X-Git-Url: https://repo.jachan.dev/secp256k1.git/blobdiff_plain/20c5869df2148440a9e8b1b98fbf59097eaf7359..4232e5b7da0a68adc14fa4b481f7e106403c200d:/src/group.h diff --git a/src/group.h b/src/group.h index 8e122ab..36e39ec 100644 --- a/src/group.h +++ b/src/group.h @@ -59,6 +59,7 @@ static int secp256k1_ge_is_infinity(const secp256k1_ge *a); /** Check whether a group element is valid (i.e., on the curve). */ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a); +/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a); /** Set a group element equal to another which is given in jacobian coordinates */ @@ -95,14 +96,13 @@ static int secp256k1_gej_is_infinity(const secp256k1_gej *a); /** Check whether a group element's y coordinate is a quadratic residue. */ static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a); -/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). - * a may not be zero. Constant time. */ -static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); +/** Set r equal to the double of a. Constant time. */ +static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a); -/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */ +/** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); -/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ +/** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr); /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ @@ -110,16 +110,14 @@ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time - guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ + guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr); /** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv); -#ifdef USE_ENDOMORPHISM /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a); -#endif /** Clear a secp256k1_gej to prevent leaking sensitive information. */ static void secp256k1_gej_clear(secp256k1_gej *r); @@ -133,10 +131,21 @@ static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge /** Convert a group element back from the storage type. */ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a); -/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ +/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag); /** Rescale a jacobian point by b which must be non-zero. Constant-time. */ static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b); +/** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve. + * + * In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the + * group, and this function returns always true. + * + * When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a + * (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this + * function checks whether a point that is on the curve is in fact also in that subgroup. + */ +static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge); + #endif /* SECP256K1_GROUP_H */