]>
Commit | Line | Data |
---|---|---|
83d290c5 | 1 | // SPDX-License-Identifier: LGPL-2.1+ |
a6826fbc WD |
2 | /* |
3 | * This implementation is based on code from uClibc-0.9.30.3 but was | |
4 | * modified and extended for use within U-Boot. | |
5 | * | |
ea009d47 | 6 | * Copyright (C) 2010-2013 Wolfgang Denk <[email protected]> |
a6826fbc WD |
7 | * |
8 | * Original license header: | |
9 | * | |
10 | * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. | |
11 | * This file is part of the GNU C Library. | |
12 | * Contributed by Ulrich Drepper <[email protected]>, 1993. | |
a6826fbc WD |
13 | */ |
14 | ||
15 | #include <errno.h> | |
16 | #include <malloc.h> | |
17 | ||
18 | #ifdef USE_HOSTCC /* HOST build */ | |
19 | # include <string.h> | |
20 | # include <assert.h> | |
4d91a6ec | 21 | # include <ctype.h> |
a6826fbc WD |
22 | |
23 | # ifndef debug | |
24 | # ifdef DEBUG | |
25 | # define debug(fmt,args...) printf(fmt ,##args) | |
26 | # else | |
27 | # define debug(fmt,args...) | |
28 | # endif | |
29 | # endif | |
30 | #else /* U-Boot build */ | |
31 | # include <common.h> | |
32 | # include <linux/string.h> | |
4d91a6ec | 33 | # include <linux/ctype.h> |
a6826fbc WD |
34 | #endif |
35 | ||
fc5fc76b AB |
36 | #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ |
37 | #define CONFIG_ENV_MIN_ENTRIES 64 | |
38 | #endif | |
ea882baf WD |
39 | #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ |
40 | #define CONFIG_ENV_MAX_ENTRIES 512 | |
41 | #endif | |
42 | ||
170ab110 | 43 | #include <env_callback.h> |
2598090b | 44 | #include <env_flags.h> |
170ab110 | 45 | #include <search.h> |
be29df6a | 46 | #include <slre.h> |
a6826fbc WD |
47 | |
48 | /* | |
49 | * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 | |
071bc923 | 50 | * [Knuth] The Art of Computer Programming, part 3 (6.4) |
a6826fbc WD |
51 | */ |
52 | ||
a6826fbc WD |
53 | /* |
54 | * The reentrant version has no static variables to maintain the state. | |
55 | * Instead the interface of all functions is extended to take an argument | |
56 | * which describes the current status. | |
57 | */ | |
7afcf3a5 | 58 | |
a6826fbc | 59 | typedef struct _ENTRY { |
c81c1222 | 60 | int used; |
a6826fbc WD |
61 | ENTRY entry; |
62 | } _ENTRY; | |
63 | ||
64 | ||
7afcf3a5 JH |
65 | static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, |
66 | int idx); | |
67 | ||
a6826fbc WD |
68 | /* |
69 | * hcreate() | |
70 | */ | |
71 | ||
72 | /* | |
73 | * For the used double hash method the table size has to be a prime. To | |
74 | * correct the user given table size we need a prime test. This trivial | |
75 | * algorithm is adequate because | |
76 | * a) the code is (most probably) called a few times per program run and | |
77 | * b) the number is small because the table must fit in the core | |
78 | * */ | |
79 | static int isprime(unsigned int number) | |
80 | { | |
81 | /* no even number will be passed */ | |
82 | unsigned int div = 3; | |
83 | ||
84 | while (div * div < number && number % div != 0) | |
85 | div += 2; | |
86 | ||
87 | return number % div != 0; | |
88 | } | |
89 | ||
a6826fbc WD |
90 | /* |
91 | * Before using the hash table we must allocate memory for it. | |
92 | * Test for an existing table are done. We allocate one element | |
93 | * more as the found prime number says. This is done for more effective | |
94 | * indexing as explained in the comment for the hsearch function. | |
95 | * The contents of the table is zeroed, especially the field used | |
96 | * becomes zero. | |
97 | */ | |
2eb1573f | 98 | |
a6826fbc WD |
99 | int hcreate_r(size_t nel, struct hsearch_data *htab) |
100 | { | |
101 | /* Test for correct arguments. */ | |
102 | if (htab == NULL) { | |
103 | __set_errno(EINVAL); | |
104 | return 0; | |
105 | } | |
106 | ||
107 | /* There is still another table active. Return with error. */ | |
108 | if (htab->table != NULL) | |
109 | return 0; | |
110 | ||
111 | /* Change nel to the first prime number not smaller as nel. */ | |
112 | nel |= 1; /* make odd */ | |
113 | while (!isprime(nel)) | |
114 | nel += 2; | |
115 | ||
116 | htab->size = nel; | |
117 | htab->filled = 0; | |
118 | ||
119 | /* allocate memory and zero out */ | |
120 | htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); | |
121 | if (htab->table == NULL) | |
122 | return 0; | |
123 | ||
124 | /* everything went alright */ | |
125 | return 1; | |
126 | } | |
127 | ||
128 | ||
129 | /* | |
130 | * hdestroy() | |
131 | */ | |
a6826fbc WD |
132 | |
133 | /* | |
134 | * After using the hash table it has to be destroyed. The used memory can | |
135 | * be freed and the local static variable can be marked as not used. | |
136 | */ | |
2eb1573f | 137 | |
c4e0057f | 138 | void hdestroy_r(struct hsearch_data *htab) |
a6826fbc WD |
139 | { |
140 | int i; | |
141 | ||
142 | /* Test for correct arguments. */ | |
143 | if (htab == NULL) { | |
144 | __set_errno(EINVAL); | |
145 | return; | |
146 | } | |
147 | ||
148 | /* free used memory */ | |
149 | for (i = 1; i <= htab->size; ++i) { | |
c81c1222 | 150 | if (htab->table[i].used > 0) { |
a6826fbc | 151 | ENTRY *ep = &htab->table[i].entry; |
c4e0057f | 152 | |
84b5e802 | 153 | free((void *)ep->key); |
a6826fbc WD |
154 | free(ep->data); |
155 | } | |
156 | } | |
157 | free(htab->table); | |
158 | ||
159 | /* the sign for an existing table is an value != NULL in htable */ | |
160 | htab->table = NULL; | |
161 | } | |
162 | ||
163 | /* | |
164 | * hsearch() | |
165 | */ | |
166 | ||
167 | /* | |
168 | * This is the search function. It uses double hashing with open addressing. | |
169 | * The argument item.key has to be a pointer to an zero terminated, most | |
170 | * probably strings of chars. The function for generating a number of the | |
171 | * strings is simple but fast. It can be replaced by a more complex function | |
172 | * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. | |
173 | * | |
174 | * We use an trick to speed up the lookup. The table is created by hcreate | |
175 | * with one more element available. This enables us to use the index zero | |
176 | * special. This index will never be used because we store the first hash | |
177 | * index in the field used where zero means not used. Every other value | |
178 | * means used. The used field can be used as a first fast comparison for | |
179 | * equality of the stored and the parameter value. This helps to prevent | |
180 | * unnecessary expensive calls of strcmp. | |
181 | * | |
182 | * This implementation differs from the standard library version of | |
183 | * this function in a number of ways: | |
184 | * | |
185 | * - While the standard version does not make any assumptions about | |
186 | * the type of the stored data objects at all, this implementation | |
187 | * works with NUL terminated strings only. | |
188 | * - Instead of storing just pointers to the original objects, we | |
189 | * create local copies so the caller does not need to care about the | |
190 | * data any more. | |
191 | * - The standard implementation does not provide a way to update an | |
192 | * existing entry. This version will create a new entry or update an | |
193 | * existing one when both "action == ENTER" and "item.data != NULL". | |
194 | * - Instead of returning 1 on success, we return the index into the | |
195 | * internal hash table, which is also guaranteed to be positive. | |
196 | * This allows us direct access to the found hash table slot for | |
197 | * example for functions like hdelete(). | |
198 | */ | |
199 | ||
560d424b MF |
200 | int hmatch_r(const char *match, int last_idx, ENTRY ** retval, |
201 | struct hsearch_data *htab) | |
202 | { | |
203 | unsigned int idx; | |
204 | size_t key_len = strlen(match); | |
205 | ||
206 | for (idx = last_idx + 1; idx < htab->size; ++idx) { | |
af4d9074 | 207 | if (htab->table[idx].used <= 0) |
560d424b MF |
208 | continue; |
209 | if (!strncmp(match, htab->table[idx].entry.key, key_len)) { | |
210 | *retval = &htab->table[idx].entry; | |
211 | return idx; | |
212 | } | |
213 | } | |
214 | ||
215 | __set_errno(ESRCH); | |
216 | *retval = NULL; | |
217 | return 0; | |
218 | } | |
219 | ||
3d3b52f2 JH |
220 | /* |
221 | * Compare an existing entry with the desired key, and overwrite if the action | |
222 | * is ENTER. This is simply a helper function for hsearch_r(). | |
223 | */ | |
224 | static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action, | |
225 | ENTRY **retval, struct hsearch_data *htab, int flag, | |
226 | unsigned int hval, unsigned int idx) | |
227 | { | |
228 | if (htab->table[idx].used == hval | |
229 | && strcmp(item.key, htab->table[idx].entry.key) == 0) { | |
230 | /* Overwrite existing value? */ | |
231 | if ((action == ENTER) && (item.data != NULL)) { | |
7afcf3a5 JH |
232 | /* check for permission */ |
233 | if (htab->change_ok != NULL && htab->change_ok( | |
234 | &htab->table[idx].entry, item.data, | |
235 | env_op_overwrite, flag)) { | |
236 | debug("change_ok() rejected setting variable " | |
237 | "%s, skipping it!\n", item.key); | |
238 | __set_errno(EPERM); | |
239 | *retval = NULL; | |
240 | return 0; | |
241 | } | |
242 | ||
170ab110 JH |
243 | /* If there is a callback, call it */ |
244 | if (htab->table[idx].entry.callback && | |
245 | htab->table[idx].entry.callback(item.key, | |
246 | item.data, env_op_overwrite, flag)) { | |
247 | debug("callback() rejected setting variable " | |
248 | "%s, skipping it!\n", item.key); | |
249 | __set_errno(EINVAL); | |
250 | *retval = NULL; | |
251 | return 0; | |
252 | } | |
253 | ||
3d3b52f2 JH |
254 | free(htab->table[idx].entry.data); |
255 | htab->table[idx].entry.data = strdup(item.data); | |
256 | if (!htab->table[idx].entry.data) { | |
257 | __set_errno(ENOMEM); | |
258 | *retval = NULL; | |
259 | return 0; | |
260 | } | |
261 | } | |
262 | /* return found entry */ | |
263 | *retval = &htab->table[idx].entry; | |
264 | return idx; | |
265 | } | |
266 | /* keep searching */ | |
267 | return -1; | |
268 | } | |
269 | ||
a6826fbc | 270 | int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, |
c4e0057f | 271 | struct hsearch_data *htab, int flag) |
a6826fbc WD |
272 | { |
273 | unsigned int hval; | |
274 | unsigned int count; | |
275 | unsigned int len = strlen(item.key); | |
276 | unsigned int idx; | |
c81c1222 | 277 | unsigned int first_deleted = 0; |
3d3b52f2 | 278 | int ret; |
a6826fbc WD |
279 | |
280 | /* Compute an value for the given string. Perhaps use a better method. */ | |
281 | hval = len; | |
282 | count = len; | |
283 | while (count-- > 0) { | |
284 | hval <<= 4; | |
285 | hval += item.key[count]; | |
286 | } | |
287 | ||
288 | /* | |
289 | * First hash function: | |
290 | * simply take the modul but prevent zero. | |
291 | */ | |
292 | hval %= htab->size; | |
293 | if (hval == 0) | |
294 | ++hval; | |
295 | ||
296 | /* The first index tried. */ | |
297 | idx = hval; | |
298 | ||
299 | if (htab->table[idx].used) { | |
300 | /* | |
071bc923 | 301 | * Further action might be required according to the |
a6826fbc WD |
302 | * action value. |
303 | */ | |
304 | unsigned hval2; | |
305 | ||
c81c1222 PB |
306 | if (htab->table[idx].used == -1 |
307 | && !first_deleted) | |
308 | first_deleted = idx; | |
309 | ||
3d3b52f2 JH |
310 | ret = _compare_and_overwrite_entry(item, action, retval, htab, |
311 | flag, hval, idx); | |
312 | if (ret != -1) | |
313 | return ret; | |
a6826fbc WD |
314 | |
315 | /* | |
316 | * Second hash function: | |
317 | * as suggested in [Knuth] | |
318 | */ | |
319 | hval2 = 1 + hval % (htab->size - 2); | |
320 | ||
321 | do { | |
322 | /* | |
071bc923 WD |
323 | * Because SIZE is prime this guarantees to |
324 | * step through all available indices. | |
a6826fbc WD |
325 | */ |
326 | if (idx <= hval2) | |
327 | idx = htab->size + idx - hval2; | |
328 | else | |
329 | idx -= hval2; | |
330 | ||
331 | /* | |
332 | * If we visited all entries leave the loop | |
333 | * unsuccessfully. | |
334 | */ | |
335 | if (idx == hval) | |
336 | break; | |
337 | ||
338 | /* If entry is found use it. */ | |
3d3b52f2 JH |
339 | ret = _compare_and_overwrite_entry(item, action, retval, |
340 | htab, flag, hval, idx); | |
341 | if (ret != -1) | |
342 | return ret; | |
a6826fbc WD |
343 | } |
344 | while (htab->table[idx].used); | |
345 | } | |
346 | ||
347 | /* An empty bucket has been found. */ | |
348 | if (action == ENTER) { | |
349 | /* | |
071bc923 WD |
350 | * If table is full and another entry should be |
351 | * entered return with error. | |
a6826fbc WD |
352 | */ |
353 | if (htab->filled == htab->size) { | |
354 | __set_errno(ENOMEM); | |
355 | *retval = NULL; | |
356 | return 0; | |
357 | } | |
358 | ||
359 | /* | |
360 | * Create new entry; | |
361 | * create copies of item.key and item.data | |
362 | */ | |
c81c1222 PB |
363 | if (first_deleted) |
364 | idx = first_deleted; | |
365 | ||
a6826fbc WD |
366 | htab->table[idx].used = hval; |
367 | htab->table[idx].entry.key = strdup(item.key); | |
368 | htab->table[idx].entry.data = strdup(item.data); | |
369 | if (!htab->table[idx].entry.key || | |
370 | !htab->table[idx].entry.data) { | |
371 | __set_errno(ENOMEM); | |
372 | *retval = NULL; | |
373 | return 0; | |
374 | } | |
375 | ||
376 | ++htab->filled; | |
377 | ||
170ab110 JH |
378 | /* This is a new entry, so look up a possible callback */ |
379 | env_callback_init(&htab->table[idx].entry); | |
2598090b JH |
380 | /* Also look for flags */ |
381 | env_flags_init(&htab->table[idx].entry); | |
170ab110 | 382 | |
7afcf3a5 JH |
383 | /* check for permission */ |
384 | if (htab->change_ok != NULL && htab->change_ok( | |
385 | &htab->table[idx].entry, item.data, env_op_create, flag)) { | |
386 | debug("change_ok() rejected setting variable " | |
387 | "%s, skipping it!\n", item.key); | |
388 | _hdelete(item.key, htab, &htab->table[idx].entry, idx); | |
389 | __set_errno(EPERM); | |
390 | *retval = NULL; | |
391 | return 0; | |
392 | } | |
393 | ||
170ab110 JH |
394 | /* If there is a callback, call it */ |
395 | if (htab->table[idx].entry.callback && | |
396 | htab->table[idx].entry.callback(item.key, item.data, | |
397 | env_op_create, flag)) { | |
398 | debug("callback() rejected setting variable " | |
399 | "%s, skipping it!\n", item.key); | |
400 | _hdelete(item.key, htab, &htab->table[idx].entry, idx); | |
401 | __set_errno(EINVAL); | |
402 | *retval = NULL; | |
403 | return 0; | |
404 | } | |
405 | ||
a6826fbc WD |
406 | /* return new entry */ |
407 | *retval = &htab->table[idx].entry; | |
408 | return 1; | |
409 | } | |
410 | ||
411 | __set_errno(ESRCH); | |
412 | *retval = NULL; | |
413 | return 0; | |
414 | } | |
415 | ||
416 | ||
417 | /* | |
418 | * hdelete() | |
419 | */ | |
420 | ||
421 | /* | |
422 | * The standard implementation of hsearch(3) does not provide any way | |
423 | * to delete any entries from the hash table. We extend the code to | |
424 | * do that. | |
425 | */ | |
426 | ||
7afcf3a5 JH |
427 | static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, |
428 | int idx) | |
429 | { | |
430 | /* free used ENTRY */ | |
431 | debug("hdelete: DELETING key \"%s\"\n", key); | |
432 | free((void *)ep->key); | |
433 | free(ep->data); | |
170ab110 | 434 | ep->callback = NULL; |
2598090b | 435 | ep->flags = 0; |
7afcf3a5 JH |
436 | htab->table[idx].used = -1; |
437 | ||
438 | --htab->filled; | |
439 | } | |
440 | ||
c4e0057f | 441 | int hdelete_r(const char *key, struct hsearch_data *htab, int flag) |
a6826fbc WD |
442 | { |
443 | ENTRY e, *ep; | |
444 | int idx; | |
445 | ||
446 | debug("hdelete: DELETE key \"%s\"\n", key); | |
447 | ||
448 | e.key = (char *)key; | |
449 | ||
c4e0057f JH |
450 | idx = hsearch_r(e, FIND, &ep, htab, 0); |
451 | if (idx == 0) { | |
a6826fbc WD |
452 | __set_errno(ESRCH); |
453 | return 0; /* not found */ | |
454 | } | |
455 | ||
c4e0057f | 456 | /* Check for permission */ |
7afcf3a5 JH |
457 | if (htab->change_ok != NULL && |
458 | htab->change_ok(ep, NULL, env_op_delete, flag)) { | |
459 | debug("change_ok() rejected deleting variable " | |
460 | "%s, skipping it!\n", key); | |
c4e0057f JH |
461 | __set_errno(EPERM); |
462 | return 0; | |
463 | } | |
464 | ||
170ab110 JH |
465 | /* If there is a callback, call it */ |
466 | if (htab->table[idx].entry.callback && | |
467 | htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) { | |
468 | debug("callback() rejected deleting variable " | |
469 | "%s, skipping it!\n", key); | |
470 | __set_errno(EINVAL); | |
471 | return 0; | |
472 | } | |
473 | ||
7afcf3a5 | 474 | _hdelete(key, htab, ep, idx); |
a6826fbc WD |
475 | |
476 | return 1; | |
477 | } | |
478 | ||
d2d9bdfc | 479 | #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV)) |
a6826fbc WD |
480 | /* |
481 | * hexport() | |
482 | */ | |
483 | ||
484 | /* | |
485 | * Export the data stored in the hash table in linearized form. | |
486 | * | |
487 | * Entries are exported as "name=value" strings, separated by an | |
488 | * arbitrary (non-NUL, of course) separator character. This allows to | |
489 | * use this function both when formatting the U-Boot environment for | |
490 | * external storage (using '\0' as separator), but also when using it | |
491 | * for the "printenv" command to print all variables, simply by using | |
492 | * as '\n" as separator. This can also be used for new features like | |
493 | * exporting the environment data as text file, including the option | |
494 | * for later re-import. | |
495 | * | |
496 | * The entries in the result list will be sorted by ascending key | |
497 | * values. | |
498 | * | |
499 | * If the separator character is different from NUL, then any | |
500 | * separator characters and backslash characters in the values will | |
fc0b5948 | 501 | * be escaped by a preceding backslash in output. This is needed for |
a6826fbc WD |
502 | * example to enable multi-line values, especially when the output |
503 | * shall later be parsed (for example, for re-import). | |
504 | * | |
505 | * There are several options how the result buffer is handled: | |
506 | * | |
507 | * *resp size | |
508 | * ----------- | |
509 | * NULL 0 A string of sufficient length will be allocated. | |
510 | * NULL >0 A string of the size given will be | |
511 | * allocated. An error will be returned if the size is | |
512 | * not sufficient. Any unused bytes in the string will | |
513 | * be '\0'-padded. | |
514 | * !NULL 0 The user-supplied buffer will be used. No length | |
515 | * checking will be performed, i. e. it is assumed that | |
516 | * the buffer size will always be big enough. DANGEROUS. | |
517 | * !NULL >0 The user-supplied buffer will be used. An error will | |
518 | * be returned if the size is not sufficient. Any unused | |
519 | * bytes in the string will be '\0'-padded. | |
520 | */ | |
521 | ||
a6826fbc WD |
522 | static int cmpkey(const void *p1, const void *p2) |
523 | { | |
524 | ENTRY *e1 = *(ENTRY **) p1; | |
525 | ENTRY *e2 = *(ENTRY **) p2; | |
526 | ||
527 | return (strcmp(e1->key, e2->key)); | |
528 | } | |
529 | ||
be29df6a | 530 | static int match_string(int flag, const char *str, const char *pat, void *priv) |
5a31ea04 WD |
531 | { |
532 | switch (flag & H_MATCH_METHOD) { | |
533 | case H_MATCH_IDENT: | |
534 | if (strcmp(str, pat) == 0) | |
535 | return 1; | |
536 | break; | |
537 | case H_MATCH_SUBSTR: | |
538 | if (strstr(str, pat)) | |
539 | return 1; | |
540 | break; | |
be29df6a WD |
541 | #ifdef CONFIG_REGEX |
542 | case H_MATCH_REGEX: | |
543 | { | |
544 | struct slre *slrep = (struct slre *)priv; | |
be29df6a | 545 | |
320194ae | 546 | if (slre_match(slrep, str, strlen(str), NULL)) |
be29df6a WD |
547 | return 1; |
548 | } | |
549 | break; | |
550 | #endif | |
5a31ea04 WD |
551 | default: |
552 | printf("## ERROR: unsupported match method: 0x%02x\n", | |
553 | flag & H_MATCH_METHOD); | |
554 | break; | |
555 | } | |
556 | return 0; | |
557 | } | |
558 | ||
559 | static int match_entry(ENTRY *ep, int flag, | |
ea009d47 WD |
560 | int argc, char * const argv[]) |
561 | { | |
562 | int arg; | |
be29df6a | 563 | void *priv = NULL; |
ea009d47 | 564 | |
9a832331 | 565 | for (arg = 0; arg < argc; ++arg) { |
be29df6a WD |
566 | #ifdef CONFIG_REGEX |
567 | struct slre slre; | |
568 | ||
569 | if (slre_compile(&slre, argv[arg]) == 0) { | |
570 | printf("Error compiling regex: %s\n", slre.err_str); | |
571 | return 0; | |
572 | } | |
573 | ||
574 | priv = (void *)&slre; | |
575 | #endif | |
ea009d47 | 576 | if (flag & H_MATCH_KEY) { |
be29df6a | 577 | if (match_string(flag, ep->key, argv[arg], priv)) |
5a31ea04 WD |
578 | return 1; |
579 | } | |
580 | if (flag & H_MATCH_DATA) { | |
be29df6a | 581 | if (match_string(flag, ep->data, argv[arg], priv)) |
5a31ea04 | 582 | return 1; |
ea009d47 WD |
583 | } |
584 | } | |
585 | return 0; | |
586 | } | |
587 | ||
be11235a | 588 | ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag, |
37f2fe74 WD |
589 | char **resp, size_t size, |
590 | int argc, char * const argv[]) | |
a6826fbc WD |
591 | { |
592 | ENTRY *list[htab->size]; | |
593 | char *res, *p; | |
594 | size_t totlen; | |
595 | int i, n; | |
596 | ||
597 | /* Test for correct arguments. */ | |
598 | if ((resp == NULL) || (htab == NULL)) { | |
599 | __set_errno(EINVAL); | |
600 | return (-1); | |
601 | } | |
602 | ||
c55d02b2 SG |
603 | debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %lu\n", |
604 | htab, htab->size, htab->filled, (ulong)size); | |
a6826fbc WD |
605 | /* |
606 | * Pass 1: | |
607 | * search used entries, | |
608 | * save addresses and compute total length | |
609 | */ | |
610 | for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { | |
611 | ||
c81c1222 | 612 | if (htab->table[i].used > 0) { |
a6826fbc | 613 | ENTRY *ep = &htab->table[i].entry; |
5a31ea04 | 614 | int found = match_entry(ep, flag, argc, argv); |
37f2fe74 | 615 | |
37f2fe74 WD |
616 | if ((argc > 0) && (found == 0)) |
617 | continue; | |
a6826fbc | 618 | |
be11235a JH |
619 | if ((flag & H_HIDE_DOT) && ep->key[0] == '.') |
620 | continue; | |
621 | ||
a6826fbc WD |
622 | list[n++] = ep; |
623 | ||
f1b20acb | 624 | totlen += strlen(ep->key); |
a6826fbc WD |
625 | |
626 | if (sep == '\0') { | |
627 | totlen += strlen(ep->data); | |
628 | } else { /* check if escapes are needed */ | |
629 | char *s = ep->data; | |
630 | ||
631 | while (*s) { | |
632 | ++totlen; | |
633 | /* add room for needed escape chars */ | |
634 | if ((*s == sep) || (*s == '\\')) | |
635 | ++totlen; | |
636 | ++s; | |
637 | } | |
638 | } | |
639 | totlen += 2; /* for '=' and 'sep' char */ | |
640 | } | |
641 | } | |
642 | ||
643 | #ifdef DEBUG | |
644 | /* Pass 1a: print unsorted list */ | |
645 | printf("Unsorted: n=%d\n", n); | |
646 | for (i = 0; i < n; ++i) { | |
647 | printf("\t%3d: %p ==> %-10s => %s\n", | |
648 | i, list[i], list[i]->key, list[i]->data); | |
649 | } | |
650 | #endif | |
651 | ||
652 | /* Sort list by keys */ | |
653 | qsort(list, n, sizeof(ENTRY *), cmpkey); | |
654 | ||
655 | /* Check if the user supplied buffer size is sufficient */ | |
656 | if (size) { | |
657 | if (size < totlen + 1) { /* provided buffer too small */ | |
c55d02b2 SG |
658 | printf("Env export buffer too small: %lu, but need %lu\n", |
659 | (ulong)size, (ulong)totlen + 1); | |
a6826fbc WD |
660 | __set_errno(ENOMEM); |
661 | return (-1); | |
662 | } | |
663 | } else { | |
4bca3249 | 664 | size = totlen + 1; |
a6826fbc WD |
665 | } |
666 | ||
667 | /* Check if the user provided a buffer */ | |
668 | if (*resp) { | |
669 | /* yes; clear it */ | |
670 | res = *resp; | |
671 | memset(res, '\0', size); | |
672 | } else { | |
673 | /* no, allocate and clear one */ | |
674 | *resp = res = calloc(1, size); | |
675 | if (res == NULL) { | |
676 | __set_errno(ENOMEM); | |
677 | return (-1); | |
678 | } | |
679 | } | |
680 | /* | |
681 | * Pass 2: | |
682 | * export sorted list of result data | |
683 | */ | |
684 | for (i = 0, p = res; i < n; ++i) { | |
84b5e802 | 685 | const char *s; |
a6826fbc WD |
686 | |
687 | s = list[i]->key; | |
688 | while (*s) | |
689 | *p++ = *s++; | |
690 | *p++ = '='; | |
691 | ||
692 | s = list[i]->data; | |
693 | ||
694 | while (*s) { | |
695 | if ((*s == sep) || (*s == '\\')) | |
696 | *p++ = '\\'; /* escape */ | |
697 | *p++ = *s++; | |
698 | } | |
699 | *p++ = sep; | |
700 | } | |
701 | *p = '\0'; /* terminate result */ | |
702 | ||
703 | return size; | |
704 | } | |
7ac2fe2d | 705 | #endif |
a6826fbc WD |
706 | |
707 | ||
708 | /* | |
709 | * himport() | |
710 | */ | |
711 | ||
d5370feb GF |
712 | /* |
713 | * Check whether variable 'name' is amongst vars[], | |
714 | * and remove all instances by setting the pointer to NULL | |
715 | */ | |
716 | static int drop_var_from_set(const char *name, int nvars, char * vars[]) | |
348b1f1c GF |
717 | { |
718 | int i = 0; | |
d5370feb | 719 | int res = 0; |
348b1f1c GF |
720 | |
721 | /* No variables specified means process all of them */ | |
722 | if (nvars == 0) | |
723 | return 1; | |
724 | ||
725 | for (i = 0; i < nvars; i++) { | |
d5370feb GF |
726 | if (vars[i] == NULL) |
727 | continue; | |
728 | /* If we found it, delete all of them */ | |
729 | if (!strcmp(name, vars[i])) { | |
730 | vars[i] = NULL; | |
731 | res = 1; | |
732 | } | |
348b1f1c | 733 | } |
d5370feb GF |
734 | if (!res) |
735 | debug("Skipping non-listed variable %s\n", name); | |
348b1f1c | 736 | |
d5370feb | 737 | return res; |
348b1f1c GF |
738 | } |
739 | ||
a6826fbc WD |
740 | /* |
741 | * Import linearized data into hash table. | |
742 | * | |
743 | * This is the inverse function to hexport(): it takes a linear list | |
744 | * of "name=value" pairs and creates hash table entries from it. | |
745 | * | |
746 | * Entries without "value", i. e. consisting of only "name" or | |
747 | * "name=", will cause this entry to be deleted from the hash table. | |
748 | * | |
749 | * The "flag" argument can be used to control the behaviour: when the | |
750 | * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. | |
d9fc9077 QS |
751 | * new data will be added to an existing hash table; otherwise, if no |
752 | * vars are passed, old data will be discarded and a new hash table | |
753 | * will be created. If vars are passed, passed vars that are not in | |
754 | * the linear list of "name=value" pairs will be removed from the | |
755 | * current hash table. | |
a6826fbc WD |
756 | * |
757 | * The separator character for the "name=value" pairs can be selected, | |
758 | * so we both support importing from externally stored environment | |
759 | * data (separated by NUL characters) and from plain text files | |
760 | * (entries separated by newline characters). | |
761 | * | |
762 | * To allow for nicely formatted text input, leading white space | |
763 | * (sequences of SPACE and TAB chars) is ignored, and entries starting | |
764 | * (after removal of any leading white space) with a '#' character are | |
765 | * considered comments and ignored. | |
766 | * | |
767 | * [NOTE: this means that a variable name cannot start with a '#' | |
768 | * character.] | |
769 | * | |
770 | * When using a non-NUL separator character, backslash is used as | |
771 | * escape character in the value part, allowing for example for | |
772 | * multi-line values. | |
773 | * | |
774 | * In theory, arbitrary separator characters can be used, but only | |
775 | * '\0' and '\n' have really been tested. | |
776 | */ | |
777 | ||
a6826fbc | 778 | int himport_r(struct hsearch_data *htab, |
348b1f1c | 779 | const char *env, size_t size, const char sep, int flag, |
ecd1446f | 780 | int crlf_is_lf, int nvars, char * const vars[]) |
a6826fbc WD |
781 | { |
782 | char *data, *sp, *dp, *name, *value; | |
d5370feb GF |
783 | char *localvars[nvars]; |
784 | int i; | |
a6826fbc WD |
785 | |
786 | /* Test for correct arguments. */ | |
787 | if (htab == NULL) { | |
788 | __set_errno(EINVAL); | |
789 | return 0; | |
790 | } | |
791 | ||
792 | /* we allocate new space to make sure we can write to the array */ | |
817e48d8 | 793 | if ((data = malloc(size + 1)) == NULL) { |
c55d02b2 | 794 | debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1); |
a6826fbc WD |
795 | __set_errno(ENOMEM); |
796 | return 0; | |
797 | } | |
798 | memcpy(data, env, size); | |
817e48d8 | 799 | data[size] = '\0'; |
a6826fbc WD |
800 | dp = data; |
801 | ||
d5370feb GF |
802 | /* make a local copy of the list of variables */ |
803 | if (nvars) | |
804 | memcpy(localvars, vars, sizeof(vars[0]) * nvars); | |
805 | ||
d9fc9077 | 806 | if ((flag & H_NOCLEAR) == 0 && !nvars) { |
a6826fbc WD |
807 | /* Destroy old hash table if one exists */ |
808 | debug("Destroy Hash Table: %p table = %p\n", htab, | |
809 | htab->table); | |
810 | if (htab->table) | |
c4e0057f | 811 | hdestroy_r(htab); |
a6826fbc WD |
812 | } |
813 | ||
814 | /* | |
815 | * Create new hash table (if needed). The computation of the hash | |
816 | * table size is based on heuristics: in a sample of some 70+ | |
817 | * existing systems we found an average size of 39+ bytes per entry | |
818 | * in the environment (for the whole key=value pair). Assuming a | |
ea882baf WD |
819 | * size of 8 per entry (= safety factor of ~5) should provide enough |
820 | * safety margin for any existing environment definitions and still | |
a6826fbc | 821 | * allow for more than enough dynamic additions. Note that the |
1bce2aeb | 822 | * "size" argument is supposed to give the maximum environment size |
ea882baf WD |
823 | * (CONFIG_ENV_SIZE). This heuristics will result in |
824 | * unreasonably large numbers (and thus memory footprint) for | |
825 | * big flash environments (>8,000 entries for 64 KB | |
62a3b7dd | 826 | * environment size), so we clip it to a reasonable value. |
fc5fc76b AB |
827 | * On the other hand we need to add some more entries for free |
828 | * space when importing very small buffers. Both boundaries can | |
829 | * be overwritten in the board config file if needed. | |
a6826fbc WD |
830 | */ |
831 | ||
832 | if (!htab->table) { | |
fc5fc76b | 833 | int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; |
ea882baf WD |
834 | |
835 | if (nent > CONFIG_ENV_MAX_ENTRIES) | |
836 | nent = CONFIG_ENV_MAX_ENTRIES; | |
a6826fbc WD |
837 | |
838 | debug("Create Hash Table: N=%d\n", nent); | |
839 | ||
840 | if (hcreate_r(nent, htab) == 0) { | |
841 | free(data); | |
842 | return 0; | |
843 | } | |
844 | } | |
845 | ||
0226d878 LM |
846 | if (!size) { |
847 | free(data); | |
ecd1446f | 848 | return 1; /* everything OK */ |
0226d878 | 849 | } |
ecd1446f AH |
850 | if(crlf_is_lf) { |
851 | /* Remove Carriage Returns in front of Line Feeds */ | |
852 | unsigned ignored_crs = 0; | |
853 | for(;dp < data + size && *dp; ++dp) { | |
854 | if(*dp == '\r' && | |
855 | dp < data + size - 1 && *(dp+1) == '\n') | |
856 | ++ignored_crs; | |
857 | else | |
858 | *(dp-ignored_crs) = *dp; | |
859 | } | |
860 | size -= ignored_crs; | |
861 | dp = data; | |
862 | } | |
a6826fbc WD |
863 | /* Parse environment; allow for '\0' and 'sep' as separators */ |
864 | do { | |
865 | ENTRY e, *rv; | |
866 | ||
867 | /* skip leading white space */ | |
4d91a6ec | 868 | while (isblank(*dp)) |
a6826fbc WD |
869 | ++dp; |
870 | ||
871 | /* skip comment lines */ | |
872 | if (*dp == '#') { | |
873 | while (*dp && (*dp != sep)) | |
874 | ++dp; | |
875 | ++dp; | |
876 | continue; | |
877 | } | |
878 | ||
879 | /* parse name */ | |
880 | for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) | |
881 | ; | |
882 | ||
883 | /* deal with "name" and "name=" entries (delete var) */ | |
884 | if (*dp == '\0' || *(dp + 1) == '\0' || | |
885 | *dp == sep || *(dp + 1) == sep) { | |
886 | if (*dp == '=') | |
887 | *dp++ = '\0'; | |
888 | *dp++ = '\0'; /* terminate name */ | |
889 | ||
890 | debug("DELETE CANDIDATE: \"%s\"\n", name); | |
d5370feb | 891 | if (!drop_var_from_set(name, nvars, localvars)) |
348b1f1c | 892 | continue; |
a6826fbc | 893 | |
c4e0057f | 894 | if (hdelete_r(name, htab, flag) == 0) |
a6826fbc WD |
895 | debug("DELETE ERROR ##############################\n"); |
896 | ||
897 | continue; | |
898 | } | |
899 | *dp++ = '\0'; /* terminate name */ | |
900 | ||
901 | /* parse value; deal with escapes */ | |
902 | for (value = sp = dp; *dp && (*dp != sep); ++dp) { | |
903 | if ((*dp == '\\') && *(dp + 1)) | |
904 | ++dp; | |
905 | *sp++ = *dp; | |
906 | } | |
907 | *sp++ = '\0'; /* terminate value */ | |
908 | ++dp; | |
909 | ||
e4fdcadd LC |
910 | if (*name == 0) { |
911 | debug("INSERT: unable to use an empty key\n"); | |
912 | __set_errno(EINVAL); | |
0226d878 | 913 | free(data); |
e4fdcadd LC |
914 | return 0; |
915 | } | |
916 | ||
348b1f1c | 917 | /* Skip variables which are not supposed to be processed */ |
d5370feb | 918 | if (!drop_var_from_set(name, nvars, localvars)) |
348b1f1c GF |
919 | continue; |
920 | ||
a6826fbc WD |
921 | /* enter into hash table */ |
922 | e.key = name; | |
923 | e.data = value; | |
924 | ||
c4e0057f | 925 | hsearch_r(e, ENTER, &rv, htab, flag); |
170ab110 | 926 | if (rv == NULL) |
ea882baf WD |
927 | printf("himport_r: can't insert \"%s=%s\" into hash table\n", |
928 | name, value); | |
a6826fbc | 929 | |
ea882baf WD |
930 | debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", |
931 | htab, htab->filled, htab->size, | |
932 | rv, name, value); | |
a6826fbc WD |
933 | } while ((dp < data + size) && *dp); /* size check needed for text */ |
934 | /* without '\0' termination */ | |
ea882baf | 935 | debug("INSERT: free(data = %p)\n", data); |
a6826fbc WD |
936 | free(data); |
937 | ||
d9fc9077 QS |
938 | if (flag & H_NOCLEAR) |
939 | goto end; | |
940 | ||
d5370feb GF |
941 | /* process variables which were not considered */ |
942 | for (i = 0; i < nvars; i++) { | |
943 | if (localvars[i] == NULL) | |
944 | continue; | |
945 | /* | |
946 | * All variables which were not deleted from the variable list | |
947 | * were not present in the imported env | |
948 | * This could mean two things: | |
949 | * a) if the variable was present in current env, we delete it | |
950 | * b) if the variable was not present in current env, we notify | |
951 | * it might be a typo | |
952 | */ | |
c4e0057f | 953 | if (hdelete_r(localvars[i], htab, flag) == 0) |
d5370feb GF |
954 | printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]); |
955 | else | |
956 | printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]); | |
957 | } | |
958 | ||
d9fc9077 | 959 | end: |
ea882baf | 960 | debug("INSERT: done\n"); |
a6826fbc WD |
961 | return 1; /* everything OK */ |
962 | } | |
170ab110 JH |
963 | |
964 | /* | |
965 | * hwalk_r() | |
966 | */ | |
967 | ||
968 | /* | |
969 | * Walk all of the entries in the hash, calling the callback for each one. | |
970 | * this allows some generic operation to be performed on each element. | |
971 | */ | |
972 | int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *)) | |
973 | { | |
974 | int i; | |
975 | int retval; | |
976 | ||
977 | for (i = 1; i <= htab->size; ++i) { | |
978 | if (htab->table[i].used > 0) { | |
979 | retval = callback(&htab->table[i].entry); | |
980 | if (retval) | |
981 | return retval; | |
982 | } | |
983 | } | |
984 | ||
985 | return 0; | |
986 | } |