data); | |
2551 | if (ret_val) | |
2552 | return ret_val; | |
2553 | } | |
2554 | ||
95186063 MV |
2555 | if (hw->mac_type == e1000_igb) |
2556 | return E1000_SUCCESS; | |
2557 | ||
aa070789 RZ |
2558 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
2559 | * Dx states where the power conservation is most important. During | |
2560 | * driver activity we should enable SmartSpeed, so performance is | |
2561 | * maintained. */ | |
2562 | if (hw->smart_speed == e1000_smart_speed_on) { | |
2563 | ret_val = e1000_read_phy_reg(hw, | |
2564 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); | |
2565 | if (ret_val) | |
2566 | return ret_val; | |
2567 | ||
2568 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | |
2569 | ret_val = e1000_write_phy_reg(hw, | |
2570 | IGP01E1000_PHY_PORT_CONFIG, phy_data); | |
2571 | if (ret_val) | |
2572 | return ret_val; | |
2573 | } else if (hw->smart_speed == e1000_smart_speed_off) { | |
2574 | ret_val = e1000_read_phy_reg(hw, | |
2575 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); | |
2576 | if (ret_val) | |
2577 | return ret_val; | |
2578 | ||
2579 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | |
2580 | ret_val = e1000_write_phy_reg(hw, | |
2581 | IGP01E1000_PHY_PORT_CONFIG, phy_data); | |
2582 | if (ret_val) | |
2583 | return ret_val; | |
2584 | } | |
2585 | ||
2586 | ||
2587 | } else { | |
2588 | ||
2589 | if (hw->mac_type == e1000_ich8lan) { | |
2590 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | |
2591 | E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl); | |
95186063 MV |
2592 | } else if (hw->mac_type == e1000_igb) { |
2593 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | |
2594 | E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl); | |
aa070789 RZ |
2595 | } else { |
2596 | phy_data |= IGP02E1000_PM_D0_LPLU; | |
2597 | ret_val = e1000_write_phy_reg(hw, | |
2598 | IGP02E1000_PHY_POWER_MGMT, phy_data); | |
2599 | if (ret_val) | |
2600 | return ret_val; | |
2601 | } | |
2602 | ||
95186063 MV |
2603 | if (hw->mac_type == e1000_igb) |
2604 | return E1000_SUCCESS; | |
2605 | ||
aa070789 RZ |
2606 | /* When LPLU is enabled we should disable SmartSpeed */ |
2607 | ret_val = e1000_read_phy_reg(hw, | |
2608 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); | |
2609 | if (ret_val) | |
2610 | return ret_val; | |
2611 | ||
2612 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | |
2613 | ret_val = e1000_write_phy_reg(hw, | |
2614 | IGP01E1000_PHY_PORT_CONFIG, phy_data); | |
2615 | if (ret_val) | |
2616 | return ret_val; | |
2617 | ||
2618 | } | |
2619 | return E1000_SUCCESS; | |
2620 | } | |
2621 | ||
2622 | /******************************************************************** | |
2623 | * Copper link setup for e1000_phy_igp series. | |
2624 | * | |
2625 | * hw - Struct containing variables accessed by shared code | |
2626 | *********************************************************************/ | |
2627 | static int32_t | |
2628 | e1000_copper_link_igp_setup(struct e1000_hw *hw) | |
2629 | { | |
2630 | uint32_t led_ctrl; | |
2631 | int32_t ret_val; | |
2632 | uint16_t phy_data; | |
2633 | ||
f81ecb5d | 2634 | DEBUGFUNC(); |
aa070789 RZ |
2635 | |
2636 | if (hw->phy_reset_disable) | |
2637 | return E1000_SUCCESS; | |
2638 | ||
2639 | ret_val = e1000_phy_reset(hw); | |
2640 | if (ret_val) { | |
2641 | DEBUGOUT("Error Resetting the PHY\n"); | |
2642 | return ret_val; | |
2643 | } | |
2644 | ||
2645 | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | |
2646 | mdelay(15); | |
2647 | if (hw->mac_type != e1000_ich8lan) { | |
2648 | /* Configure activity LED after PHY reset */ | |
2649 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | |
2650 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | |
2651 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | |
2652 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | |
2653 | } | |
2654 | ||
2655 | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | |
2656 | if (hw->phy_type == e1000_phy_igp) { | |
2657 | /* disable lplu d3 during driver init */ | |
472d5460 | 2658 | ret_val = e1000_set_d3_lplu_state(hw, false); |
aa070789 RZ |
2659 | if (ret_val) { |
2660 | DEBUGOUT("Error Disabling LPLU D3\n"); | |
2661 | return ret_val; | |
2662 | } | |
2663 | } | |
2664 | ||
2665 | /* disable lplu d0 during driver init */ | |
472d5460 | 2666 | ret_val = e1000_set_d0_lplu_state(hw, false); |
aa070789 RZ |
2667 | if (ret_val) { |
2668 | DEBUGOUT("Error Disabling LPLU D0\n"); | |
2669 | return ret_val; | |
2670 | } | |
2671 | /* Configure mdi-mdix settings */ | |
2672 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | |
2673 | if (ret_val) | |
2674 | return ret_val; | |
2675 | ||
2676 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | |
2677 | hw->dsp_config_state = e1000_dsp_config_disabled; | |
2678 | /* Force MDI for earlier revs of the IGP PHY */ | |
2679 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | |
2680 | | IGP01E1000_PSCR_FORCE_MDI_MDIX); | |
2681 | hw->mdix = 1; | |
2682 | ||
2683 | } else { | |
2684 | hw->dsp_config_state = e1000_dsp_config_enabled; | |
2685 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | |
2686 | ||
2687 | switch (hw->mdix) { | |
2688 | case 1: | |
2689 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | |
2690 | break; | |
2691 | case 2: | |
2692 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | |
2693 | break; | |
2694 | case 0: | |
2695 | default: | |
2696 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | |
2697 | break; | |
2698 | } | |
2699 | } | |
2700 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | |
2701 | if (ret_val) | |
2702 | return ret_val; | |
2703 | ||
2704 | /* set auto-master slave resolution settings */ | |
2705 | if (hw->autoneg) { | |
2706 | e1000_ms_type phy_ms_setting = hw->master_slave; | |
2707 | ||
2708 | if (hw->ffe_config_state == e1000_ffe_config_active) | |
2709 | hw->ffe_config_state = e1000_ffe_config_enabled; | |
2710 | ||
2711 | if (hw->dsp_config_state == e1000_dsp_config_activated) | |
2712 | hw->dsp_config_state = e1000_dsp_config_enabled; | |
2713 | ||
2714 | /* when autonegotiation advertisment is only 1000Mbps then we | |
2715 | * should disable SmartSpeed and enable Auto MasterSlave | |
2716 | * resolution as hardware default. */ | |
2717 | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { | |
2718 | /* Disable SmartSpeed */ | |
2719 | ret_val = e1000_read_phy_reg(hw, | |
2720 | IGP01E1000_PHY_PORT_CONFIG, &phy_data); | |
2721 | if (ret_val) | |
2722 | return ret_val; | |
2723 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | |
2724 | ret_val = e1000_write_phy_reg(hw, | |
2725 | IGP01E1000_PHY_PORT_CONFIG, phy_data); | |
2726 | if (ret_val) | |
2727 | return ret_val; | |
2728 | /* Set auto Master/Slave resolution process */ | |
2729 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, | |
2730 | &phy_data); | |
2731 | if (ret_val) | |
2732 | return ret_val; | |
2733 | phy_data &= ~CR_1000T_MS_ENABLE; | |
2734 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, | |
2735 | phy_data); | |
2736 | if (ret_val) | |
2737 | return ret_val; | |
2738 | } | |
2739 | ||
2740 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | |
2741 | if (ret_val) | |
2742 | return ret_val; | |
2743 | ||
2744 | /* load defaults for future use */ | |
2745 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | |
2746 | ((phy_data & CR_1000T_MS_VALUE) ? | |
2747 | e1000_ms_force_master : | |
2748 | e1000_ms_force_slave) : | |
2749 | e1000_ms_auto; | |
2750 | ||
2751 | switch (phy_ms_setting) { | |
2752 | case e1000_ms_force_master: | |
2753 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | |
2754 | break; | |
2755 | case e1000_ms_force_slave: | |
2756 | phy_data |= CR_1000T_MS_ENABLE; | |
2757 | phy_data &= ~(CR_1000T_MS_VALUE); | |
2758 | break; | |
2759 | case e1000_ms_auto: | |
2760 | phy_data &= ~CR_1000T_MS_ENABLE; | |
2761 | default: | |
2762 | break; | |
2763 | } | |
2764 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | |
2765 | if (ret_val) | |
2766 | return ret_val; | |
2767 | } | |
2768 | ||
2769 | return E1000_SUCCESS; | |
2770 | } | |
2771 | ||
2772 | /***************************************************************************** | |
2773 | * This function checks the mode of the firmware. | |
2774 | * | |
472d5460 | 2775 | * returns - true when the mode is IAMT or false. |
aa070789 | 2776 | ****************************************************************************/ |
472d5460 | 2777 | bool |
aa070789 RZ |
2778 | e1000_check_mng_mode(struct e1000_hw *hw) |
2779 | { | |
2780 | uint32_t fwsm; | |
2781 | DEBUGFUNC(); | |
2782 | ||
2783 | fwsm = E1000_READ_REG(hw, FWSM); | |
2784 | ||
2785 | if (hw->mac_type == e1000_ich8lan) { | |
2786 | if ((fwsm & E1000_FWSM_MODE_MASK) == | |
2787 | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | |
472d5460 | 2788 | return true; |
aa070789 RZ |
2789 | } else if ((fwsm & E1000_FWSM_MODE_MASK) == |
2790 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | |
472d5460 | 2791 | return true; |
aa070789 | 2792 | |
472d5460 | 2793 | return false; |
aa070789 RZ |
2794 | } |
2795 | ||
2796 | static int32_t | |
2797 | e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data) | |
2798 | { | |
987b43a1 | 2799 | uint16_t swfw = E1000_SWFW_PHY0_SM; |
aa070789 | 2800 | uint32_t reg_val; |
aa070789 RZ |
2801 | DEBUGFUNC(); |
2802 | ||
987b43a1 | 2803 | if (e1000_is_second_port(hw)) |
aa070789 | 2804 | swfw = E1000_SWFW_PHY1_SM; |
987b43a1 | 2805 | |
aa070789 RZ |
2806 | if (e1000_swfw_sync_acquire(hw, swfw)) |
2807 | return -E1000_ERR_SWFW_SYNC; | |
2808 | ||
2809 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) | |
2810 | & E1000_KUMCTRLSTA_OFFSET) | data; | |
2811 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); | |
2812 | udelay(2); | |
2813 | ||
2814 | return E1000_SUCCESS; | |
2815 | } | |
2816 | ||
2817 | static int32_t | |
2818 | e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data) | |
2819 | { | |
987b43a1 | 2820 | uint16_t swfw = E1000_SWFW_PHY0_SM; |
aa070789 | 2821 | uint32_t reg_val; |
aa070789 RZ |
2822 | DEBUGFUNC(); |
2823 | ||
987b43a1 | 2824 | if (e1000_is_second_port(hw)) |
aa070789 | 2825 | swfw = E1000_SWFW_PHY1_SM; |
987b43a1 | 2826 | |
95186063 MV |
2827 | if (e1000_swfw_sync_acquire(hw, swfw)) { |
2828 | debug("%s[%i]\n", __func__, __LINE__); | |
aa070789 | 2829 | return -E1000_ERR_SWFW_SYNC; |
95186063 | 2830 | } |
aa070789 RZ |
2831 | |
2832 | /* Write register address */ | |
2833 | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & | |
2834 | E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN; | |
2835 | E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val); | |
2836 | udelay(2); | |
2837 | ||
2838 | /* Read the data returned */ | |
2839 | reg_val = E1000_READ_REG(hw, KUMCTRLSTA); | |
2840 | *data = (uint16_t)reg_val; | |
2841 | ||
2842 | return E1000_SUCCESS; | |
2843 | } | |
2844 | ||
2845 | /******************************************************************** | |
2846 | * Copper link setup for e1000_phy_gg82563 series. | |
2847 | * | |
2848 | * hw - Struct containing variables accessed by shared code | |
2849 | *********************************************************************/ | |
2850 | static int32_t | |
2851 | e1000_copper_link_ggp_setup(struct e1000_hw *hw) | |
2852 | { | |
2853 | int32_t ret_val; | |
2854 | uint16_t phy_data; | |
2855 | uint32_t reg_data; | |
2856 | ||
2857 | DEBUGFUNC(); | |
2858 | ||
2859 | if (!hw->phy_reset_disable) { | |
2860 | /* Enable CRS on TX for half-duplex operation. */ | |
2861 | ret_val = e1000_read_phy_reg(hw, | |
2862 | GG82563_PHY_MAC_SPEC_CTRL, &phy_data); | |
2863 | if (ret_val) | |
2864 | return ret_val; | |
2865 | ||
2866 | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | |
2867 | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ | |
2868 | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; | |
2869 | ||
2870 | ret_val = e1000_write_phy_reg(hw, | |
2871 | GG82563_PHY_MAC_SPEC_CTRL, phy_data); | |
2872 | if (ret_val) | |
2873 | return ret_val; | |
2874 | ||
2875 | /* Options: | |
2876 | * MDI/MDI-X = 0 (default) | |
2877 | * 0 - Auto for all speeds | |
2878 | * 1 - MDI mode | |
2879 | * 2 - MDI-X mode | |
2880 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | |
2881 | */ | |
2882 | ret_val = e1000_read_phy_reg(hw, | |
2883 | GG82563_PHY_SPEC_CTRL, &phy_data); | |
2884 | if (ret_val) | |
2885 | return ret_val; | |
2886 | ||
2887 | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; | |
2888 | ||
2889 | switch (hw->mdix) { | |
2890 | case 1: | |
2891 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; | |
2892 | break; | |
2893 | case 2: | |
2894 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; | |
2895 | break; | |
2896 | case 0: | |
2897 | default: | |
2898 | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; | |
2899 | break; | |
2900 | } | |
2901 | ||
2902 | /* Options: | |
2903 | * disable_polarity_correction = 0 (default) | |
2904 | * Automatic Correction for Reversed Cable Polarity | |
2905 | * 0 - Disabled | |
2906 | * 1 - Enabled | |
2907 | */ | |
2908 | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | |
2909 | ret_val = e1000_write_phy_reg(hw, | |
2910 | GG82563_PHY_SPEC_CTRL, phy_data); | |
2911 | ||
2912 | if (ret_val) | |
2913 | return ret_val; | |
2914 | ||
2915 | /* SW Reset the PHY so all changes take effect */ | |
2916 | ret_val = e1000_phy_reset(hw); | |
2917 | if (ret_val) { | |
2918 | DEBUGOUT("Error Resetting the PHY\n"); | |
2919 | return ret_val; | |
2920 | } | |
2921 | } /* phy_reset_disable */ | |
2922 | ||
2923 | if (hw->mac_type == e1000_80003es2lan) { | |
2924 | /* Bypass RX and TX FIFO's */ | |
2925 | ret_val = e1000_write_kmrn_reg(hw, | |
2926 | E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, | |
2927 | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | |
2928 | | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); | |
2929 | if (ret_val) | |
2930 | return ret_val; | |
2931 | ||
2932 | ret_val = e1000_read_phy_reg(hw, | |
2933 | GG82563_PHY_SPEC_CTRL_2, &phy_data); | |
2934 | if (ret_val) | |
2935 | return ret_val; | |
2936 | ||
2937 | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; | |
2938 | ret_val = e1000_write_phy_reg(hw, | |
2939 | GG82563_PHY_SPEC_CTRL_2, phy_data); | |
2940 | ||
2941 | if (ret_val) | |
2942 | return ret_val; | |
2943 | ||
2944 | reg_data = E1000_READ_REG(hw, CTRL_EXT); | |
2945 | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); | |
2946 | E1000_WRITE_REG(hw, CTRL_EXT, reg_data); | |
2947 | ||
2948 | ret_val = e1000_read_phy_reg(hw, | |
2949 | GG82563_PHY_PWR_MGMT_CTRL, &phy_data); | |
2950 | if (ret_val) | |
2951 | return ret_val; | |
2952 | ||
2953 | /* Do not init these registers when the HW is in IAMT mode, since the | |
2954 | * firmware will have already initialized them. We only initialize | |
2955 | * them if the HW is not in IAMT mode. | |
2956 | */ | |
472d5460 | 2957 | if (e1000_check_mng_mode(hw) == false) { |
aa070789 RZ |
2958 | /* Enable Electrical Idle on the PHY */ |
2959 | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; | |
2960 | ret_val = e1000_write_phy_reg(hw, | |
2961 | GG82563_PHY_PWR_MGMT_CTRL, phy_data); | |
2962 | if (ret_val) | |
2963 | return ret_val; | |
2964 | ||
2965 | ret_val = e1000_read_phy_reg(hw, | |
2966 | GG82563_PHY_KMRN_MODE_CTRL, &phy_data); | |
2967 | if (ret_val) | |
2968 | return ret_val; | |
2969 | ||
2970 | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | |
2971 | ret_val = e1000_write_phy_reg(hw, | |
2972 | GG82563_PHY_KMRN_MODE_CTRL, phy_data); | |
2973 | ||
2974 | if (ret_val) | |
2975 | return ret_val; | |
2976 | } | |
2977 | ||
2978 | /* Workaround: Disable padding in Kumeran interface in the MAC | |
2979 | * and in the PHY to avoid CRC errors. | |
2980 | */ | |
2981 | ret_val = e1000_read_phy_reg(hw, | |
2982 | GG82563_PHY_INBAND_CTRL, &phy_data); | |
2983 | if (ret_val) | |
2984 | return ret_val; | |
2985 | phy_data |= GG82563_ICR_DIS_PADDING; | |
2986 | ret_val = e1000_write_phy_reg(hw, | |
2987 | GG82563_PHY_INBAND_CTRL, phy_data); | |
2988 | if (ret_val) | |
2989 | return ret_val; | |
682011ff | 2990 | } |
aa070789 | 2991 | return E1000_SUCCESS; |
682011ff WD |
2992 | } |
2993 | ||
aa070789 RZ |
2994 | /******************************************************************** |
2995 | * Copper link setup for e1000_phy_m88 series. | |
682011ff WD |
2996 | * |
2997 | * hw - Struct containing variables accessed by shared code | |
aa070789 RZ |
2998 | *********************************************************************/ |
2999 | static int32_t | |
3000 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) | |
682011ff | 3001 | { |
682011ff | 3002 | int32_t ret_val; |
682011ff WD |
3003 | uint16_t phy_data; |
3004 | ||
3005 | DEBUGFUNC(); | |
3006 | ||
aa070789 RZ |
3007 | if (hw->phy_reset_disable) |
3008 | return E1000_SUCCESS; | |
682011ff | 3009 | |
aa070789 RZ |
3010 | /* Enable CRS on TX. This must be set for half-duplex operation. */ |
3011 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | |
3012 | if (ret_val) | |
682011ff | 3013 | return ret_val; |
682011ff | 3014 | |
682011ff WD |
3015 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
3016 | ||
682011ff WD |
3017 | /* Options: |
3018 | * MDI/MDI-X = 0 (default) | |
3019 | * 0 - Auto for all speeds | |
3020 | * 1 - MDI mode | |
3021 | * 2 - MDI-X mode | |
3022 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | |
3023 | */ | |
3024 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | |
aa070789 | 3025 | |
682011ff WD |
3026 | switch (hw->mdix) { |
3027 | case 1: | |
3028 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | |
3029 | break; | |
3030 | case 2: | |
3031 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | |
3032 | break; | |
3033 | case 3: | |
3034 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | |
3035 | break; | |
3036 | case 0: | |
3037 | default: | |
3038 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | |
3039 | break; | |
3040 | } | |
682011ff | 3041 | |
682011ff WD |
3042 | /* Options: |
3043 | * disable_polarity_correction = 0 (default) | |
aa070789 | 3044 | * Automatic Correction for Reversed Cable Polarity |
682011ff WD |
3045 | * 0 - Disabled |
3046 | * 1 - Enabled | |
3047 | */ | |
3048 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | |
aa070789 RZ |
3049 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); |
3050 | if (ret_val) | |
3051 | return ret_val; | |
682011ff | 3052 | |
aa070789 RZ |
3053 | if (hw->phy_revision < M88E1011_I_REV_4) { |
3054 | /* Force TX_CLK in the Extended PHY Specific Control Register | |
3055 | * to 25MHz clock. | |
3056 | */ | |
3057 | ret_val = e1000_read_phy_reg(hw, | |
3058 | M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | |
3059 | if (ret_val) | |
3060 | return ret_val; | |
3061 | ||
3062 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | |
3063 | ||
3064 | if ((hw->phy_revision == E1000_REVISION_2) && | |
3065 | (hw->phy_id == M88E1111_I_PHY_ID)) { | |
3066 | /* Vidalia Phy, set the downshift counter to 5x */ | |
3067 | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | |
3068 | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | |
3069 | ret_val = e1000_write_phy_reg(hw, | |
3070 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | |
3071 | if (ret_val) | |
3072 | return ret_val; | |
3073 | } else { | |
3074 | /* Configure Master and Slave downshift values */ | |
3075 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
3076 | | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | |
3077 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
3078 | | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | |
3079 | ret_val = e1000_write_phy_reg(hw, | |
3080 | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | |
3081 | if (ret_val) | |
3082 | return ret_val; | |
3083 | } | |
682011ff WD |
3084 | } |
3085 | ||
3086 | /* SW Reset the PHY so all changes take effect */ | |
3087 | ret_val = e1000_phy_reset(hw); | |
aa070789 | 3088 | if (ret_val) { |
682011ff WD |
3089 | DEBUGOUT("Error Resetting the PHY\n"); |
3090 | return ret_val; | |
3091 | } | |
3092 | ||
aa070789 RZ |
3093 | return E1000_SUCCESS; |
3094 | } | |
3095 | ||
3096 | /******************************************************************** | |
3097 | * Setup auto-negotiation and flow control advertisements, | |
3098 | * and then perform auto-negotiation. | |
3099 | * | |
3100 | * hw - Struct containing variables accessed by shared code | |
3101 | *********************************************************************/ | |
3102 | static int32_t | |
3103 | e1000_copper_link_autoneg(struct e1000_hw *hw) | |
3104 | { | |
3105 | int32_t ret_val; | |
3106 | uint16_t phy_data; | |
3107 | ||
3108 | DEBUGFUNC(); | |
682011ff | 3109 | |
682011ff WD |
3110 | /* Perform some bounds checking on the hw->autoneg_advertised |
3111 | * parameter. If this variable is zero, then set it to the default. | |
3112 | */ | |
3113 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | |
3114 | ||
3115 | /* If autoneg_advertised is zero, we assume it was not defaulted | |
3116 | * by the calling code so we set to advertise full capability. | |
3117 | */ | |
3118 | if (hw->autoneg_advertised == 0) | |
3119 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | |
3120 | ||
aa070789 RZ |
3121 | /* IFE phy only supports 10/100 */ |
3122 | if (hw->phy_type == e1000_phy_ife) | |
3123 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | |
3124 | ||
682011ff WD |
3125 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
3126 | ret_val = e1000_phy_setup_autoneg(hw); | |
aa070789 | 3127 | if (ret_val) { |
682011ff WD |
3128 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
3129 | return ret_val; | |
3130 | } | |
3131 | DEBUGOUT("Restarting Auto-Neg\n"); | |
3132 | ||
3133 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | |
3134 | * the Auto Neg Restart bit in the PHY control register. | |
3135 | */ | |
aa070789 RZ |
3136 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
3137 | if (ret_val) | |
3138 | return ret_val; | |
3139 | ||
682011ff | 3140 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
aa070789 RZ |
3141 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); |
3142 | if (ret_val) | |
3143 | return ret_val; | |
3144 | ||
682011ff WD |
3145 | /* Does the user want to wait for Auto-Neg to complete here, or |
3146 | * check at a later time (for example, callback routine). | |
3147 | */ | |
aa070789 RZ |
3148 | /* If we do not wait for autonegtation to complete I |
3149 | * do not see a valid link status. | |
3150 | * wait_autoneg_complete = 1 . | |
3151 | */ | |
682011ff WD |
3152 | if (hw->wait_autoneg_complete) { |
3153 | ret_val = e1000_wait_autoneg(hw); | |
aa070789 RZ |
3154 | if (ret_val) { |
3155 | DEBUGOUT("Error while waiting for autoneg" | |
3156 | "to complete\n"); | |
682011ff WD |
3157 | return ret_val; |
3158 | } | |
3159 | } | |
aa070789 | 3160 | |
472d5460 | 3161 | hw->get_link_status = true; |
aa070789 RZ |
3162 | |
3163 | return E1000_SUCCESS; | |
3164 | } | |
3165 | ||
3166 | /****************************************************************************** | |
3167 | * Config the MAC and the PHY after link is up. | |
3168 | * 1) Set up the MAC to the current PHY speed/duplex | |
3169 | * if we are on 82543. If we | |
3170 | * are on newer silicon, we only need to configure | |
3171 | * collision distance in the Transmit Control Register. | |
3172 | * 2) Set up flow control on the MAC to that established with | |
3173 | * the link partner. | |
3174 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | |
3175 | * | |
3176 | * hw - Struct containing variables accessed by shared code | |
3177 | ******************************************************************************/ | |
3178 | static int32_t | |
3179 | e1000_copper_link_postconfig(struct e1000_hw *hw) | |
3180 | { | |
3181 | int32_t ret_val; | |
3182 | DEBUGFUNC(); | |
3183 | ||
3184 | if (hw->mac_type >= e1000_82544) { | |
3185 | e1000_config_collision_dist(hw); | |
3186 | } else { | |
3187 | ret_val = e1000_config_mac_to_phy(hw); | |
3188 | if (ret_val) { | |
3189 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | |
3190 | return ret_val; | |
3191 | } | |
3192 | } | |
3193 | ret_val = e1000_config_fc_after_link_up(hw); | |
3194 | if (ret_val) { | |
3195 | DEBUGOUT("Error Configuring Flow Control\n"); | |
682011ff WD |
3196 | return ret_val; |
3197 | } | |
aa070789 RZ |
3198 | return E1000_SUCCESS; |
3199 | } | |
3200 | ||
3201 | /****************************************************************************** | |
3202 | * Detects which PHY is present and setup the speed and duplex | |
3203 | * | |
3204 | * hw - Struct containing variables accessed by shared code | |
3205 | ******************************************************************************/ | |
3206 | static int | |
5c5e707a | 3207 | e1000_setup_copper_link(struct e1000_hw *hw) |
aa070789 | 3208 | { |
aa070789 RZ |
3209 | int32_t ret_val; |
3210 | uint16_t i; | |
3211 | uint16_t phy_data; | |
3212 | uint16_t reg_data; | |
3213 | ||
3214 | DEBUGFUNC(); | |
3215 | ||
3216 | switch (hw->mac_type) { | |
3217 | case e1000_80003es2lan: | |
3218 | case e1000_ich8lan: | |
3219 | /* Set the mac to wait the maximum time between each | |
3220 | * iteration and increase the max iterations when | |
3221 | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | |
3222 | ret_val = e1000_write_kmrn_reg(hw, | |
3223 | GG82563_REG(0x34, 4), 0xFFFF); | |
3224 | if (ret_val) | |
3225 | return ret_val; | |
3226 | ret_val = e1000_read_kmrn_reg(hw, | |
3227 | GG82563_REG(0x34, 9), ®_data); | |
3228 | if (ret_val) | |
3229 | return ret_val; | |
3230 | reg_data |= 0x3F; | |
3231 | ret_val = e1000_write_kmrn_reg(hw, | |
3232 | GG82563_REG(0x34, 9), reg_data); | |
3233 | if (ret_val) | |
3234 | return ret_val; | |
3235 | default: | |
3236 | break; | |
3237 | } | |
3238 | ||
3239 | /* Check if it is a valid PHY and set PHY mode if necessary. */ | |
3240 | ret_val = e1000_copper_link_preconfig(hw); | |
3241 | if (ret_val) | |
3242 | return ret_val; | |
3243 | switch (hw->mac_type) { | |
3244 | case e1000_80003es2lan: | |
3245 | /* Kumeran registers are written-only */ | |
3246 | reg_data = | |
3247 | E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; | |
3248 | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; | |
3249 | ret_val = e1000_write_kmrn_reg(hw, | |
3250 | E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data); | |
3251 | if (ret_val) | |
3252 | return ret_val; | |
3253 | break; | |
3254 | default: | |
3255 | break; | |
3256 | } | |
3257 | ||
3258 | if (hw->phy_type == e1000_phy_igp || | |
3259 | hw->phy_type == e1000_phy_igp_3 || | |
3260 | hw->phy_type == e1000_phy_igp_2) { | |
3261 | ret_val = e1000_copper_link_igp_setup(hw); | |
3262 | if (ret_val) | |
3263 | return ret_val; | |
95186063 | 3264 | } else if (hw->phy_type == e1000_phy_m88 || |
85d44e42 MA |
3265 | hw->phy_type == e1000_phy_igb || |
3266 | hw->phy_type == e1000_phy_igc) { | |
aa070789 RZ |
3267 | ret_val = e1000_copper_link_mgp_setup(hw); |
3268 | if (ret_val) | |
3269 | return ret_val; | |
3270 | } else if (hw->phy_type == e1000_phy_gg82563) { | |
3271 | ret_val = e1000_copper_link_ggp_setup(hw); | |
3272 | if (ret_val) | |
3273 | return ret_val; | |
3274 | } | |
3275 | ||
3276 | /* always auto */ | |
3277 | /* Setup autoneg and flow control advertisement | |
3278 | * and perform autonegotiation */ | |
3279 | ret_val = e1000_copper_link_autoneg(hw); | |
3280 | if (ret_val) | |
3281 | return ret_val; | |
682011ff WD |
3282 | |
3283 | /* Check link status. Wait up to 100 microseconds for link to become | |
3284 | * valid. | |
3285 | */ | |
3286 | for (i = 0; i < 10; i++) { | |
aa070789 RZ |
3287 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); |
3288 | if (ret_val) | |
3289 | return ret_val; | |
3290 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | |
3291 | if (ret_val) | |
3292 | return ret_val; | |
3293 | ||
682011ff | 3294 | if (phy_data & MII_SR_LINK_STATUS) { |
aa070789 RZ |
3295 | /* Config the MAC and PHY after link is up */ |
3296 | ret_val = e1000_copper_link_postconfig(hw); | |
3297 | if (ret_val) | |
682011ff | 3298 | return ret_val; |
aa070789 | 3299 | |
682011ff | 3300 | DEBUGOUT("Valid link established!!!\n"); |
aa070789 | 3301 | return E1000_SUCCESS; |
682011ff WD |
3302 | } |
3303 | udelay(10); | |
3304 | } | |
3305 | ||
3306 | DEBUGOUT("Unable to establish link!!!\n"); | |
aa070789 | 3307 | return E1000_SUCCESS; |
682011ff WD |
3308 | } |
3309 | ||
3310 | /****************************************************************************** | |
3311 | * Configures PHY autoneg and flow control advertisement settings | |
3312 | * | |
3313 | * hw - Struct containing variables accessed by shared code | |
3314 | ******************************************************************************/ | |
aa070789 | 3315 | int32_t |
682011ff WD |
3316 | e1000_phy_setup_autoneg(struct e1000_hw *hw) |
3317 | { | |
aa070789 | 3318 | int32_t ret_val; |
682011ff WD |
3319 | uint16_t mii_autoneg_adv_reg; |
3320 | uint16_t mii_1000t_ctrl_reg; | |
3321 | ||
3322 | DEBUGFUNC(); | |
3323 | ||
3324 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | |
aa070789 RZ |
3325 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); |
3326 | if (ret_val) | |
3327 | return ret_val; | |
682011ff | 3328 | |
aa070789 RZ |
3329 | if (hw->phy_type != e1000_phy_ife) { |
3330 | /* Read the MII 1000Base-T Control Register (Address 9). */ | |
3331 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, | |
3332 | &mii_1000t_ctrl_reg); | |
3333 | if (ret_val) | |
3334 | return ret_val; | |
3335 | } else | |
3336 | mii_1000t_ctrl_reg = 0; | |
682011ff WD |
3337 | |
3338 | /* Need to parse both autoneg_advertised and fc and set up | |
3339 | * the appropriate PHY registers. First we will parse for | |
3340 | * autoneg_advertised software override. Since we can advertise | |
3341 | * a plethora of combinations, we need to check each bit | |
3342 | * individually. | |
3343 | */ | |
3344 | ||
3345 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | |
3346 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | |
aa070789 | 3347 | * the 1000Base-T Control Register (Address 9). |
682011ff WD |
3348 | */ |
3349 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | |
3350 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | |
3351 | ||
3352 | DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); | |
3353 | ||
3354 | /* Do we want to advertise 10 Mb Half Duplex? */ | |
3355 | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | |
3356 | DEBUGOUT("Advertise 10mb Half duplex\n"); | |
3357 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | |
3358 | } | |
3359 | ||
3360 | /* Do we want to advertise 10 Mb Full Duplex? */ | |
3361 | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | |
3362 | DEBUGOUT("Advertise 10mb Full duplex\n"); | |
3363 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | |
3364 | } | |
3365 | ||
3366 | /* Do we want to advertise 100 Mb Half Duplex? */ | |
3367 | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | |
3368 | DEBUGOUT("Advertise 100mb Half duplex\n"); | |
3369 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | |
3370 | } | |
3371 | ||
3372 | /* Do we want to advertise 100 Mb Full Duplex? */ | |
3373 | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | |
3374 | DEBUGOUT("Advertise 100mb Full duplex\n"); | |
3375 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | |
3376 | } | |
3377 | ||
3378 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | |
3379 | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | |
3380 | DEBUGOUT | |
3381 | ("Advertise 1000mb Half duplex requested, request denied!\n"); | |
3382 | } | |
3383 | ||
3384 | /* Do we want to advertise 1000 Mb Full Duplex? */ | |
3385 | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | |
3386 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | |
3387 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | |
3388 | } | |
3389 | ||
3390 | /* Check for a software override of the flow control settings, and | |
3391 | * setup the PHY advertisement registers accordingly. If | |
3392 | * auto-negotiation is enabled, then software will have to set the | |
3393 | * "PAUSE" bits to the correct value in the Auto-Negotiation | |
3394 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | |
3395 | * | |
3396 | * The possible values of the "fc" parameter are: | |
1aeed8d7 WD |
3397 | * 0: Flow control is completely disabled |
3398 | * 1: Rx flow control is enabled (we can receive pause frames | |
3399 | * but not send pause frames). | |
3400 | * 2: Tx flow control is enabled (we can send pause frames | |
3401 | * but we do not support receiving pause frames). | |
3402 | * 3: Both Rx and TX flow control (symmetric) are enabled. | |
682011ff | 3403 | * other: No software override. The flow control configuration |
1aeed8d7 | 3404 | * in the EEPROM is used. |
682011ff WD |
3405 | */ |
3406 | switch (hw->fc) { | |
3407 | case e1000_fc_none: /* 0 */ | |
3408 | /* Flow control (RX & TX) is completely disabled by a | |
3409 | * software over-ride. | |
3410 | */ | |
3411 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | |
3412 | break; | |
3413 | case e1000_fc_rx_pause: /* 1 */ | |
3414 | /* RX Flow control is enabled, and TX Flow control is | |
3415 | * disabled, by a software over-ride. | |
3416 | */ | |
3417 | /* Since there really isn't a way to advertise that we are | |
3418 | * capable of RX Pause ONLY, we will advertise that we | |
3419 | * support both symmetric and asymmetric RX PAUSE. Later | |
3420 | * (in e1000_config_fc_after_link_up) we will disable the | |
3421 | *hw's ability to send PAUSE frames. | |
3422 | */ | |
3423 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | |
3424 | break; | |
3425 | case e1000_fc_tx_pause: /* 2 */ | |
3426 | /* TX Flow control is enabled, and RX Flow control is | |
3427 | * disabled, by a software over-ride. | |
3428 | */ | |
3429 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | |
3430 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | |
3431 | break; | |
3432 | case e1000_fc_full: /* 3 */ | |
3433 | /* Flow control (both RX and TX) is enabled by a software | |
3434 | * over-ride. | |
3435 | */ | |
3436 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | |
3437 | break; | |
3438 | default: | |
3439 | DEBUGOUT("Flow control param set incorrectly\n"); | |
3440 | return -E1000_ERR_CONFIG; | |
3441 | } | |
3442 | ||
aa070789 RZ |
3443 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); |
3444 | if (ret_val) | |
3445 | return ret_val; | |
682011ff WD |
3446 | |
3447 | DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | |
3448 | ||
aa070789 RZ |
3449 | if (hw->phy_type != e1000_phy_ife) { |
3450 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, | |
3451 | mii_1000t_ctrl_reg); | |
3452 | if (ret_val) | |
3453 | return ret_val; | |
682011ff | 3454 | } |
aa070789 RZ |
3455 | |
3456 | return E1000_SUCCESS; | |
682011ff WD |
3457 | } |
3458 | ||
3459 | /****************************************************************************** | |
3460 | * Sets the collision distance in the Transmit Control register | |
3461 | * | |
3462 | * hw - Struct containing variables accessed by shared code | |
3463 | * | |
3464 | * Link should have been established previously. Reads the speed and duplex | |
3465 | * information from the Device Status register. | |
3466 | ******************************************************************************/ | |
3467 | static void | |
3468 | e1000_config_collision_dist(struct e1000_hw *hw) | |
3469 | { | |
aa070789 RZ |
3470 | uint32_t tctl, coll_dist; |
3471 | ||
3472 | DEBUGFUNC(); | |
3473 | ||
3474 | if (hw->mac_type < e1000_82543) | |
3475 | coll_dist = E1000_COLLISION_DISTANCE_82542; | |
3476 | else | |
3477 | coll_dist = E1000_COLLISION_DISTANCE; | |
682011ff WD |
3478 | |
3479 | tctl = E1000_READ_REG(hw, TCTL); | |
3480 | ||
3481 | tctl &= ~E1000_TCTL_COLD; | |
aa070789 | 3482 | tctl |= coll_dist << E1000_COLD_SHIFT; |
682011ff WD |
3483 | |
3484 | E1000_WRITE_REG(hw, TCTL, tctl); | |
3485 | E1000_WRITE_FLUSH(hw); | |
3486 | } | |
3487 | ||
3488 | /****************************************************************************** | |
3489 | * Sets MAC speed and duplex settings to reflect the those in the PHY | |
3490 | * | |
3491 | * hw - Struct containing variables accessed by shared code | |
3492 | * mii_reg - data to write to the MII control register | |
3493 | * | |
3494 | * The contents of the PHY register containing the needed information need to | |
3495 | * be passed in. | |
3496 | ******************************************************************************/ | |
3497 | static int | |
3498 | e1000_config_mac_to_phy(struct e1000_hw *hw) | |
3499 | { | |
3500 | uint32_t ctrl; | |
3501 | uint16_t phy_data; | |
3502 | ||
3503 | DEBUGFUNC(); | |
3504 | ||
3505 | /* Read the Device Control Register and set the bits to Force Speed | |
3506 | * and Duplex. | |
3507 | */ | |
3508 | ctrl = E1000_READ_REG(hw, CTRL); | |
3509 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | |
95186063 MV |
3510 | ctrl &= ~(E1000_CTRL_ILOS); |
3511 | ctrl |= (E1000_CTRL_SPD_SEL); | |
682011ff WD |
3512 | |
3513 | /* Set up duplex in the Device Control and Transmit Control | |
3514 | * registers depending on negotiated values. | |
3515 | */ | |
3516 | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { | |
3517 | DEBUGOUT("PHY Read Error\n"); | |
3518 | return -E1000_ERR_PHY; | |
3519 | } | |
3520 | if (phy_data & M88E1000_PSSR_DPLX) | |
3521 | ctrl |= E1000_CTRL_FD; | |
3522 | else | |
3523 | ctrl &= ~E1000_CTRL_FD; | |
3524 | ||
3525 | e1000_config_collision_dist(hw); | |
3526 | ||
3527 | /* Set up speed in the Device Control register depending on | |
3528 | * negotiated values. | |
3529 | */ | |
3530 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | |
3531 | ctrl |= E1000_CTRL_SPD_1000; | |
3532 | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | |
3533 | ctrl |= E1000_CTRL_SPD_100; | |
3534 | /* Write the configured values back to the Device Control Reg. */ | |
3535 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
3536 | return 0; | |
3537 | } | |
3538 | ||
3539 | /****************************************************************************** | |
3540 | * Forces the MAC's flow control settings. | |
8bde7f77 | 3541 | * |
682011ff WD |
3542 | * hw - Struct containing variables accessed by shared code |
3543 | * | |
3544 | * Sets the TFCE and RFCE bits in the device control register to reflect | |
3545 | * the adapter settings. TFCE and RFCE need to be explicitly set by | |
3546 | * software when a Copper PHY is used because autonegotiation is managed | |
3547 | * by the PHY rather than the MAC. Software must also configure these | |
3548 | * bits when link is forced on a fiber connection. | |
3549 | *****************************************************************************/ | |
3550 | static int | |
3551 | e1000_force_mac_fc(struct e1000_hw *hw) | |
3552 | { | |
3553 | uint32_t ctrl; | |
3554 | ||
3555 | DEBUGFUNC(); | |
3556 | ||
3557 | /* Get the current configuration of the Device Control Register */ | |
3558 | ctrl = E1000_READ_REG(hw, CTRL); | |
3559 | ||
3560 | /* Because we didn't get link via the internal auto-negotiation | |
3561 | * mechanism (we either forced link or we got link via PHY | |
3562 | * auto-neg), we have to manually enable/disable transmit an | |
3563 | * receive flow control. | |
3564 | * | |
3565 | * The "Case" statement below enables/disable flow control | |
3566 | * according to the "hw->fc" parameter. | |
3567 | * | |
3568 | * The possible values of the "fc" parameter are: | |
1aeed8d7 WD |
3569 | * 0: Flow control is completely disabled |
3570 | * 1: Rx flow control is enabled (we can receive pause | |
3571 | * frames but not send pause frames). | |
3572 | * 2: Tx flow control is enabled (we can send pause frames | |
3573 | * frames but we do not receive pause frames). | |
3574 | * 3: Both Rx and TX flow control (symmetric) is enabled. | |
682011ff WD |
3575 | * other: No other values should be possible at this point. |
3576 | */ | |
3577 | ||
3578 | switch (hw->fc) { | |
3579 | case e1000_fc_none: | |
3580 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | |
3581 | break; | |
3582 | case e1000_fc_rx_pause: | |
3583 | ctrl &= (~E1000_CTRL_TFCE); | |
3584 | ctrl |= E1000_CTRL_RFCE; | |
3585 | break; | |
3586 | case e1000_fc_tx_pause: | |
3587 | ctrl &= (~E1000_CTRL_RFCE); | |
3588 | ctrl |= E1000_CTRL_TFCE; | |
3589 | break; | |
3590 | case e1000_fc_full: | |
3591 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | |
3592 | break; | |
3593 | default: | |
3594 | DEBUGOUT("Flow control param set incorrectly\n"); | |
3595 | return -E1000_ERR_CONFIG; | |
3596 | } | |
3597 | ||
3598 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | |
3599 | if (hw->mac_type == e1000_82542_rev2_0) | |
3600 | ctrl &= (~E1000_CTRL_TFCE); | |
3601 | ||
3602 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
3603 | return 0; | |
3604 | } | |
3605 | ||
3606 | /****************************************************************************** | |
3607 | * Configures flow control settings after link is established | |
8bde7f77 | 3608 | * |
682011ff WD |
3609 | * hw - Struct containing variables accessed by shared code |
3610 | * | |
3611 | * Should be called immediately after a valid link has been established. | |
3612 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | |
3613 | * and autonegotiation is enabled, the MAC flow control settings will be set | |
3614 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | |
3615 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | |
3616 | *****************************************************************************/ | |
aa070789 | 3617 | static int32_t |
682011ff WD |
3618 | e1000_config_fc_after_link_up(struct e1000_hw *hw) |
3619 | { | |
3620 | int32_t ret_val; | |
3621 | uint16_t mii_status_reg; | |
3622 | uint16_t mii_nway_adv_reg; | |
3623 | uint16_t mii_nway_lp_ability_reg; | |
3624 | uint16_t speed; | |
3625 | uint16_t duplex; | |
3626 | ||
3627 | DEBUGFUNC(); | |
3628 | ||
3629 | /* Check for the case where we have fiber media and auto-neg failed | |
3630 | * so we had to force link. In this case, we need to force the | |
3631 | * configuration of the MAC to match the "fc" parameter. | |
3632 | */ | |
aa070789 RZ |
3633 | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) |
3634 | || ((hw->media_type == e1000_media_type_internal_serdes) | |
3635 | && (hw->autoneg_failed)) | |
3636 | || ((hw->media_type == e1000_media_type_copper) | |
3637 | && (!hw->autoneg))) { | |
682011ff WD |
3638 | ret_val = e1000_force_mac_fc(hw); |
3639 | if (ret_val < 0) { | |
3640 | DEBUGOUT("Error forcing flow control settings\n"); | |
3641 | return ret_val; | |
3642 | } | |
3643 | } | |
3644 | ||
3645 | /* Check for the case where we have copper media and auto-neg is | |
3646 | * enabled. In this case, we need to check and see if Auto-Neg | |
3647 | * has completed, and if so, how the PHY and link partner has | |
3648 | * flow control configured. | |
3649 | */ | |
3650 | if (hw->media_type == e1000_media_type_copper) { | |
3651 | /* Read the MII Status Register and check to see if AutoNeg | |
3652 | * has completed. We read this twice because this reg has | |
3653 | * some "sticky" (latched) bits. | |
3654 | */ | |
3655 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { | |
5abf13e4 | 3656 | DEBUGOUT("PHY Read Error\n"); |
682011ff WD |
3657 | return -E1000_ERR_PHY; |
3658 | } | |
3659 | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { | |
5abf13e4 | 3660 | DEBUGOUT("PHY Read Error\n"); |
682011ff WD |
3661 | return -E1000_ERR_PHY; |
3662 | } | |
3663 | ||
3664 | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | |
3665 | /* The AutoNeg process has completed, so we now need to | |
3666 | * read both the Auto Negotiation Advertisement Register | |
3667 | * (Address 4) and the Auto_Negotiation Base Page Ability | |
3668 | * Register (Address 5) to determine how flow control was | |
3669 | * negotiated. | |
3670 | */ | |
3671 | if (e1000_read_phy_reg | |
3672 | (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { | |
3673 | DEBUGOUT("PHY Read Error\n"); | |
3674 | return -E1000_ERR_PHY; | |
3675 | } | |
3676 | if (e1000_read_phy_reg | |
3677 | (hw, PHY_LP_ABILITY, | |
3678 | &mii_nway_lp_ability_reg) < 0) { | |
3679 | DEBUGOUT("PHY Read Error\n"); | |
3680 | return -E1000_ERR_PHY; | |
3681 | } | |
3682 | ||
3683 | /* Two bits in the Auto Negotiation Advertisement Register | |
3684 | * (Address 4) and two bits in the Auto Negotiation Base | |
3685 | * Page Ability Register (Address 5) determine flow control | |
3686 | * for both the PHY and the link partner. The following | |
3687 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | |
3688 | * 1999, describes these PAUSE resolution bits and how flow | |
3689 | * control is determined based upon these settings. | |
3690 | * NOTE: DC = Don't Care | |
3691 | * | |
3692 | * LOCAL DEVICE | LINK PARTNER | |
3693 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | |
3694 | *-------|---------|-------|---------|-------------------- | |
1aeed8d7 WD |
3695 | * 0 | 0 | DC | DC | e1000_fc_none |
3696 | * 0 | 1 | 0 | DC | e1000_fc_none | |
3697 | * 0 | 1 | 1 | 0 | e1000_fc_none | |
3698 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | |
3699 | * 1 | 0 | 0 | DC | e1000_fc_none | |
3700 | * 1 | DC | 1 | DC | e1000_fc_full | |
3701 | * 1 | 1 | 0 | 0 | e1000_fc_none | |
3702 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | |
682011ff WD |
3703 | * |
3704 | */ | |
3705 | /* Are both PAUSE bits set to 1? If so, this implies | |
3706 | * Symmetric Flow Control is enabled at both ends. The | |
3707 | * ASM_DIR bits are irrelevant per the spec. | |
3708 | * | |
3709 | * For Symmetric Flow Control: | |
3710 | * | |
3711 | * LOCAL DEVICE | LINK PARTNER | |
3712 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | |
3713 | *-------|---------|-------|---------|-------------------- | |
1aeed8d7 | 3714 | * 1 | DC | 1 | DC | e1000_fc_full |
682011ff WD |
3715 | * |
3716 | */ | |
3717 | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | |
3718 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | |
3719 | /* Now we need to check if the user selected RX ONLY | |
3720 | * of pause frames. In this case, we had to advertise | |
3721 | * FULL flow control because we could not advertise RX | |
3722 | * ONLY. Hence, we must now check to see if we need to | |
3723 | * turn OFF the TRANSMISSION of PAUSE frames. | |
3724 | */ | |
3725 | if (hw->original_fc == e1000_fc_full) { | |
3726 | hw->fc = e1000_fc_full; | |
3727 | DEBUGOUT("Flow Control = FULL.\r\n"); | |
3728 | } else { | |
3729 | hw->fc = e1000_fc_rx_pause; | |
3730 | DEBUGOUT | |
3731 | ("Flow Control = RX PAUSE frames only.\r\n"); | |
3732 | } | |
3733 | } | |
3734 | /* For receiving PAUSE frames ONLY. | |
3735 | * | |
3736 | * LOCAL DEVICE | LINK PARTNER | |
3737 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | |
3738 | *-------|---------|-------|---------|-------------------- | |
1aeed8d7 | 3739 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
682011ff WD |
3740 | * |
3741 | */ | |
3742 | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | |
3743 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | |
3744 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | |
3745 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | |
3746 | { | |
3747 | hw->fc = e1000_fc_tx_pause; | |
3748 | DEBUGOUT | |
3749 | ("Flow Control = TX PAUSE frames only.\r\n"); | |
3750 | } | |
3751 | /* For transmitting PAUSE frames ONLY. | |
3752 | * | |
3753 | * LOCAL DEVICE | LINK PARTNER | |
3754 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | |
3755 | *-------|---------|-------|---------|-------------------- | |
1aeed8d7 | 3756 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
682011ff WD |
3757 | * |
3758 | */ | |
3759 | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | |
3760 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | |
3761 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | |
3762 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | |
3763 | { | |
3764 | hw->fc = e1000_fc_rx_pause; | |
3765 | DEBUGOUT | |
3766 | ("Flow Control = RX PAUSE frames only.\r\n"); | |
3767 | } | |
3768 | /* Per the IEEE spec, at this point flow control should be | |
3769 | * disabled. However, we want to consider that we could | |
3770 | * be connected to a legacy switch that doesn't advertise | |
3771 | * desired flow control, but can be forced on the link | |
3772 | * partner. So if we advertised no flow control, that is | |
3773 | * what we will resolve to. If we advertised some kind of | |
3774 | * receive capability (Rx Pause Only or Full Flow Control) | |
3775 | * and the link partner advertised none, we will configure | |
3776 | * ourselves to enable Rx Flow Control only. We can do | |
3777 | * this safely for two reasons: If the link partner really | |
3778 | * didn't want flow control enabled, and we enable Rx, no | |
3779 | * harm done since we won't be receiving any PAUSE frames | |
3780 | * anyway. If the intent on the link partner was to have | |
3781 | * flow control enabled, then by us enabling RX only, we | |
3782 | * can at least receive pause frames and process them. | |
3783 | * This is a good idea because in most cases, since we are | |
3784 | * predominantly a server NIC, more times than not we will | |
3785 | * be asked to delay transmission of packets than asking | |
3786 | * our link partner to pause transmission of frames. | |
3787 | */ | |
3788 | else if (hw->original_fc == e1000_fc_none || | |
3789 | hw->original_fc == e1000_fc_tx_pause) { | |
3790 | hw->fc = e1000_fc_none; | |
3791 | DEBUGOUT("Flow Control = NONE.\r\n"); | |
3792 | } else { | |
3793 | hw->fc = e1000_fc_rx_pause; | |
3794 | DEBUGOUT | |
3795 | ("Flow Control = RX PAUSE frames only.\r\n"); | |
3796 | } | |
3797 | ||
1aeed8d7 | 3798 | /* Now we need to do one last check... If we auto- |
682011ff WD |
3799 | * negotiated to HALF DUPLEX, flow control should not be |
3800 | * enabled per IEEE 802.3 spec. | |
3801 | */ | |
3802 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | |
3803 | ||
3804 | if (duplex == HALF_DUPLEX) | |
3805 | hw->fc = e1000_fc_none; | |
3806 | ||
3807 | /* Now we call a subroutine to actually force the MAC | |
3808 | * controller to use the correct flow control settings. | |
3809 | */ | |
3810 | ret_val = e1000_force_mac_fc(hw); | |
3811 | if (ret_val < 0) { | |
3812 | DEBUGOUT | |
3813 | ("Error forcing flow control settings\n"); | |
3814 | return ret_val; | |
3815 | } | |
3816 | } else { | |
3817 | DEBUGOUT | |
3818 | ("Copper PHY and Auto Neg has not completed.\r\n"); | |
3819 | } | |
3820 | } | |
aa070789 | 3821 | return E1000_SUCCESS; |
682011ff WD |
3822 | } |
3823 | ||
3824 | /****************************************************************************** | |
3825 | * Checks to see if the link status of the hardware has changed. | |
3826 | * | |
3827 | * hw - Struct containing variables accessed by shared code | |
3828 | * | |
3829 | * Called by any function that needs to check the link status of the adapter. | |
3830 | *****************************************************************************/ | |
3831 | static int | |
5c5e707a | 3832 | e1000_check_for_link(struct e1000_hw *hw) |
682011ff | 3833 | { |
682011ff WD |
3834 | uint32_t rxcw; |
3835 | uint32_t ctrl; | |
3836 | uint32_t status; | |
3837 | uint32_t rctl; | |
3838 | uint32_t signal; | |
3839 | int32_t ret_val; | |
3840 | uint16_t phy_data; | |
3841 | uint16_t lp_capability; | |
3842 | ||
3843 | DEBUGFUNC(); | |
3844 | ||
8bde7f77 WD |
3845 | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
3846 | * set when the optics detect a signal. On older adapters, it will be | |
682011ff WD |
3847 | * cleared when there is a signal |
3848 | */ | |
3849 | ctrl = E1000_READ_REG(hw, CTRL); | |
3850 | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) | |
3851 | signal = E1000_CTRL_SWDPIN1; | |
3852 | else | |
3853 | signal = 0; | |
3854 | ||
3855 | status = E1000_READ_REG(hw, STATUS); | |
3856 | rxcw = E1000_READ_REG(hw, RXCW); | |
3857 | DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); | |
3858 | ||
3859 | /* If we have a copper PHY then we only want to go out to the PHY | |
3860 | * registers to see if Auto-Neg has completed and/or if our link | |
1aeed8d7 | 3861 | * status has changed. The get_link_status flag will be set if we |
682011ff WD |
3862 | * receive a Link Status Change interrupt or we have Rx Sequence |
3863 | * Errors. | |
3864 | */ | |
3865 | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | |
3866 | /* First we want to see if the MII Status Register reports | |
3867 | * link. If so, then we want to get the current speed/duplex | |
3868 | * of the PHY. | |
3869 | * Read the register twice since the link bit is sticky. | |
3870 | */ | |
3871 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | |
3872 | DEBUGOUT("PHY Read Error\n"); | |
3873 | return -E1000_ERR_PHY; | |
3874 | } | |
3875 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | |
3876 | DEBUGOUT("PHY Read Error\n"); | |
3877 | return -E1000_ERR_PHY; | |
3878 | } | |
3879 | ||
3880 | if (phy_data & MII_SR_LINK_STATUS) { | |
472d5460 | 3881 | hw->get_link_status = false; |
682011ff WD |
3882 | } else { |
3883 | /* No link detected */ | |
3884 | return -E1000_ERR_NOLINK; | |
3885 | } | |
3886 | ||
3887 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we | |
3888 | * have Si on board that is 82544 or newer, Auto | |
3889 | * Speed Detection takes care of MAC speed/duplex | |
3890 | * configuration. So we only need to configure Collision | |
3891 | * Distance in the MAC. Otherwise, we need to force | |
3892 | * speed/duplex on the MAC to the current PHY speed/duplex | |
3893 | * settings. | |
3894 | */ | |
3895 | if (hw->mac_type >= e1000_82544) | |
3896 | e1000_config_collision_dist(hw); | |
3897 | else { | |
3898 | ret_val = e1000_config_mac_to_phy(hw); | |
3899 | if (ret_val < 0) { | |
3900 | DEBUGOUT | |
3901 | ("Error configuring MAC to PHY settings\n"); | |
3902 | return ret_val; | |
3903 | } | |
3904 | } | |
3905 | ||
8bde7f77 | 3906 | /* Configure Flow Control now that Auto-Neg has completed. First, we |
682011ff WD |
3907 | * need to restore the desired flow control settings because we may |
3908 | * have had to re-autoneg with a different link partner. | |
3909 | */ | |
3910 | ret_val = e1000_config_fc_after_link_up(hw); | |
3911 | if (ret_val < 0) { | |
3912 | DEBUGOUT("Error configuring flow control\n"); | |
3913 | return ret_val; | |
3914 | } | |
3915 | ||
3916 | /* At this point we know that we are on copper and we have | |
3917 | * auto-negotiated link. These are conditions for checking the link | |
1aeed8d7 | 3918 | * parter capability register. We use the link partner capability to |
682011ff WD |
3919 | * determine if TBI Compatibility needs to be turned on or off. If |
3920 | * the link partner advertises any speed in addition to Gigabit, then | |
3921 | * we assume that they are GMII-based, and TBI compatibility is not | |
3922 | * needed. If no other speeds are advertised, we assume the link | |
3923 | * partner is TBI-based, and we turn on TBI Compatibility. | |
3924 | */ | |
3925 | if (hw->tbi_compatibility_en) { | |
3926 | if (e1000_read_phy_reg | |
3927 | (hw, PHY_LP_ABILITY, &lp_capability) < 0) { | |
3928 | DEBUGOUT("PHY Read Error\n"); | |
3929 | return -E1000_ERR_PHY; | |
3930 | } | |
3931 | if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | | |
3932 | NWAY_LPAR_10T_FD_CAPS | | |
3933 | NWAY_LPAR_100TX_HD_CAPS | | |
3934 | NWAY_LPAR_100TX_FD_CAPS | | |
3935 | NWAY_LPAR_100T4_CAPS)) { | |
8bde7f77 | 3936 | /* If our link partner advertises anything in addition to |
682011ff WD |
3937 | * gigabit, we do not need to enable TBI compatibility. |
3938 | */ | |
3939 | if (hw->tbi_compatibility_on) { | |
3940 | /* If we previously were in the mode, turn it off. */ | |
3941 | rctl = E1000_READ_REG(hw, RCTL); | |
3942 | rctl &= ~E1000_RCTL_SBP; | |
3943 | E1000_WRITE_REG(hw, RCTL, rctl); | |
472d5460 | 3944 | hw->tbi_compatibility_on = false; |
682011ff WD |
3945 | } |
3946 | } else { | |
3947 | /* If TBI compatibility is was previously off, turn it on. For | |
3948 | * compatibility with a TBI link partner, we will store bad | |
3949 | * packets. Some frames have an additional byte on the end and | |
3950 | * will look like CRC errors to to the hardware. | |
3951 | */ | |
3952 | if (!hw->tbi_compatibility_on) { | |
472d5460 | 3953 | hw->tbi_compatibility_on = true; |
682011ff WD |
3954 | rctl = E1000_READ_REG(hw, RCTL); |
3955 | rctl |= E1000_RCTL_SBP; | |
3956 | E1000_WRITE_REG(hw, RCTL, rctl); | |
3957 | } | |
3958 | } | |
3959 | } | |
3960 | } | |
3961 | /* If we don't have link (auto-negotiation failed or link partner cannot | |
3962 | * auto-negotiate), the cable is plugged in (we have signal), and our | |
3963 | * link partner is not trying to auto-negotiate with us (we are receiving | |
3964 | * idles or data), we need to force link up. We also need to give | |
3965 | * auto-negotiation time to complete, in case the cable was just plugged | |
3966 | * in. The autoneg_failed flag does this. | |
3967 | */ | |
3968 | else if ((hw->media_type == e1000_media_type_fiber) && | |
3969 | (!(status & E1000_STATUS_LU)) && | |
3970 | ((ctrl & E1000_CTRL_SWDPIN1) == signal) && | |
3971 | (!(rxcw & E1000_RXCW_C))) { | |
3972 | if (hw->autoneg_failed == 0) { | |
3973 | hw->autoneg_failed = 1; | |
3974 | return 0; | |
3975 | } | |
3976 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); | |
3977 | ||
3978 | /* Disable auto-negotiation in the TXCW register */ | |
3979 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | |
3980 | ||
3981 | /* Force link-up and also force full-duplex. */ | |
3982 | ctrl = E1000_READ_REG(hw, CTRL); | |
3983 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | |
3984 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
3985 | ||
3986 | /* Configure Flow Control after forcing link up. */ | |
3987 | ret_val = e1000_config_fc_after_link_up(hw); | |
3988 | if (ret_val < 0) { | |
3989 | DEBUGOUT("Error configuring flow control\n"); | |
3990 | return ret_val; | |
3991 | } | |
3992 | } | |
3993 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | |
3994 | * auto-negotiation in the TXCW register and disable forced link in the | |
3995 | * Device Control register in an attempt to auto-negotiate with our link | |
3996 | * partner. | |
3997 | */ | |
3998 | else if ((hw->media_type == e1000_media_type_fiber) && | |
3999 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | |
4000 | DEBUGOUT | |
4001 | ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); | |
4002 | E1000_WRITE_REG(hw, TXCW, hw->txcw); | |
4003 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); | |
4004 | } | |
4005 | return 0; | |
4006 | } | |
4007 | ||
aa070789 RZ |
4008 | /****************************************************************************** |
4009 | * Configure the MAC-to-PHY interface for 10/100Mbps | |
4010 | * | |
4011 | * hw - Struct containing variables accessed by shared code | |
4012 | ******************************************************************************/ | |
4013 | static int32_t | |
4014 | e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex) | |
4015 | { | |
4016 | int32_t ret_val = E1000_SUCCESS; | |
4017 | uint32_t tipg; | |
4018 | uint16_t reg_data; | |
4019 | ||
4020 | DEBUGFUNC(); | |
4021 | ||
4022 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; | |
4023 | ret_val = e1000_write_kmrn_reg(hw, | |
4024 | E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); | |
4025 | if (ret_val) | |
4026 | return ret_val; | |
4027 | ||
4028 | /* Configure Transmit Inter-Packet Gap */ | |
4029 | tipg = E1000_READ_REG(hw, TIPG); | |
4030 | tipg &= ~E1000_TIPG_IPGT_MASK; | |
4031 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; | |
4032 | E1000_WRITE_REG(hw, TIPG, tipg); | |
4033 | ||
4034 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | |
4035 | ||
4036 | if (ret_val) | |
4037 | return ret_val; | |
4038 | ||
4039 | if (duplex == HALF_DUPLEX) | |
4040 | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | |
4041 | else | |
4042 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | |
4043 | ||
4044 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | |
4045 | ||
4046 | return ret_val; | |
4047 | } | |
4048 | ||
4049 | static int32_t | |
4050 | e1000_configure_kmrn_for_1000(struct e1000_hw *hw) | |
4051 | { | |
4052 | int32_t ret_val = E1000_SUCCESS; | |
4053 | uint16_t reg_data; | |
4054 | uint32_t tipg; | |
4055 | ||
4056 | DEBUGFUNC(); | |
4057 | ||
4058 | reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; | |
4059 | ret_val = e1000_write_kmrn_reg(hw, | |
4060 | E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data); | |
4061 | if (ret_val) | |
4062 | return ret_val; | |
4063 | ||
4064 | /* Configure Transmit Inter-Packet Gap */ | |
4065 | tipg = E1000_READ_REG(hw, TIPG); | |
4066 | tipg &= ~E1000_TIPG_IPGT_MASK; | |
4067 | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | |
4068 | E1000_WRITE_REG(hw, TIPG, tipg); | |
4069 | ||
4070 | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | |
4071 | ||
4072 | if (ret_val) | |
4073 | return ret_val; | |
4074 | ||
4075 | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | |
4076 | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | |
4077 | ||
4078 | return ret_val; | |
4079 | } | |
4080 | ||
682011ff WD |
4081 | /****************************************************************************** |
4082 | * Detects the current speed and duplex settings of the hardware. | |
4083 | * | |
4084 | * hw - Struct containing variables accessed by shared code | |
4085 | * speed - Speed of the connection | |
4086 | * duplex - Duplex setting of the connection | |
4087 | *****************************************************************************/ | |
aa070789 RZ |
4088 | static int |
4089 | e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, | |
4090 | uint16_t *duplex) | |
682011ff WD |
4091 | { |
4092 | uint32_t status; | |
aa070789 RZ |
4093 | int32_t ret_val; |
4094 | uint16_t phy_data; | |
682011ff WD |
4095 | |
4096 | DEBUGFUNC(); | |
4097 | ||
4098 | if (hw->mac_type >= e1000_82543) { | |
4099 | status = E1000_READ_REG(hw, STATUS); | |
4100 | if (status & E1000_STATUS_SPEED_1000) { | |
4101 | *speed = SPEED_1000; | |
4102 | DEBUGOUT("1000 Mbs, "); | |
4103 | } else if (status & E1000_STATUS_SPEED_100) { | |
4104 | *speed = SPEED_100; | |
4105 | DEBUGOUT("100 Mbs, "); | |
4106 | } else { | |
4107 | *speed = SPEED_10; | |
4108 | DEBUGOUT("10 Mbs, "); | |
4109 | } | |
4110 | ||
4111 | if (status & E1000_STATUS_FD) { | |
4112 | *duplex = FULL_DUPLEX; | |
4113 | DEBUGOUT("Full Duplex\r\n"); | |
4114 | } else { | |
4115 | *duplex = HALF_DUPLEX; | |
4116 | DEBUGOUT(" Half Duplex\r\n"); | |
4117 | } | |
4118 | } else { | |
4119 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); | |
4120 | *speed = SPEED_1000; | |
4121 | *duplex = FULL_DUPLEX; | |
4122 | } | |
aa070789 RZ |
4123 | |
4124 | /* IGP01 PHY may advertise full duplex operation after speed downgrade | |
4125 | * even if it is operating at half duplex. Here we set the duplex | |
4126 | * settings to match the duplex in the link partner's capabilities. | |
4127 | */ | |
4128 | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | |
4129 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | |
4130 | if (ret_val) | |
4131 | return ret_val; | |
4132 | ||
4133 | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | |
4134 | *duplex = HALF_DUPLEX; | |
4135 | else { | |
4136 | ret_val = e1000_read_phy_reg(hw, | |
4137 | PHY_LP_ABILITY, &phy_data); | |
4138 | if (ret_val) | |
4139 | return ret_val; | |
4140 | if ((*speed == SPEED_100 && | |
4141 | !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) | |
4142 | || (*speed == SPEED_10 | |
4143 | && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | |
4144 | *duplex = HALF_DUPLEX; | |
4145 | } | |
4146 | } | |
4147 | ||
4148 | if ((hw->mac_type == e1000_80003es2lan) && | |
4149 | (hw->media_type == e1000_media_type_copper)) { | |
4150 | if (*speed == SPEED_1000) | |
4151 | ret_val = e1000_configure_kmrn_for_1000(hw); | |
4152 | else | |
4153 | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); | |
4154 | if (ret_val) | |
4155 | return ret_val; | |
4156 | } | |
4157 | return E1000_SUCCESS; | |
682011ff WD |
4158 | } |
4159 | ||
4160 | /****************************************************************************** | |
4161 | * Blocks until autoneg completes or times out (~4.5 seconds) | |
4162 | * | |
4163 | * hw - Struct containing variables accessed by shared code | |
4164 | ******************************************************************************/ | |
4165 | static int | |
4166 | e1000_wait_autoneg(struct e1000_hw *hw) | |
4167 | { | |
4168 | uint16_t i; | |
4169 | uint16_t phy_data; | |
4170 | ||
4171 | DEBUGFUNC(); | |
4172 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | |
4173 | ||
faa765d4 | 4174 | /* We will wait for autoneg to complete or timeout to expire. */ |
682011ff WD |
4175 | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
4176 | /* Read the MII Status Register and wait for Auto-Neg | |
4177 | * Complete bit to be set. | |
4178 | */ | |
4179 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | |
4180 | DEBUGOUT("PHY Read Error\n"); | |
4181 | return -E1000_ERR_PHY; | |
4182 | } | |
4183 | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | |
4184 | DEBUGOUT("PHY Read Error\n"); | |
4185 | return -E1000_ERR_PHY; | |
4186 | } | |
4187 | if (phy_data & MII_SR_AUTONEG_COMPLETE) { | |
4188 | DEBUGOUT("Auto-Neg complete.\n"); | |
4189 | return 0; | |
4190 | } | |
4191 | mdelay(100); | |
4192 | } | |
4193 | DEBUGOUT("Auto-Neg timedout.\n"); | |
4194 | return -E1000_ERR_TIMEOUT; | |
4195 | } | |
4196 | ||
4197 | /****************************************************************************** | |
4198 | * Raises the Management Data Clock | |
4199 | * | |
4200 | * hw - Struct containing variables accessed by shared code | |
4201 | * ctrl - Device control register's current value | |
4202 | ******************************************************************************/ | |
4203 | static void | |
4204 | e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) | |
4205 | { | |
4206 | /* Raise the clock input to the Management Data Clock (by setting the MDC | |
4207 | * bit), and then delay 2 microseconds. | |
4208 | */ | |
4209 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); | |
4210 | E1000_WRITE_FLUSH(hw); | |
4211 | udelay(2); | |
4212 | } | |
4213 | ||
4214 | /****************************************************************************** | |
4215 | * Lowers the Management Data Clock | |
4216 | * | |
4217 | * hw - Struct containing variables accessed by shared code | |
4218 | * ctrl - Device control register's current value | |
4219 | ******************************************************************************/ | |
4220 | static void | |
4221 | e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) | |
4222 | { | |
4223 | /* Lower the clock input to the Management Data Clock (by clearing the MDC | |
4224 | * bit), and then delay 2 microseconds. | |
4225 | */ | |
4226 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); | |
4227 | E1000_WRITE_FLUSH(hw); | |
4228 | udelay(2); | |
4229 | } | |
4230 | ||
4231 | /****************************************************************************** | |
4232 | * Shifts data bits out to the PHY | |
4233 | * | |
4234 | * hw - Struct containing variables accessed by shared code | |
4235 | * data - Data to send out to the PHY | |
4236 | * count - Number of bits to shift out | |
4237 | * | |
4238 | * Bits are shifted out in MSB to LSB order. | |
4239 | ******************************************************************************/ | |
4240 | static void | |
4241 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) | |
4242 | { | |
4243 | uint32_t ctrl; | |
4244 | uint32_t mask; | |
4245 | ||
4246 | /* We need to shift "count" number of bits out to the PHY. So, the value | |
8bde7f77 | 4247 | * in the "data" parameter will be shifted out to the PHY one bit at a |
682011ff WD |
4248 | * time. In order to do this, "data" must be broken down into bits. |
4249 | */ | |
4250 | mask = 0x01; | |
4251 | mask <<= (count - 1); | |
4252 | ||
4253 | ctrl = E1000_READ_REG(hw, CTRL); | |
4254 | ||
4255 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | |
4256 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | |
4257 | ||
4258 | while (mask) { | |
4259 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | |
4260 | * then raising and lowering the Management Data Clock. A "0" is | |
4261 | * shifted out to the PHY by setting the MDIO bit to "0" and then | |
4262 | * raising and lowering the clock. | |
4263 | */ | |
4264 | if (data & mask) | |
4265 | ctrl |= E1000_CTRL_MDIO; | |
4266 | else | |
4267 | ctrl &= ~E1000_CTRL_MDIO; | |
4268 | ||
4269 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
4270 | E1000_WRITE_FLUSH(hw); | |
4271 | ||
4272 | udelay(2); | |
4273 | ||
4274 | e1000_raise_mdi_clk(hw, &ctrl); | |
4275 | e1000_lower_mdi_clk(hw, &ctrl); | |
4276 | ||
4277 | mask = mask >> 1; | |
4278 | } | |
4279 | } | |
4280 | ||
4281 | /****************************************************************************** | |
4282 | * Shifts data bits in from the PHY | |
4283 | * | |
4284 | * hw - Struct containing variables accessed by shared code | |
4285 | * | |
8bde7f77 | 4286 | * Bits are shifted in in MSB to LSB order. |
682011ff WD |
4287 | ******************************************************************************/ |
4288 | static uint16_t | |
4289 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) | |
4290 | { | |
4291 | uint32_t ctrl; | |
4292 | uint16_t data = 0; | |
4293 | uint8_t i; | |
4294 | ||
4295 | /* In order to read a register from the PHY, we need to shift in a total | |
4296 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | |
4297 | * to avoid contention on the MDIO pin when a read operation is performed. | |
4298 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | |
4299 | * by raising the input to the Management Data Clock (setting the MDC bit), | |
4300 | * and then reading the value of the MDIO bit. | |
4301 | */ | |
4302 | ctrl = E1000_READ_REG(hw, CTRL); | |
4303 | ||
4304 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | |
4305 | ctrl &= ~E1000_CTRL_MDIO_DIR; | |
4306 | ctrl &= ~E1000_CTRL_MDIO; | |
4307 | ||
4308 | E1000_WRITE_REG(hw, CTRL, ctrl); | |
4309 | E1000_WRITE_FLUSH(hw); | |
4310 | ||
4311 | /* Raise and Lower the clock before reading in the data. This accounts for | |
4312 | * the turnaround bits. The first clock occurred when we clocked out the | |
4313 | * last bit of the Register Address. | |
4314 | */ | |
4315 | e1000_raise_mdi_clk(hw, &ctrl); | |
4316 | e1000_lower_mdi_clk(hw, &ctrl); | |
4317 | ||
4318 | for (data = 0, i = 0; i < 16; i++) { | |
4319 | data = data << 1; | |
4320 | e1000_raise_mdi_clk(hw, &ctrl); | |
4321 | ctrl = E1000_READ_REG(hw, CTRL); | |
4322 | /* Check to see if we shifted in a "1". */ | |
4323 | if (ctrl & E1000_CTRL_MDIO) | |
4324 | data |= 1; | |
4325 | e1000_lower_mdi_clk(hw, &ctrl); | |
4326 | } | |
4327 | ||
4328 | e1000_raise_mdi_clk(hw, &ctrl); | |
4329 | e1000_lower_mdi_clk(hw, &ctrl); | |
4330 | ||
4331 | return data; | |
4332 | } | |
4333 | ||
4334 | /***************************************************************************** | |
4335 | * Reads the value from a PHY register | |
4336 | * | |
4337 | * hw - Struct containing variables accessed by shared code | |
4338 | * reg_addr - address of the PHY register to read | |
4339 | ******************************************************************************/ | |
4340 | static int | |
4341 | e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) | |
4342 | { | |
4343 | uint32_t i; | |
4344 | uint32_t mdic = 0; | |
4345 | const uint32_t phy_addr = 1; | |
4346 | ||
4347 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | |
4348 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); | |
4349 | return -E1000_ERR_PARAM; | |
4350 | } | |
4351 | ||
4352 | if (hw->mac_type > e1000_82543) { | |
4353 | /* Set up Op-code, Phy Address, and register address in the MDI | |
4354 | * Control register. The MAC will take care of interfacing with the | |
4355 | * PHY to retrieve the desired data. | |
4356 | */ | |
4357 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | |
4358 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | |
4359 | (E1000_MDIC_OP_READ)); | |
4360 | ||
4361 | E1000_WRITE_REG(hw, MDIC, mdic); | |
4362 | ||
4363 | /* Poll the ready bit to see if the MDI read completed */ | |
4364 | for (i = 0; i < 64; i++) { | |
4365 | udelay(10); | |
4366 | mdic = E1000_READ_REG(hw, MDIC); | |
4367 | if (mdic & E1000_MDIC_READY) | |
4368 | break; | |
4369 | } | |
4370 | if (!(mdic & E1000_MDIC_READY)) { | |
4371 | DEBUGOUT("MDI Read did not complete\n"); | |
4372 | return -E1000_ERR_PHY; | |
4373 | } | |
4374 | if (mdic & E1000_MDIC_ERROR) { | |
4375 | DEBUGOUT("MDI Error\n"); | |
4376 | return -E1000_ERR_PHY; | |
4377 | } | |
4378 | *phy_data = (uint16_t) mdic; | |
4379 | } else { | |
4380 | /* We must first send a preamble through the MDIO pin to signal the | |
4381 | * beginning of an MII instruction. This is done by sending 32 | |
4382 | * consecutive "1" bits. | |
4383 | */ | |
4384 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | |
4385 | ||
4386 | /* Now combine the next few fields that are required for a read | |
4387 | * operation. We use this method instead of calling the | |
4388 | * e1000_shift_out_mdi_bits routine five different times. The format of | |
4389 | * a MII read instruction consists of a shift out of 14 bits and is | |
4390 | * defined as follows: | |
4391 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | |
4392 | * followed by a shift in of 18 bits. This first two bits shifted in | |
4393 | * are TurnAround bits used to avoid contention on the MDIO pin when a | |
4394 | * READ operation is performed. These two bits are thrown away | |
4395 | * followed by a shift in of 16 bits which contains the desired data. | |
4396 | */ | |
4397 | mdic = ((reg_addr) | (phy_addr << 5) | | |
4398 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | |
4399 | ||
4400 | e1000_shift_out_mdi_bits(hw, mdic, 14); | |
4401 | ||
4402 | /* Now that we've shifted out the read command to the MII, we need to | |
4403 | * "shift in" the 16-bit value (18 total bits) of the requested PHY | |
4404 | * register address. | |
4405 | */ | |
4406 | *phy_data = e1000_shift_in_mdi_bits(hw); | |
4407 | } | |
4408 | return 0; | |
4409 | } | |
4410 | ||
4411 | /****************************************************************************** | |
4412 | * Writes a value to a PHY register | |
4413 | * | |
4414 | * hw - Struct containing variables accessed by shared code | |
4415 | * reg_addr - address of the PHY register to write | |
4416 | * data - data to write to the PHY | |
4417 | ******************************************************************************/ | |
4418 | static int | |
4419 | e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) | |
4420 | { | |
4421 | uint32_t i; | |
4422 | uint32_t mdic = 0; | |
4423 | const uint32_t phy_addr = 1; | |
4424 | ||
4425 | if (reg_addr > MAX_PHY_REG_ADDRESS) { | |
4426 | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); | |
4427 | return -E1000_ERR_PARAM; | |
4428 | } | |
4429 | ||
4430 | if (hw->mac_type > e1000_82543) { | |
4431 | /* Set up Op-code, Phy Address, register address, and data intended | |
4432 | * for the PHY register in the MDI Control register. The MAC will take | |
4433 | * care of interfacing with the PHY to send the desired data. | |
4434 | */ | |
4435 | mdic = (((uint32_t) phy_data) | | |
4436 | (reg_addr << E1000_MDIC_REG_SHIFT) | | |
4437 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | |
4438 | (E1000_MDIC_OP_WRITE)); | |
4439 | ||
4440 | E1000_WRITE_REG(hw, MDIC, mdic); | |
4441 | ||
4442 | /* Poll the ready bit to see if the MDI read completed */ | |
4443 | for (i = 0; i < 64; i++) { | |
4444 | udelay(10); | |
4445 | mdic = E1000_READ_REG(hw, MDIC); | |
4446 | if (mdic & E1000_MDIC_READY) | |
4447 | break; | |
4448 | } | |
4449 | if (!(mdic & E1000_MDIC_READY)) { | |
4450 | DEBUGOUT("MDI Write did not complete\n"); | |
4451 | return -E1000_ERR_PHY; | |
4452 | } | |
4453 | } else { | |
4454 | /* We'll need to use the SW defined pins to shift the write command | |
4455 | * out to the PHY. We first send a preamble to the PHY to signal the | |
8bde7f77 | 4456 | * beginning of the MII instruction. This is done by sending 32 |
682011ff WD |
4457 | * consecutive "1" bits. |
4458 | */ | |
4459 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | |
4460 | ||
8bde7f77 | 4461 | /* Now combine the remaining required fields that will indicate a |
682011ff WD |
4462 | * write operation. We use this method instead of calling the |
4463 | * e1000_shift_out_mdi_bits routine for each field in the command. The | |
4464 | * format of a MII write instruction is as follows: | |
4465 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | |
4466 | */ | |
4467 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | |
4468 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | |
4469 | mdic <<= 16; | |
4470 | mdic |= (uint32_t) phy_data; | |
4471 | ||
4472 | e1000_shift_out_mdi_bits(hw, mdic, 32); | |
4473 | } | |
4474 | return 0; | |
4475 | } | |
4476 | ||
aa070789 RZ |
4477 | /****************************************************************************** |
4478 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | |
4479 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | |
4480 | * the caller to figure out how to deal with it. | |
4481 | * | |
4482 | * hw - Struct containing variables accessed by shared code | |
4483 | * | |
4484 | * returns: - E1000_BLK_PHY_RESET | |
4485 | * E1000_SUCCESS | |
4486 | * | |
4487 | *****************************************************************************/ | |
4488 | int32_t | |
4489 | e1000_check_phy_reset_block(struct e1000_hw *hw) | |
4490 | { | |
4491 | uint32_t manc = 0; | |
4492 | uint32_t fwsm = 0; | |
4493 | ||
4494 | if (hw->mac_type == e1000_ich8lan) { | |
4495 | fwsm = E1000_READ_REG(hw, FWSM); | |
4496 | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS | |
4497 | : E1000_BLK_PHY_RESET; | |
4498 | } | |
4499 | ||
4500 | if (hw->mac_type > e1000_82547_rev_2) | |
4501 | manc = E1000_READ_REG(hw, MANC); | |
4502 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | |
4503 | E1000_BLK_PHY_RESET : E1000_SUCCESS; | |
4504 | } | |
4505 | ||
4506 | /*************************************************************************** | |
4507 | * Checks if the PHY configuration is done | |
4508 | * | |
4509 | * hw: Struct containing variables accessed by shared code | |
4510 | * | |
4511 | * returns: - E1000_ERR_RESET if fail to reset MAC | |
4512 | * E1000_SUCCESS at any other case. | |
4513 | * | |
4514 | ***************************************************************************/ | |
4515 | static int32_t | |
4516 | e1000_get_phy_cfg_done(struct e1000_hw *hw) | |
4517 | { | |
4518 | int32_t timeout = PHY_CFG_TIMEOUT; | |
4519 | uint32_t cfg_mask = E1000_EEPROM_CFG_DONE; | |
4520 | ||
4521 | DEBUGFUNC(); | |
4522 | ||
4523 | switch (hw->mac_type) { | |
4524 | default: | |
4525 | mdelay(10); | |
4526 | break; | |
987b43a1 | 4527 | |
aa070789 RZ |
4528 | case e1000_80003es2lan: |
4529 | /* Separate *_CFG_DONE_* bit for each port */ | |
987b43a1 | 4530 | if (e1000_is_second_port(hw)) |
aa070789 | 4531 | cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; |
987b43a1 KM |
4532 | /* Fall Through */ |
4533 | ||
aa070789 RZ |
4534 | case e1000_82571: |
4535 | case e1000_82572: | |
95186063 | 4536 | case e1000_igb: |
aa070789 | 4537 | while (timeout) { |
95186063 | 4538 | if (hw->mac_type == e1000_igb) { |
85d44e42 MA |
4539 | if (hw->phy_type == e1000_phy_igc) |
4540 | break; | |
95186063 MV |
4541 | if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask) |
4542 | break; | |
4543 | } else { | |
4544 | if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask) | |
4545 | break; | |
4546 | } | |
4547 | mdelay(1); | |
aa070789 RZ |
4548 | timeout--; |
4549 | } | |
4550 | if (!timeout) { | |
4551 | DEBUGOUT("MNG configuration cycle has not " | |
4552 | "completed.\n"); | |
4553 | return -E1000_ERR_RESET; | |
4554 | } | |
4555 | break; | |
4556 | } | |
4557 | ||
4558 | return E1000_SUCCESS; | |
4559 | } | |
4560 | ||
682011ff WD |
4561 | /****************************************************************************** |
4562 | * Returns the PHY to the power-on reset state | |
4563 | * | |
4564 | * hw - Struct containing variables accessed by shared code | |
4565 | ******************************************************************************/ | |
aa070789 | 4566 | int32_t |
682011ff WD |
4567 | e1000_phy_hw_reset(struct e1000_hw *hw) |
4568 | { | |
987b43a1 | 4569 | uint16_t swfw = E1000_SWFW_PHY0_SM; |
aa070789 RZ |
4570 | uint32_t ctrl, ctrl_ext; |
4571 | uint32_t led_ctrl; | |
4572 | int32_t ret_val; | |
682011ff WD |
4573 | |
4574 | DEBUGFUNC(); | |
4575 | ||
aa070789 RZ |
4576 | /* In the case of the phy reset being blocked, it's not an error, we |
4577 | * simply return success without performing the reset. */ | |
4578 | ret_val = e1000_check_phy_reset_block(hw); | |
4579 | if (ret_val) | |
4580 | return E1000_SUCCESS; | |
4581 | ||
682011ff WD |
4582 | DEBUGOUT("Resetting Phy...\n"); |
4583 | ||
4584 | if (hw->mac_type > e1000_82543) { | |
987b43a1 | 4585 | if (e1000_is_second_port(hw)) |
aa070789 | 4586 | swfw = E1000_SWFW_PHY1_SM; |
987b43a1 | 4587 | |
aa070789 RZ |
4588 | if (e1000_swfw_sync_acquire(hw, swfw)) { |
4589 | DEBUGOUT("Unable to acquire swfw sync\n"); | |
4590 | return -E1000_ERR_SWFW_SYNC; | |
4591 | } | |
987b43a1 | 4592 | |
682011ff WD |
4593 | /* Read the device control register and assert the E1000_CTRL_PHY_RST |
4594 | * bit. Then, take it out of reset. | |
4595 | */ | |
4596 | ctrl = E1000_READ_REG(hw, CTRL); | |
4597 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); | |
4598 | E1000_WRITE_FLUSH(hw); | |
aa070789 RZ |
4599 | |
4600 | if (hw->mac_type < e1000_82571) | |
4601 | udelay(10); | |
4602 | else | |
4603 | udelay(100); | |
4604 | ||
682011ff WD |
4605 | E1000_WRITE_REG(hw, CTRL, ctrl); |
4606 | E1000_WRITE_FLUSH(hw); | |
aa070789 RZ |
4607 | |
4608 | if (hw->mac_type >= e1000_82571) | |
4609 | mdelay(10); | |
3c63dd53 | 4610 | |
682011ff WD |
4611 | } else { |
4612 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | |
4613 | * bit to put the PHY into reset. Then, take it out of reset. | |
4614 | */ | |
4615 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | |
4616 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | |
4617 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | |
4618 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | |
4619 | E1000_WRITE_FLUSH(hw); | |
4620 | mdelay(10); | |
4621 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | |
4622 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | |
4623 | E1000_WRITE_FLUSH(hw); | |
4624 | } | |
4625 | udelay(150); | |
aa070789 RZ |
4626 | |
4627 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | |
4628 | /* Configure activity LED after PHY reset */ | |
4629 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | |
4630 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | |
4631 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | |
4632 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | |
4633 | } | |
4634 | ||
7e2d991d TH |
4635 | e1000_swfw_sync_release(hw, swfw); |
4636 | ||
aa070789 RZ |
4637 | /* Wait for FW to finish PHY configuration. */ |
4638 | ret_val = e1000_get_phy_cfg_done(hw); | |
4639 | if (ret_val != E1000_SUCCESS) | |
4640 | return ret_val; | |
4641 | ||
4642 | return ret_val; | |
4643 | } | |
4644 | ||
4645 | /****************************************************************************** | |
4646 | * IGP phy init script - initializes the GbE PHY | |
4647 | * | |
4648 | * hw - Struct containing variables accessed by shared code | |
4649 | *****************************************************************************/ | |
4650 | static void | |
4651 | e1000_phy_init_script(struct e1000_hw *hw) | |
4652 | { | |
4653 | uint32_t ret_val; | |
4654 | uint16_t phy_saved_data; | |
4655 | DEBUGFUNC(); | |
4656 | ||
4657 | if (hw->phy_init_script) { | |
4658 | mdelay(20); | |
4659 | ||
4660 | /* Save off the current value of register 0x2F5B to be | |
4661 | * restored at the end of this routine. */ | |
4662 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | |
4663 | ||
4664 | /* Disabled the PHY transmitter */ | |
4665 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | |
4666 | ||
4667 | mdelay(20); | |
4668 | ||
4669 | e1000_write_phy_reg(hw, 0x0000, 0x0140); | |
4670 | ||
4671 | mdelay(5); | |
4672 | ||
4673 | switch (hw->mac_type) { | |
4674 | case e1000_82541: | |
4675 | case e1000_82547: | |
4676 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | |
4677 | ||
4678 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | |
4679 | ||
4680 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | |
4681 | ||
4682 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | |
4683 | ||
4684 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | |
4685 | ||
4686 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | |
4687 | ||
4688 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | |
4689 | ||
4690 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | |
4691 | ||
4692 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | |
4693 | break; | |
4694 | ||
4695 | case e1000_82541_rev_2: | |
4696 | case e1000_82547_rev_2: | |
4697 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | |
4698 | break; | |
4699 | default: | |
4700 | break; | |
4701 | } | |
4702 | ||
4703 | e1000_write_phy_reg(hw, 0x0000, 0x3300); | |
4704 | ||
4705 | mdelay(20); | |
4706 | ||
4707 | /* Now enable the transmitter */ | |
56b13b1e ZRR |
4708 | if (!ret_val) |
4709 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | |
aa070789 RZ |
4710 | |
4711 | if (hw->mac_type == e1000_82547) { | |
4712 | uint16_t fused, fine, coarse; | |
4713 | ||
4714 | /* Move to analog registers page */ | |
4715 | e1000_read_phy_reg(hw, | |
4716 | IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | |
4717 | ||
4718 | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | |
4719 | e1000_read_phy_reg(hw, | |
4720 | IGP01E1000_ANALOG_FUSE_STATUS, &fused); | |
4721 | ||
4722 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | |
4723 | coarse = fused | |
4724 | & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | |
4725 | ||
4726 | if (coarse > | |
4727 | IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | |
4728 | coarse -= | |
4729 | IGP01E1000_ANALOG_FUSE_COARSE_10; | |
4730 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | |
4731 | } else if (coarse | |
4732 | == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | |
4733 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | |
4734 | ||
4735 | fused = (fused | |
4736 | & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | |
4737 | (fine | |
4738 | & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | |
4739 | (coarse | |
4740 | & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | |
4741 | ||
4742 | e1000_write_phy_reg(hw, | |
4743 | IGP01E1000_ANALOG_FUSE_CONTROL, fused); | |
4744 | e1000_write_phy_reg(hw, | |
4745 | IGP01E1000_ANALOG_FUSE_BYPASS, | |
4746 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | |
4747 | } | |
4748 | } | |
4749 | } | |
682011ff WD |
4750 | } |
4751 | ||
4752 | /****************************************************************************** | |
4753 | * Resets the PHY | |
4754 | * | |
4755 | * hw - Struct containing variables accessed by shared code | |
4756 | * | |
aa070789 | 4757 | * Sets bit 15 of the MII Control register |
682011ff | 4758 | ******************************************************************************/ |
aa070789 | 4759 | int32_t |
682011ff WD |
4760 | e1000_phy_reset(struct e1000_hw *hw) |
4761 | { | |
aa070789 | 4762 | int32_t ret_val; |
682011ff WD |
4763 | uint16_t phy_data; |
4764 | ||
4765 | DEBUGFUNC(); | |
4766 | ||
aa070789 RZ |
4767 | /* In the case of the phy reset being blocked, it's not an error, we |
4768 | * simply return success without performing the reset. */ | |
4769 | ret_val = e1000_check_phy_reset_block(hw); | |
4770 | if (ret_val) | |
4771 | return E1000_SUCCESS; | |
4772 | ||
4773 | switch (hw->phy_type) { | |
4774 | case e1000_phy_igp: | |
4775 | case e1000_phy_igp_2: | |
4776 | case e1000_phy_igp_3: | |
4777 | case e1000_phy_ife: | |
95186063 | 4778 | case e1000_phy_igb: |
85d44e42 | 4779 | case e1000_phy_igc: |
aa070789 RZ |
4780 | ret_val = e1000_phy_hw_reset(hw); |
4781 | if (ret_val) | |
4782 | return ret_val; | |
4783 | break; | |
4784 | default: | |
4785 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | |
4786 | if (ret_val) | |
4787 | return ret_val; | |
4788 | ||
4789 | phy_data |= MII_CR_RESET; | |
4790 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | |
4791 | if (ret_val) | |
4792 | return ret_val; | |
4793 | ||
4794 | udelay(1); | |
4795 | break; | |
682011ff | 4796 | } |
aa070789 RZ |
4797 | |
4798 | if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) | |
4799 | e1000_phy_init_script(hw); | |
4800 | ||
4801 | return E1000_SUCCESS; | |
682011ff WD |
4802 | } |
4803 | ||
1aeed8d7 | 4804 | static int e1000_set_phy_type (struct e1000_hw *hw) |
ac3315c2 | 4805 | { |
1aeed8d7 WD |
4806 | DEBUGFUNC (); |
4807 | ||
4808 | if (hw->mac_type == e1000_undefined) | |
4809 | return -E1000_ERR_PHY_TYPE; | |
4810 | ||
4811 | switch (hw->phy_id) { | |
4812 | case M88E1000_E_PHY_ID: | |
4813 | case M88E1000_I_PHY_ID: | |
4814 | case M88E1011_I_PHY_ID: | |
aa070789 | 4815 | case M88E1111_I_PHY_ID: |
1aeed8d7 WD |
4816 | hw->phy_type = e1000_phy_m88; |
4817 | break; | |
4818 | case IGP01E1000_I_PHY_ID: | |
4819 | if (hw->mac_type == e1000_82541 || | |
aa070789 RZ |
4820 | hw->mac_type == e1000_82541_rev_2 || |
4821 | hw->mac_type == e1000_82547 || | |
4822 | hw->mac_type == e1000_82547_rev_2) { | |
1aeed8d7 | 4823 | hw->phy_type = e1000_phy_igp; |
aa070789 RZ |
4824 | break; |
4825 | } | |
4826 | case IGP03E1000_E_PHY_ID: | |
4827 | hw->phy_type = e1000_phy_igp_3; | |
4828 | break; | |
4829 | case IFE_E_PHY_ID: | |
4830 | case IFE_PLUS_E_PHY_ID: | |
4831 | case IFE_C_E_PHY_ID: | |
4832 | hw->phy_type = e1000_phy_ife; | |
4833 | break; | |
4834 | case GG82563_E_PHY_ID: | |
4835 | if (hw->mac_type == e1000_80003es2lan) { | |
4836 | hw->phy_type = e1000_phy_gg82563; | |
1aeed8d7 WD |
4837 | break; |
4838 | } | |
2c2668f9 RZ |
4839 | case BME1000_E_PHY_ID: |
4840 | hw->phy_type = e1000_phy_bm; | |
4841 | break; | |
95186063 MV |
4842 | case I210_I_PHY_ID: |
4843 | hw->phy_type = e1000_phy_igb; | |
4844 | break; | |
85d44e42 MA |
4845 | case I225_I_PHY_ID: |
4846 | hw->phy_type = e1000_phy_igc; | |
4847 | break; | |
1aeed8d7 WD |
4848 | /* Fall Through */ |
4849 | default: | |
4850 | /* Should never have loaded on this device */ | |
4851 | hw->phy_type = e1000_phy_undefined; | |
4852 | return -E1000_ERR_PHY_TYPE; | |
4853 | } | |
4854 | ||
4855 | return E1000_SUCCESS; | |
ac3315c2 AS |
4856 | } |
4857 | ||
682011ff WD |
4858 | /****************************************************************************** |
4859 | * Probes the expected PHY address for known PHY IDs | |
4860 | * | |
4861 | * hw - Struct containing variables accessed by shared code | |
4862 | ******************************************************************************/ | |
aa070789 | 4863 | static int32_t |
682011ff WD |
4864 | e1000_detect_gig_phy(struct e1000_hw *hw) |
4865 | { | |
aa070789 | 4866 | int32_t phy_init_status, ret_val; |
682011ff | 4867 | uint16_t phy_id_high, phy_id_low; |
472d5460 | 4868 | bool match = false; |
682011ff WD |
4869 | |
4870 | DEBUGFUNC(); | |
4871 | ||
aa070789 RZ |
4872 | /* The 82571 firmware may still be configuring the PHY. In this |
4873 | * case, we cannot access the PHY until the configuration is done. So | |
4874 | * we explicitly set the PHY values. */ | |
4875 | if (hw->mac_type == e1000_82571 || | |
4876 | hw->mac_type == e1000_82572) { | |
4877 | hw->phy_id = IGP01E1000_I_PHY_ID; | |
4878 | hw->phy_type = e1000_phy_igp_2; | |
4879 | return E1000_SUCCESS; | |
682011ff | 4880 | } |
aa070789 RZ |
4881 | |
4882 | /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a | |
4883 | * work- around that forces PHY page 0 to be set or the reads fail. | |
4884 | * The rest of the code in this routine uses e1000_read_phy_reg to | |
4885 | * read the PHY ID. So for ESB-2 we need to have this set so our | |
4886 | * reads won't fail. If the attached PHY is not a e1000_phy_gg82563, | |
4887 | * the routines below will figure this out as well. */ | |
4888 | if (hw->mac_type == e1000_80003es2lan) | |
4889 | hw->phy_type = e1000_phy_gg82563; | |
4890 | ||
4891 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | |
4892 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | |
4893 | if (ret_val) | |
4894 | return ret_val; | |
4895 | ||
682011ff | 4896 | hw->phy_id = (uint32_t) (phy_id_high << 16); |
aa070789 RZ |
4897 | udelay(20); |
4898 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | |
4899 | if (ret_val) | |
4900 | return ret_val; | |
4901 | ||
682011ff | 4902 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
aa070789 | 4903 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; |
682011ff WD |
4904 | |
4905 | switch (hw->mac_type) { | |
4906 | case e1000_82543: | |
4907 | if (hw->phy_id == M88E1000_E_PHY_ID) | |
472d5460 | 4908 | match = true; |
682011ff WD |
4909 | break; |
4910 | case e1000_82544: | |
4911 | if (hw->phy_id == M88E1000_I_PHY_ID) | |
472d5460 | 4912 | match = true; |
682011ff WD |
4913 | break; |
4914 | case e1000_82540: | |
4915 | case e1000_82545: | |
aa070789 | 4916 | case e1000_82545_rev_3: |
682011ff | 4917 | case e1000_82546: |
aa070789 | 4918 | case e1000_82546_rev_3: |
682011ff | 4919 | if (hw->phy_id == M88E1011_I_PHY_ID) |
472d5460 | 4920 | match = true; |
682011ff | 4921 | break; |
aa070789 | 4922 | case e1000_82541: |
ac3315c2 | 4923 | case e1000_82541_rev_2: |
aa070789 RZ |
4924 | case e1000_82547: |
4925 | case e1000_82547_rev_2: | |
ac3315c2 | 4926 | if(hw->phy_id == IGP01E1000_I_PHY_ID) |
472d5460 | 4927 | match = true; |
ac3315c2 AS |
4928 | |
4929 | break; | |
aa070789 RZ |
4930 | case e1000_82573: |
4931 | if (hw->phy_id == M88E1111_I_PHY_ID) | |
472d5460 | 4932 | match = true; |
aa070789 | 4933 | break; |
2c2668f9 RZ |
4934 | case e1000_82574: |
4935 | if (hw->phy_id == BME1000_E_PHY_ID) | |
472d5460 | 4936 | match = true; |
2c2668f9 | 4937 | break; |
aa070789 RZ |
4938 | case e1000_80003es2lan: |
4939 | if (hw->phy_id == GG82563_E_PHY_ID) | |
472d5460 | 4940 | match = true; |
aa070789 RZ |
4941 | break; |
4942 | case e1000_ich8lan: | |
4943 | if (hw->phy_id == IGP03E1000_E_PHY_ID) | |
472d5460 | 4944 | match = true; |
aa070789 | 4945 | if (hw->phy_id == IFE_E_PHY_ID) |
472d5460 | 4946 | match = true; |
aa070789 | 4947 | if (hw->phy_id == IFE_PLUS_E_PHY_ID) |
472d5460 | 4948 | match = true; |
aa070789 | 4949 | if (hw->phy_id == IFE_C_E_PHY_ID) |
472d5460 | 4950 | match = true; |
aa070789 | 4951 | break; |
95186063 MV |
4952 | case e1000_igb: |
4953 | if (hw->phy_id == I210_I_PHY_ID) | |
4954 | match = true; | |
85d44e42 MA |
4955 | if (hw->phy_id == I225_I_PHY_ID) |
4956 | match = true; | |
95186063 | 4957 | break; |
682011ff WD |
4958 | default: |
4959 | DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); | |
4960 | return -E1000_ERR_CONFIG; | |
4961 | } | |
ac3315c2 AS |
4962 | |
4963 | phy_init_status = e1000_set_phy_type(hw); | |
4964 | ||
4965 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | |
682011ff WD |
4966 | DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); |
4967 | return 0; | |
4968 | } | |
4969 | DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); | |
4970 | return -E1000_ERR_PHY; | |
4971 | } | |
4972 | ||
aa070789 RZ |
4973 | /***************************************************************************** |
4974 | * Set media type and TBI compatibility. | |
4975 | * | |
4976 | * hw - Struct containing variables accessed by shared code | |
4977 | * **************************************************************************/ | |
4978 | void | |
4979 | e1000_set_media_type(struct e1000_hw *hw) | |
4980 | { | |
4981 | uint32_t status; | |
4982 | ||
4983 | DEBUGFUNC(); | |
4984 | ||
4985 | if (hw->mac_type != e1000_82543) { | |
4986 | /* tbi_compatibility is only valid on 82543 */ | |
472d5460 | 4987 | hw->tbi_compatibility_en = false; |
aa070789 RZ |
4988 | } |
4989 | ||
4990 | switch (hw->device_id) { | |
4991 | case E1000_DEV_ID_82545GM_SERDES: | |
4992 | case E1000_DEV_ID_82546GB_SERDES: | |
4993 | case E1000_DEV_ID_82571EB_SERDES: | |
4994 | case E1000_DEV_ID_82571EB_SERDES_DUAL: | |
4995 | case E1000_DEV_ID_82571EB_SERDES_QUAD: | |
4996 | case E1000_DEV_ID_82572EI_SERDES: | |
4997 | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | |
4998 | hw->media_type = e1000_media_type_internal_serdes; | |
4999 | break; | |
5000 | default: | |
5001 | switch (hw->mac_type) { | |
5002 | case e1000_82542_rev2_0: | |
5003 | case e1000_82542_rev2_1: | |
5004 | hw->media_type = e1000_media_type_fiber; | |
5005 | break; | |
5006 | case e1000_ich8lan: | |
5007 | case e1000_82573: | |
2c2668f9 | 5008 | case e1000_82574: |
95186063 | 5009 | case e1000_igb: |
aa070789 RZ |
5010 | /* The STATUS_TBIMODE bit is reserved or reused |
5011 | * for the this device. | |
5012 | */ | |
5013 | hw->media_type = e1000_media_type_copper; | |
5014 | break; | |
5015 | default: | |
5016 | status = E1000_READ_REG(hw, STATUS); | |
5017 | if (status & E1000_STATUS_TBIMODE) { | |
5018 | hw->media_type = e1000_media_type_fiber; | |
5019 | /* tbi_compatibility not valid on fiber */ | |
472d5460 | 5020 | hw->tbi_compatibility_en = false; |
aa070789 RZ |
5021 | } else { |
5022 | hw->media_type = e1000_media_type_copper; | |
5023 | } | |
5024 | break; | |
5025 | } | |
5026 | } | |
5027 | } | |
5028 | ||
682011ff WD |
5029 | /** |
5030 | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | |
5031 | * | |
5032 | * e1000_sw_init initializes the Adapter private data structure. | |
5033 | * Fields are initialized based on PCI device information and | |
5034 | * OS network device settings (MTU size). | |
5035 | **/ | |
5036 | ||
5037 | static int | |
5c5e707a | 5038 | e1000_sw_init(struct e1000_hw *hw) |
682011ff | 5039 | { |
682011ff WD |
5040 | int result; |
5041 | ||
5042 | /* PCI config space info */ | |
81dab9af BM |
5043 | dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); |
5044 | dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id); | |
5045 | dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, | |
5046 | &hw->subsystem_vendor_id); | |
5047 | dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); | |
5048 | ||
5049 | dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id); | |
5050 | dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); | |
682011ff WD |
5051 | |
5052 | /* identify the MAC */ | |
5053 | result = e1000_set_mac_type(hw); | |
5054 | if (result) { | |
5c5e707a | 5055 | E1000_ERR(hw, "Unknown MAC Type\n"); |
682011ff WD |
5056 | return result; |
5057 | } | |
5058 | ||
aa070789 RZ |
5059 | switch (hw->mac_type) { |
5060 | default: | |
5061 | break; | |
5062 | case e1000_82541: | |
5063 | case e1000_82547: | |
5064 | case e1000_82541_rev_2: | |
5065 | case e1000_82547_rev_2: | |
5066 | hw->phy_init_script = 1; | |
5067 | break; | |
5068 | } | |
5069 | ||
682011ff WD |
5070 | /* flow control settings */ |
5071 | hw->fc_high_water = E1000_FC_HIGH_THRESH; | |
5072 | hw->fc_low_water = E1000_FC_LOW_THRESH; | |
5073 | hw->fc_pause_time = E1000_FC_PAUSE_TIME; | |
5074 | hw->fc_send_xon = 1; | |
5075 | ||
5076 | /* Media type - copper or fiber */ | |
95186063 | 5077 | hw->tbi_compatibility_en = true; |
aa070789 | 5078 | e1000_set_media_type(hw); |
682011ff WD |
5079 | |
5080 | if (hw->mac_type >= e1000_82543) { | |
5081 | uint32_t status = E1000_READ_REG(hw, STATUS); | |
5082 | ||
5083 | if (status & E1000_STATUS_TBIMODE) { | |
5084 | DEBUGOUT("fiber interface\n"); | |
5085 | hw->media_type = e1000_media_type_fiber; | |
5086 | } else { | |
5087 | DEBUGOUT("copper interface\n"); | |
5088 | hw->media_type = e1000_media_type_copper; | |
5089 | } | |
5090 | } else { | |
5091 | hw->media_type = e1000_media_type_fiber; | |
5092 | } | |
5093 | ||
472d5460 | 5094 | hw->wait_autoneg_complete = true; |
682011ff WD |
5095 | if (hw->mac_type < e1000_82543) |
5096 | hw->report_tx_early = 0; | |
5097 | else | |
5098 | hw->report_tx_early = 1; | |
5099 | ||
682011ff WD |
5100 | return E1000_SUCCESS; |
5101 | } | |
5102 | ||
5103 | void | |
5104 | fill_rx(struct e1000_hw *hw) | |
5105 | { | |
5106 | struct e1000_rx_desc *rd; | |
06e07f65 | 5107 | unsigned long flush_start, flush_end; |
682011ff WD |
5108 | |
5109 | rx_last = rx_tail; | |
5110 | rd = rx_base + rx_tail; | |
5111 | rx_tail = (rx_tail + 1) % 8; | |
5112 | memset(rd, 0, 16); | |
14807449 | 5113 | rd->buffer_addr = cpu_to_le64(virt_to_phys(packet)); |
873e8e01 MV |
5114 | |
5115 | /* | |
5116 | * Make sure there are no stale data in WB over this area, which | |
5117 | * might get written into the memory while the e1000 also writes | |
5118 | * into the same memory area. | |
5119 | */ | |
06e07f65 ML |
5120 | invalidate_dcache_range((unsigned long)packet, |
5121 | (unsigned long)packet + 4096); | |
873e8e01 | 5122 | /* Dump the DMA descriptor into RAM. */ |
06e07f65 | 5123 | flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1); |
873e8e01 MV |
5124 | flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN); |
5125 | flush_dcache_range(flush_start, flush_end); | |
5126 | ||
682011ff WD |
5127 | E1000_WRITE_REG(hw, RDT, rx_tail); |
5128 | } | |
5129 | ||
5130 | /** | |
5131 | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | |
5132 | * @adapter: board private structure | |
5133 | * | |
5134 | * Configure the Tx unit of the MAC after a reset. | |
5135 | **/ | |
5136 | ||
5137 | static void | |
5138 | e1000_configure_tx(struct e1000_hw *hw) | |
5139 | { | |
682011ff | 5140 | unsigned long tctl; |
aa070789 RZ |
5141 | unsigned long tipg, tarc; |
5142 | uint32_t ipgr1, ipgr2; | |
682011ff | 5143 | |
14807449 SR |
5144 | E1000_WRITE_REG(hw, TDBAL, lower_32_bits(virt_to_phys(tx_base))); |
5145 | E1000_WRITE_REG(hw, TDBAH, upper_32_bits(virt_to_phys(tx_base))); | |
682011ff WD |
5146 | |
5147 | E1000_WRITE_REG(hw, TDLEN, 128); | |
5148 | ||
5149 | /* Setup the HW Tx Head and Tail descriptor pointers */ | |
5150 | E1000_WRITE_REG(hw, TDH, 0); | |
5151 | E1000_WRITE_REG(hw, TDT, 0); | |
5152 | tx_tail = 0; | |
5153 | ||
aa070789 RZ |
5154 | /* Set the default values for the Tx Inter Packet Gap timer */ |
5155 | if (hw->mac_type <= e1000_82547_rev_2 && | |
5156 | (hw->media_type == e1000_media_type_fiber || | |
5157 | hw->media_type == e1000_media_type_internal_serdes)) | |
5158 | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | |
5159 | else | |
5160 | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | |
5161 | ||
682011ff WD |
5162 | /* Set the default values for the Tx Inter Packet Gap timer */ |
5163 | switch (hw->mac_type) { | |
5164 | case e1000_82542_rev2_0: | |
5165 | case e1000_82542_rev2_1: | |
5166 | tipg = DEFAULT_82542_TIPG_IPGT; | |
aa070789 RZ |
5167 | ipgr1 = DEFAULT_82542_TIPG_IPGR1; |
5168 | ipgr2 = DEFAULT_82542_TIPG_IPGR2; | |
5169 | break; | |
5170 | case e1000_80003es2lan: | |
5171 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; | |
5172 | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; | |
682011ff WD |
5173 | break; |
5174 | default: | |
aa070789 RZ |
5175 | ipgr1 = DEFAULT_82543_TIPG_IPGR1; |
5176 | ipgr2 = DEFAULT_82543_TIPG_IPGR2; | |
5177 | break; | |
682011ff | 5178 | } |
aa070789 RZ |
5179 | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; |
5180 | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | |
682011ff | 5181 | E1000_WRITE_REG(hw, TIPG, tipg); |
682011ff WD |
5182 | /* Program the Transmit Control Register */ |
5183 | tctl = E1000_READ_REG(hw, TCTL); | |
5184 | tctl &= ~E1000_TCTL_CT; | |
5185 | tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | | |
5186 | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | |
aa070789 RZ |
5187 | |
5188 | if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) { | |
5189 | tarc = E1000_READ_REG(hw, TARC0); | |
5190 | /* set the speed mode bit, we'll clear it if we're not at | |
5191 | * gigabit link later */ | |
5192 | /* git bit can be set to 1*/ | |
5193 | } else if (hw->mac_type == e1000_80003es2lan) { | |
5194 | tarc = E1000_READ_REG(hw, TARC0); | |
5195 | tarc |= 1; | |
5196 | E1000_WRITE_REG(hw, TARC0, tarc); | |
5197 | tarc = E1000_READ_REG(hw, TARC1); | |
5198 | tarc |= 1; | |
5199 | E1000_WRITE_REG(hw, TARC1, tarc); | |
5200 | } | |
5201 | ||
682011ff WD |
5202 | |
5203 | e1000_config_collision_dist(hw); | |
aa070789 RZ |
5204 | /* Setup Transmit Descriptor Settings for eop descriptor */ |
5205 | hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | |
682011ff | 5206 | |
aa070789 RZ |
5207 | /* Need to set up RS bit */ |
5208 | if (hw->mac_type < e1000_82543) | |
5209 | hw->txd_cmd |= E1000_TXD_CMD_RPS; | |
682011ff | 5210 | else |
aa070789 | 5211 | hw->txd_cmd |= E1000_TXD_CMD_RS; |
95186063 MV |
5212 | |
5213 | ||
5214 | if (hw->mac_type == e1000_igb) { | |
5215 | E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10); | |
5216 | ||
5217 | uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL); | |
5218 | reg_txdctl |= 1 << 25; | |
5219 | E1000_WRITE_REG(hw, TXDCTL, reg_txdctl); | |
5220 | mdelay(20); | |
5221 | } | |
5222 | ||
aa070789 | 5223 | E1000_WRITE_REG(hw, TCTL, tctl); |
682011ff WD |
5224 | } |
5225 | ||
5226 | /** | |
5227 | * e1000_setup_rctl - configure the receive control register | |
5228 | * @adapter: Board private structure | |
5229 | **/ | |
5230 | static void | |
5231 | e1000_setup_rctl(struct e1000_hw *hw) | |
5232 | { | |
5233 | uint32_t rctl; | |
5234 | ||
5235 | rctl = E1000_READ_REG(hw, RCTL); | |
5236 | ||
5237 | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | |
5238 | ||
aa070789 RZ |
5239 | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
5240 | | E1000_RCTL_RDMTS_HALF; /* | | |
5241 | (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ | |
682011ff WD |
5242 | |
5243 | if (hw->tbi_compatibility_on == 1) | |
5244 | rctl |= E1000_RCTL_SBP; | |
5245 | else | |
5246 | rctl &= ~E1000_RCTL_SBP; | |
5247 | ||
5248 | rctl &= ~(E1000_RCTL_SZ_4096); | |
682011ff WD |
5249 | rctl |= E1000_RCTL_SZ_2048; |
5250 | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); | |
682011ff WD |
5251 | E1000_WRITE_REG(hw, RCTL, rctl); |
5252 | } | |
5253 | ||
5254 | /** | |
5255 | * e1000_configure_rx - Configure 8254x Receive Unit after Reset | |
5256 | * @adapter: board private structure | |
5257 | * | |
5258 | * Configure the Rx unit of the MAC after a reset. | |
5259 | **/ | |
5260 | static void | |
5261 | e1000_configure_rx(struct e1000_hw *hw) | |
5262 | { | |
aa070789 | 5263 | unsigned long rctl, ctrl_ext; |
682011ff | 5264 | rx_tail = 0; |
1d8a078b | 5265 | |
682011ff WD |
5266 | /* make sure receives are disabled while setting up the descriptors */ |
5267 | rctl = E1000_READ_REG(hw, RCTL); | |
5268 | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); | |
682011ff | 5269 | if (hw->mac_type >= e1000_82540) { |
682011ff WD |
5270 | /* Set the interrupt throttling rate. Value is calculated |
5271 | * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ | |
1aeed8d7 WD |
5272 | #define MAX_INTS_PER_SEC 8000 |
5273 | #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) | |
682011ff WD |
5274 | E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); |
5275 | } | |
5276 | ||
aa070789 RZ |
5277 | if (hw->mac_type >= e1000_82571) { |
5278 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | |
5279 | /* Reset delay timers after every interrupt */ | |
5280 | ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | |
5281 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | |
5282 | E1000_WRITE_FLUSH(hw); | |
5283 | } | |
682011ff | 5284 | /* Setup the Base and Length of the Rx Descriptor Ring */ |
14807449 SR |
5285 | E1000_WRITE_REG(hw, RDBAL, lower_32_bits(virt_to_phys(rx_base))); |
5286 | E1000_WRITE_REG(hw, RDBAH, upper_32_bits(virt_to_phys(rx_base))); | |
682011ff WD |
5287 | |
5288 | E1000_WRITE_REG(hw, RDLEN, 128); | |
5289 | ||
5290 | /* Setup the HW Rx Head and Tail Descriptor Pointers */ | |
5291 | E1000_WRITE_REG(hw, RDH, 0); | |
5292 | E1000_WRITE_REG(hw, RDT, 0); | |
682011ff WD |
5293 | /* Enable Receives */ |
5294 | ||
95186063 MV |
5295 | if (hw->mac_type == e1000_igb) { |
5296 | ||
5297 | uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL); | |
5298 | reg_rxdctl |= 1 << 25; | |
5299 | E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl); | |
5300 | mdelay(20); | |
5301 | } | |
5302 | ||
682011ff | 5303 | E1000_WRITE_REG(hw, RCTL, rctl); |
95186063 | 5304 | |
682011ff WD |
5305 | fill_rx(hw); |
5306 | } | |
5307 | ||
5308 | /************************************************************************** | |
5309 | POLL - Wait for a frame | |
5310 | ***************************************************************************/ | |
5311 | static int | |
5c5e707a | 5312 | _e1000_poll(struct e1000_hw *hw) |
682011ff | 5313 | { |
682011ff | 5314 | struct e1000_rx_desc *rd; |
06e07f65 | 5315 | unsigned long inval_start, inval_end; |
873e8e01 MV |
5316 | uint32_t len; |
5317 | ||
682011ff WD |
5318 | /* return true if there's an ethernet packet ready to read */ |
5319 | rd = rx_base + rx_last; | |
873e8e01 MV |
5320 | |
5321 | /* Re-load the descriptor from RAM. */ | |
06e07f65 | 5322 | inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1); |
873e8e01 MV |
5323 | inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN); |
5324 | invalidate_dcache_range(inval_start, inval_end); | |
5325 | ||
a40b2dff | 5326 | if (!(rd->status & E1000_RXD_STAT_DD)) |
682011ff | 5327 | return 0; |
5abf13e4 | 5328 | /* DEBUGOUT("recv: packet len=%d\n", rd->length); */ |
873e8e01 | 5329 | /* Packet received, make sure the data are re-loaded from RAM. */ |
a40b2dff | 5330 | len = le16_to_cpu(rd->length); |
06e07f65 ML |
5331 | invalidate_dcache_range((unsigned long)packet, |
5332 | (unsigned long)packet + | |
5333 | roundup(len, ARCH_DMA_MINALIGN)); | |
5c5e707a | 5334 | return len; |
682011ff WD |
5335 | } |
5336 | ||
5c5e707a | 5337 | static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length) |
682011ff | 5338 | { |
873e8e01 | 5339 | void *nv_packet = (void *)txpacket; |
682011ff WD |
5340 | struct e1000_tx_desc *txp; |
5341 | int i = 0; | |
06e07f65 | 5342 | unsigned long flush_start, flush_end; |
682011ff WD |
5343 | |
5344 | txp = tx_base + tx_tail; | |
5345 | tx_tail = (tx_tail + 1) % 8; | |
5346 | ||
919c8ede | 5347 | txp->buffer_addr = cpu_to_le64(virt_to_phys(nv_packet)); |
aa070789 | 5348 | txp->lower.data = cpu_to_le32(hw->txd_cmd | length); |
682011ff | 5349 | txp->upper.data = 0; |
873e8e01 MV |
5350 | |
5351 | /* Dump the packet into RAM so e1000 can pick them. */ | |
06e07f65 ML |
5352 | flush_dcache_range((unsigned long)nv_packet, |
5353 | (unsigned long)nv_packet + | |
5354 | roundup(length, ARCH_DMA_MINALIGN)); | |
873e8e01 | 5355 | /* Dump the descriptor into RAM as well. */ |
06e07f65 | 5356 | flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1); |
873e8e01 MV |
5357 | flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN); |
5358 | flush_dcache_range(flush_start, flush_end); | |
5359 | ||
682011ff WD |
5360 | E1000_WRITE_REG(hw, TDT, tx_tail); |
5361 | ||
aa070789 | 5362 | E1000_WRITE_FLUSH(hw); |
873e8e01 MV |
5363 | while (1) { |
5364 | invalidate_dcache_range(flush_start, flush_end); | |
5365 | if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD) | |
5366 | break; | |
682011ff WD |
5367 | if (i++ > TOUT_LOOP) { |
5368 | DEBUGOUT("e1000: tx timeout\n"); | |
5369 | return 0; | |
5370 | } | |
5371 | udelay(10); /* give the nic a chance to write to the register */ | |
5372 | } | |
5373 | return 1; | |
5374 | } | |
5375 | ||
682011ff | 5376 | static void |
5c5e707a | 5377 | _e1000_disable(struct e1000_hw *hw) |
682011ff | 5378 | { |
682011ff WD |
5379 | /* Turn off the ethernet interface */ |
5380 | E1000_WRITE_REG(hw, RCTL, 0); | |
5381 | E1000_WRITE_REG(hw, TCTL, 0); | |
5382 | ||
5383 | /* Clear the transmit ring */ | |
5384 | E1000_WRITE_REG(hw, TDH, 0); | |
5385 | E1000_WRITE_REG(hw, TDT, 0); | |
5386 | ||
5387 | /* Clear the receive ring */ | |
5388 | E1000_WRITE_REG(hw, RDH, 0); | |
5389 | E1000_WRITE_REG(hw, RDT, 0); | |
5390 | ||
682011ff | 5391 | mdelay(10); |
5c5e707a | 5392 | } |
682011ff | 5393 | |
5c5e707a SG |
5394 | /*reset function*/ |
5395 | static inline int | |
5396 | e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6]) | |
5397 | { | |
5398 | e1000_reset_hw(hw); | |
5399 | if (hw->mac_type >= e1000_82544) | |
5400 | E1000_WRITE_REG(hw, WUC, 0); | |
5401 | ||
5402 | return e1000_init_hw(hw, enetaddr); | |
682011ff WD |
5403 | } |
5404 | ||
682011ff | 5405 | static int |
5c5e707a | 5406 | _e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6]) |
682011ff | 5407 | { |
682011ff WD |
5408 | int ret_val = 0; |
5409 | ||
5c5e707a | 5410 | ret_val = e1000_reset(hw, enetaddr); |
682011ff WD |
5411 | if (ret_val < 0) { |
5412 | if ((ret_val == -E1000_ERR_NOLINK) || | |
5413 | (ret_val == -E1000_ERR_TIMEOUT)) { | |
5c5e707a | 5414 | E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val); |
682011ff | 5415 | } else { |
5c5e707a | 5416 | E1000_ERR(hw, "Hardware Initialization Failed\n"); |
682011ff | 5417 | } |
5c5e707a | 5418 | return ret_val; |
682011ff WD |
5419 | } |
5420 | e1000_configure_tx(hw); | |
5421 | e1000_setup_rctl(hw); | |
5422 | e1000_configure_rx(hw); | |
5c5e707a | 5423 | return 0; |
682011ff WD |
5424 | } |
5425 | ||
aa070789 RZ |
5426 | /****************************************************************************** |
5427 | * Gets the current PCI bus type of hardware | |
5428 | * | |
5429 | * hw - Struct containing variables accessed by shared code | |
5430 | *****************************************************************************/ | |
5431 | void e1000_get_bus_type(struct e1000_hw *hw) | |
5432 | { | |
5433 | uint32_t status; | |
5434 | ||
5435 | switch (hw->mac_type) { | |
5436 | case e1000_82542_rev2_0: | |
5437 | case e1000_82542_rev2_1: | |
5438 | hw->bus_type = e1000_bus_type_pci; | |
5439 | break; | |
5440 | case e1000_82571: | |
5441 | case e1000_82572: | |
5442 | case e1000_82573: | |
2c2668f9 | 5443 | case e1000_82574: |
aa070789 | 5444 | case e1000_80003es2lan: |
aa070789 | 5445 | case e1000_ich8lan: |
95186063 | 5446 | case e1000_igb: |
aa070789 RZ |
5447 | hw->bus_type = e1000_bus_type_pci_express; |
5448 | break; | |
5449 | default: | |
5450 | status = E1000_READ_REG(hw, STATUS); | |
5451 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | |
5452 | e1000_bus_type_pcix : e1000_bus_type_pci; | |
5453 | break; | |
5454 | } | |
5455 | } | |
5456 | ||
81dab9af BM |
5457 | static int e1000_init_one(struct e1000_hw *hw, int cardnum, |
5458 | struct udevice *devno, unsigned char enetaddr[6]) | |
5c5e707a SG |
5459 | { |
5460 | u32 val; | |
5461 | ||
5462 | /* Assign the passed-in values */ | |
81dab9af | 5463 | hw->pdev = devno; |
5c5e707a SG |
5464 | hw->cardnum = cardnum; |
5465 | ||
5466 | /* Print a debug message with the IO base address */ | |
81dab9af | 5467 | dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val); |
5c5e707a SG |
5468 | E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0); |
5469 | ||
5470 | /* Try to enable I/O accesses and bus-mastering */ | |
5471 | val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER; | |
81dab9af | 5472 | dm_pci_write_config32(devno, PCI_COMMAND, val); |
5c5e707a SG |
5473 | |
5474 | /* Make sure it worked */ | |
81dab9af | 5475 | dm_pci_read_config32(devno, PCI_COMMAND, &val); |
5c5e707a SG |
5476 | if (!(val & PCI_COMMAND_MEMORY)) { |
5477 | E1000_ERR(hw, "Can't enable I/O memory\n"); | |
5478 | return -ENOSPC; | |
5479 | } | |
5480 | if (!(val & PCI_COMMAND_MASTER)) { | |
5481 | E1000_ERR(hw, "Can't enable bus-mastering\n"); | |
5482 | return -EPERM; | |
5483 | } | |
5484 | ||
5485 | /* Are these variables needed? */ | |
5486 | hw->fc = e1000_fc_default; | |
5487 | hw->original_fc = e1000_fc_default; | |
5488 | hw->autoneg_failed = 0; | |
5489 | hw->autoneg = 1; | |
5490 | hw->get_link_status = true; | |
5491 | #ifndef CONFIG_E1000_NO_NVM | |
5492 | hw->eeprom_semaphore_present = true; | |
5493 | #endif | |
12507a2d | 5494 | hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0, 0, 0, |
2635e3b5 | 5495 | PCI_REGION_TYPE, PCI_REGION_MEM); |
5c5e707a SG |
5496 | hw->mac_type = e1000_undefined; |
5497 | ||
5498 | /* MAC and Phy settings */ | |
5499 | if (e1000_sw_init(hw) < 0) { | |
5500 | E1000_ERR(hw, "Software init failed\n"); | |
5501 | return -EIO; | |
5502 | } | |
5503 | if (e1000_check_phy_reset_block(hw)) | |
5504 | E1000_ERR(hw, "PHY Reset is blocked!\n"); | |
5505 | ||
5506 | /* Basic init was OK, reset the hardware and allow SPI access */ | |
5507 | e1000_reset_hw(hw); | |
5508 | ||
5509 | #ifndef CONFIG_E1000_NO_NVM | |
5510 | /* Validate the EEPROM and get chipset information */ | |
5c5e707a SG |
5511 | if (e1000_init_eeprom_params(hw)) { |
5512 | E1000_ERR(hw, "EEPROM is invalid!\n"); | |
5513 | return -EINVAL; | |
5514 | } | |
5515 | if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) && | |
5516 | e1000_validate_eeprom_checksum(hw)) | |
5517 | return -ENXIO; | |
5c5e707a SG |
5518 | e1000_read_mac_addr(hw, enetaddr); |
5519 | #endif | |
5520 | e1000_get_bus_type(hw); | |
5521 | ||
5522 | #ifndef CONFIG_E1000_NO_NVM | |
5523 | printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ", | |
5524 | enetaddr[0], enetaddr[1], enetaddr[2], | |
5525 | enetaddr[3], enetaddr[4], enetaddr[5]); | |
5526 | #else | |
5527 | memset(enetaddr, 0, 6); | |
5528 | printf("e1000: no NVM\n"); | |
5529 | #endif | |
5530 | ||
5531 | return 0; | |
5532 | } | |
5533 | ||
5534 | /* Put the name of a device in a string */ | |
5535 | static void e1000_name(char *str, int cardnum) | |
5536 | { | |
5537 | sprintf(str, "e1000#%u", cardnum); | |
5538 | } | |
5539 | ||
3f8905ad | 5540 | static int e1000_write_hwaddr(struct udevice *dev) |
8d9bde0d HL |
5541 | { |
5542 | #ifndef CONFIG_E1000_NO_NVM | |
8d9bde0d | 5543 | unsigned char current_mac[6]; |
3f8905ad IR |
5544 | struct eth_pdata *plat = dev_get_plat(dev); |
5545 | struct e1000_hw *hw = dev_get_priv(dev); | |
5546 | u8 *mac = plat->enetaddr; | |
8d9bde0d HL |
5547 | uint16_t data[3]; |
5548 | int ret_val, i; | |
5549 | ||
5550 | DEBUGOUT("%s: mac=%pM\n", __func__, mac); | |
5551 | ||
70018635 TH |
5552 | if ((hw->eeprom.type == e1000_eeprom_invm) && |
5553 | !(E1000_READ_REG(hw, EECD) & E1000_EECD_FLASH_DETECTED_I210)) | |
5554 | return -ENOSYS; | |
5555 | ||
8d9bde0d HL |
5556 | memset(current_mac, 0, 6); |
5557 | ||
5558 | /* Read from EEPROM, not from registers, to make sure | |
5559 | * the address is persistently configured | |
5560 | */ | |
5561 | ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac); | |
5562 | DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac); | |
5563 | ||
5564 | /* Only write to EEPROM if the given address is different or | |
5565 | * reading the current address failed | |
5566 | */ | |
5567 | if (!ret_val && memcmp(current_mac, mac, 6) == 0) | |
5568 | return 0; | |
5569 | ||
5570 | for (i = 0; i < 3; ++i) | |
5571 | data[i] = mac[i * 2 + 1] << 8 | mac[i * 2]; | |
5572 | ||
5573 | ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data); | |
5574 | ||
5575 | if (!ret_val) | |
5576 | ret_val = e1000_update_eeprom_checksum_i210(hw); | |
5577 | ||
5578 | return ret_val; | |
5579 | #else | |
5580 | return 0; | |
5581 | #endif | |
5582 | } | |
5583 | ||
ce5207e1 | 5584 | #ifdef CONFIG_CMD_E1000 |
09140113 SG |
5585 | static int do_e1000(struct cmd_tbl *cmdtp, int flag, int argc, |
5586 | char *const argv[]) | |
ce5207e1 | 5587 | { |
5c5e707a | 5588 | unsigned char *mac = NULL; |
c6d80a15 SG |
5589 | struct eth_pdata *plat; |
5590 | struct udevice *dev; | |
5591 | char name[30]; | |
5592 | int ret; | |
53fa409f | 5593 | #if defined(CONFIG_E1000_SPI) |
ce5207e1 | 5594 | struct e1000_hw *hw; |
c6d80a15 SG |
5595 | #endif |
5596 | int cardnum; | |
ce5207e1 KM |
5597 | |
5598 | if (argc < 3) { | |
5599 | cmd_usage(cmdtp); | |
5600 | return 1; | |
5601 | } | |
5602 | ||
5603 | /* Make sure we can find the requested e1000 card */ | |
0b1284eb | 5604 | cardnum = dectoul(argv[1], NULL); |
c6d80a15 SG |
5605 | e1000_name(name, cardnum); |
5606 | ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev); | |
5607 | if (!ret) { | |
c69cda25 | 5608 | plat = dev_get_plat(dev); |
c6d80a15 SG |
5609 | mac = plat->enetaddr; |
5610 | } | |
5c5e707a | 5611 | if (!mac) { |
ce5207e1 KM |
5612 | printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]); |
5613 | return 1; | |
5614 | } | |
5615 | ||
5616 | if (!strcmp(argv[2], "print-mac-address")) { | |
ce5207e1 KM |
5617 | printf("%02x:%02x:%02x:%02x:%02x:%02x\n", |
5618 | mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); | |
5619 | return 0; | |
5620 | } | |
5621 | ||
5622 | #ifdef CONFIG_E1000_SPI | |
eb4e8ceb | 5623 | hw = dev_get_priv(dev); |
ce5207e1 KM |
5624 | /* Handle the "SPI" subcommand */ |
5625 | if (!strcmp(argv[2], "spi")) | |
5626 | return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3); | |
5627 | #endif | |
5628 | ||
5629 | cmd_usage(cmdtp); | |
5630 | return 1; | |
5631 | } | |
5632 | ||
5633 | U_BOOT_CMD( | |
5634 | e1000, 7, 0, do_e1000, | |
5635 | "Intel e1000 controller management", | |
5636 | /* */"<card#> print-mac-address\n" | |
5637 | #ifdef CONFIG_E1000_SPI | |
5638 | "e1000 <card#> spi show [<offset> [<length>]]\n" | |
5639 | "e1000 <card#> spi dump <addr> <offset> <length>\n" | |
5640 | "e1000 <card#> spi program <addr> <offset> <length>\n" | |
5641 | "e1000 <card#> spi checksum [update]\n" | |
5642 | #endif | |
5643 | " - Manage the Intel E1000 PCI device" | |
5644 | ); | |
5645 | #endif /* not CONFIG_CMD_E1000 */ | |
c6d80a15 | 5646 | |
c6d80a15 SG |
5647 | static int e1000_eth_start(struct udevice *dev) |
5648 | { | |
c69cda25 | 5649 | struct eth_pdata *plat = dev_get_plat(dev); |
c6d80a15 SG |
5650 | struct e1000_hw *hw = dev_get_priv(dev); |
5651 | ||
5652 | return _e1000_init(hw, plat->enetaddr); | |
5653 | } | |
5654 | ||
5655 | static void e1000_eth_stop(struct udevice *dev) | |
5656 | { | |
5657 | struct e1000_hw *hw = dev_get_priv(dev); | |
5658 | ||
5659 | _e1000_disable(hw); | |
5660 | } | |
5661 | ||
5662 | static int e1000_eth_send(struct udevice *dev, void *packet, int length) | |
5663 | { | |
5664 | struct e1000_hw *hw = dev_get_priv(dev); | |
5665 | int ret; | |
5666 | ||
5667 | ret = _e1000_transmit(hw, packet, length); | |
5668 | ||
5669 | return ret ? 0 : -ETIMEDOUT; | |
5670 | } | |
5671 | ||
5672 | static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp) | |
5673 | { | |
5674 | struct e1000_hw *hw = dev_get_priv(dev); | |
5675 | int len; | |
5676 | ||
5677 | len = _e1000_poll(hw); | |
5678 | if (len) | |
5679 | *packetp = packet; | |
5680 | ||
5681 | return len ? len : -EAGAIN; | |
5682 | } | |
5683 | ||
5684 | static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length) | |
5685 | { | |
5686 | struct e1000_hw *hw = dev_get_priv(dev); | |
5687 | ||
5688 | fill_rx(hw); | |
5689 | ||
5690 | return 0; | |
5691 | } | |
5692 | ||
5693 | static int e1000_eth_probe(struct udevice *dev) | |
5694 | { | |
c69cda25 | 5695 | struct eth_pdata *plat = dev_get_plat(dev); |
c6d80a15 SG |
5696 | struct e1000_hw *hw = dev_get_priv(dev); |
5697 | int ret; | |
5698 | ||
5699 | hw->name = dev->name; | |
21ccce1b | 5700 | ret = e1000_init_one(hw, trailing_strtol(dev->name), |
81dab9af | 5701 | dev, plat->enetaddr); |
c6d80a15 SG |
5702 | if (ret < 0) { |
5703 | printf(pr_fmt("failed to initialize card: %d\n"), ret); | |
5704 | return ret; | |
5705 | } | |
5706 | ||
5707 | return 0; | |
5708 | } | |
5709 | ||
5710 | static int e1000_eth_bind(struct udevice *dev) | |
5711 | { | |
5712 | char name[20]; | |
5713 | ||
5714 | /* | |
5715 | * A simple way to number the devices. When device tree is used this | |
5716 | * is unnecessary, but when the device is just discovered on the PCI | |
5717 | * bus we need a name. We could instead have the uclass figure out | |
5718 | * which devices are different and number them. | |
5719 | */ | |
5720 | e1000_name(name, num_cards++); | |
5721 | ||
5722 | return device_set_name(dev, name); | |
5723 | } | |
5724 | ||
5725 | static const struct eth_ops e1000_eth_ops = { | |
5726 | .start = e1000_eth_start, | |
5727 | .send = e1000_eth_send, | |
5728 | .recv = e1000_eth_recv, | |
5729 | .stop = e1000_eth_stop, | |
5730 | .free_pkt = e1000_free_pkt, | |
3f8905ad | 5731 | .write_hwaddr = e1000_write_hwaddr, |
c6d80a15 SG |
5732 | }; |
5733 | ||
c6d80a15 SG |
5734 | U_BOOT_DRIVER(eth_e1000) = { |
5735 | .name = "eth_e1000", | |
5736 | .id = UCLASS_ETH, | |
c6d80a15 SG |
5737 | .bind = e1000_eth_bind, |
5738 | .probe = e1000_eth_probe, | |
5739 | .ops = &e1000_eth_ops, | |
41575d8e | 5740 | .priv_auto = sizeof(struct e1000_hw), |
caa4daa2 | 5741 | .plat_auto = sizeof(struct eth_pdata), |
c6d80a15 SG |
5742 | }; |
5743 | ||
5744 | U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported); |