* Make secp256k1_gej_add_var and secp256k1_gej_double return the
Z ratio to go from a.z to r.z.
* Use these Z ratios to speed up batch point conversion to affine
coordinates, and to speed up batch conversion of points to a
common Z coordinate.
* Add a point addition function that takes a point with a known
Z inverse.
* Due to secp256k1's endomorphism, all additions in the EC
multiplication code can work on affine coordinate (with an
implicit common Z coordinate), correcting the Z coordinate of
the result afterwards.
Refactoring by Pieter Wuille:
* Move more global-z logic into the group code.
* Separate code for computing the odd multiples from the code to bring it
to either storage or globalz format.
* Rename functions.
* Make all addition operations return Z ratios, and test them.
* Make the zr table format compatible with future batch chaining
(the first entry in zr becomes the ratio between the input and the
first output).