#include "openssl/ec.h"
#include "openssl/ecdsa.h"
#include "openssl/obj_mac.h"
+# if OPENSSL_VERSION_NUMBER < 0x10100000L
+void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) {*pr = sig->r; *ps = sig->s;}
+# endif
#endif
#include "contrib/lax_der_parsing.c"
CHECK(ecount == 3);
CHECK(secp256k1_ec_pubkey_tweak_mul(vrfy, &pubkey, ctmp) == 1);
CHECK(ecount == 3);
- CHECK(secp256k1_context_randomize(vrfy, ctmp) == 0);
- CHECK(ecount == 4);
+ CHECK(secp256k1_context_randomize(vrfy, ctmp) == 1);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_context_randomize(vrfy, NULL) == 1);
+ CHECK(ecount == 3);
+ CHECK(secp256k1_context_randomize(sign, ctmp) == 1);
+ CHECK(ecount2 == 14);
CHECK(secp256k1_context_randomize(sign, NULL) == 1);
CHECK(ecount2 == 14);
secp256k1_context_set_illegal_callback(vrfy, NULL, NULL);
/* Test public API */
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
- scratch = secp256k1_scratch_space_create(none, 100, 10);
- CHECK(scratch == NULL);
- CHECK(ecount == 1);
- scratch = secp256k1_scratch_space_create(none, 100, 100);
+ scratch = secp256k1_scratch_space_create(none, 1000);
CHECK(scratch != NULL);
- CHECK(ecount == 1);
- secp256k1_scratch_space_destroy(scratch);
-
- scratch = secp256k1_scratch_space_create(none, 100, 1000);
- CHECK(scratch != NULL);
- CHECK(ecount == 1);
+ CHECK(ecount == 0);
/* Test internal API */
CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 1000);
- CHECK(secp256k1_scratch_resize(scratch, 50, 1) == 1); /* no-op */
- CHECK(secp256k1_scratch_resize(scratch, 200, 1) == 1);
- CHECK(secp256k1_scratch_resize(scratch, 950, 1) == 1);
- CHECK(secp256k1_scratch_resize(scratch, 1000, 1) == 0);
- CHECK(secp256k1_scratch_resize(scratch, 2000, 1) == 0);
+
+ /* Allocating 500 bytes with no frame fails */
+ CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL);
+ CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
+
+ /* ...but pushing a new stack frame does affect the max allocation */
+ CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1 == 1));
+ CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 500); /* 500 - ALIGNMENT */
+ CHECK(secp256k1_scratch_alloc(scratch, 500) != NULL);
+ CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL);
+
+ CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1) == 0);
+
+ /* ...and this effect is undone by popping the frame */
+ secp256k1_scratch_deallocate_frame(scratch);
CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
+ CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL);
/* cleanup */
secp256k1_scratch_space_destroy(scratch);
/* Test batch gej -> ge conversion with and without known z ratios. */
{
secp256k1_fe *zr = (secp256k1_fe *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_fe));
- secp256k1_ge *ge_set_table = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
secp256k1_ge *ge_set_all = (secp256k1_ge *)checked_malloc(&ctx->error_callback, (4 * runs + 1) * sizeof(secp256k1_ge));
for (i = 0; i < 4 * runs + 1; i++) {
/* Compute gej[i + 1].z / gez[i].z (with gej[n].z taken to be 1). */
secp256k1_fe_mul(&zr[i + 1], &zinv[i], &gej[i + 1].z);
}
}
- secp256k1_ge_set_table_gej_var(ge_set_table, gej, zr, 4 * runs + 1);
- secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1, &ctx->error_callback);
+ secp256k1_ge_set_all_gej_var(ge_set_all, gej, 4 * runs + 1);
for (i = 0; i < 4 * runs + 1; i++) {
secp256k1_fe s;
random_fe_non_zero(&s);
secp256k1_gej_rescale(&gej[i], &s);
- ge_equals_gej(&ge_set_table[i], &gej[i]);
ge_equals_gej(&ge_set_all[i], &gej[i]);
}
- free(ge_set_table);
free(ge_set_all);
free(zr);
}
+ /* Test batch gej -> ge conversion with many infinities. */
+ for (i = 0; i < 4 * runs + 1; i++) {
+ random_group_element_test(&ge[i]);
+ /* randomly set half the points to infinitiy */
+ if(secp256k1_fe_is_odd(&ge[i].x)) {
+ secp256k1_ge_set_infinity(&ge[i]);
+ }
+ secp256k1_gej_set_ge(&gej[i], &ge[i]);
+ }
+ /* batch invert */
+ secp256k1_ge_set_all_gej_var(ge, gej, 4 * runs + 1);
+ /* check result */
+ for (i = 0; i < 4 * runs + 1; i++) {
+ ge_equals_gej(&ge[i], &gej[i]);
+ }
+
free(ge);
free(gej);
free(zinv);
0xb84e4e1b, 0xfb77e21f, 0x96baae2a, 0x63dec956
);
secp256k1_gej b;
- secp256k1_ecmult_const(&b, &a, &xn);
+ secp256k1_ecmult_const(&b, &a, &xn, 256);
CHECK(secp256k1_ge_is_valid_var(&a));
ge_equals_gej(&expected_b, &b);
random_scalar_order_test(&a);
random_scalar_order_test(&b);
- secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a);
- secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b);
+ secp256k1_ecmult_const(&res1, &secp256k1_ge_const_g, &a, 256);
+ secp256k1_ecmult_const(&res2, &secp256k1_ge_const_g, &b, 256);
secp256k1_ge_set_gej(&mid1, &res1);
secp256k1_ge_set_gej(&mid2, &res2);
- secp256k1_ecmult_const(&res1, &mid1, &b);
- secp256k1_ecmult_const(&res2, &mid2, &a);
+ secp256k1_ecmult_const(&res1, &mid1, &b, 256);
+ secp256k1_ecmult_const(&res2, &mid2, &a, 256);
secp256k1_ge_set_gej(&mid1, &res1);
secp256k1_ge_set_gej(&mid2, &res2);
ge_equals_ge(&mid1, &mid2);
secp256k1_scalar_negate(&negone, &one);
random_group_element_test(&point);
- secp256k1_ecmult_const(&res1, &point, &zero);
+ secp256k1_ecmult_const(&res1, &point, &zero, 3);
secp256k1_ge_set_gej(&res2, &res1);
CHECK(secp256k1_ge_is_infinity(&res2));
- secp256k1_ecmult_const(&res1, &point, &one);
+ secp256k1_ecmult_const(&res1, &point, &one, 2);
secp256k1_ge_set_gej(&res2, &res1);
ge_equals_ge(&res2, &point);
- secp256k1_ecmult_const(&res1, &point, &negone);
+ secp256k1_ecmult_const(&res1, &point, &negone, 256);
secp256k1_gej_neg(&res1, &res1);
secp256k1_ge_set_gej(&res2, &res1);
ge_equals_ge(&res2, &point);
for (i = 0; i < 100; ++i) {
secp256k1_ge tmp;
secp256k1_ge_set_gej(&tmp, &point);
- secp256k1_ecmult_const(&point, &tmp, &scalar);
+ secp256k1_ecmult_const(&point, &tmp, &scalar, 256);
}
secp256k1_ge_set_gej(&res, &point);
ge_equals_gej(&res, &expected_point);
data.sc = sc;
data.pt = pt;
secp256k1_scalar_set_int(&szero, 0);
- secp256k1_scratch_reset(scratch);
/* No points to multiply */
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0));
CHECK(secp256k1_gej_is_infinity(&r));
/* Try to multiply 1 point, but scratch space is empty */
- scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0, 0);
+ scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0);
CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1));
secp256k1_scratch_destroy(scratch_empty);
}
/* Sanity check that zero scalars don't cause problems */
+ for (ncount = 0; ncount < 20; ncount++) {
+ random_scalar_order(&sc[ncount]);
+ random_group_element_test(&pt[ncount]);
+ }
+
secp256k1_scalar_clear(&sc[0]);
CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
secp256k1_scalar_clear(&sc[1]);
int bucket_window = 0;
for(; scratch_size < max_size; scratch_size+=256) {
- scratch = secp256k1_scratch_create(&ctx->error_callback, 0, scratch_size);
+ scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size);
CHECK(scratch != NULL);
n_points_supported = secp256k1_pippenger_max_points(scratch);
if (n_points_supported == 0) {
continue;
}
bucket_window = secp256k1_pippenger_bucket_window(n_points_supported);
- CHECK(secp256k1_scratch_resize(scratch, secp256k1_pippenger_scratch_size(n_points_supported, bucket_window), PIPPENGER_SCRATCH_OBJECTS));
+ CHECK(secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points_supported, bucket_window), PIPPENGER_SCRATCH_OBJECTS));
+ secp256k1_scratch_deallocate_frame(scratch);
secp256k1_scratch_destroy(scratch);
}
CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW);
data.pt = pt;
/* Test with empty scratch space */
- scratch = secp256k1_scratch_create(&ctx->error_callback, 0, 0);
+ scratch = secp256k1_scratch_create(&ctx->error_callback, 0);
CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1));
secp256k1_scratch_destroy(scratch);
/* Test with space for 1 point in pippenger. That's not enough because
* ecmult_multi selects strauss which requires more memory. */
- scratch = secp256k1_scratch_create(&ctx->error_callback, 0, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
+ scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1));
secp256k1_scratch_destroy(scratch);
if (i > ECMULT_PIPPENGER_THRESHOLD) {
int bucket_window = secp256k1_pippenger_bucket_window(i);
size_t scratch_size = secp256k1_pippenger_scratch_size(i, bucket_window);
- scratch = secp256k1_scratch_create(&ctx->error_callback, 0, scratch_size + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
+ scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
} else {
size_t scratch_size = secp256k1_strauss_scratch_size(i);
- scratch = secp256k1_scratch_create(&ctx->error_callback, 0, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
+ scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
}
CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
secp256k1_gej_add_var(&r, &r, &r2, NULL);
test_secp256k1_pippenger_bucket_window_inv();
test_ecmult_multi_pippenger_max_points();
- scratch = secp256k1_scratch_create(&ctx->error_callback, 0, 819200);
+ scratch = secp256k1_scratch_create(&ctx->error_callback, 819200);
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single);
test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single);
secp256k1_scratch_destroy(scratch);
/* Run test_ecmult_multi with space for exactly one point */
- scratch = secp256k1_scratch_create(&ctx->error_callback, 0, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
+ scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
secp256k1_scratch_destroy(scratch);
int wnaf[256] = {0};
int i;
int skew;
+ int bits = 256;
secp256k1_scalar num = *number;
secp256k1_scalar_set_int(&x, 0);
for (i = 0; i < 16; ++i) {
secp256k1_scalar_shr_int(&num, 8);
}
+ bits = 128;
#endif
- skew = secp256k1_wnaf_const(wnaf, num, w);
+ skew = secp256k1_wnaf_const(wnaf, num, w, bits);
- for (i = WNAF_SIZE(w); i >= 0; --i) {
+ for (i = WNAF_SIZE_BITS(bits, w); i >= 0; --i) {
secp256k1_scalar t;
int v = wnaf[i];
CHECK(v != 0); /* check nonzero */
for (i = WNAF_SIZE(w)-1; i >= 0; --i) {
secp256k1_scalar t;
int v = wnaf[i];
- CHECK(v != 0); /* check nonzero */
- CHECK(v & 1); /* check parity */
+ CHECK(v == 0 || v & 1); /* check parity */
CHECK(v > -(1 << w)); /* check range above */
CHECK(v < (1 << w)); /* check range below */
CHECK(secp256k1_scalar_eq(&x, &num));
}
-void test_fixed_wnaf_zero(int w) {
+/* Checks that the first 8 elements of wnaf are equal to wnaf_expected and the
+ * rest is 0.*/
+void test_fixed_wnaf_small_helper(int *wnaf, int *wnaf_expected, int w) {
+ int i;
+ for (i = WNAF_SIZE(w)-1; i >= 8; --i) {
+ CHECK(wnaf[i] == 0);
+ }
+ for (i = 7; i >= 0; --i) {
+ CHECK(wnaf[i] == wnaf_expected[i]);
+ }
+}
+
+void test_fixed_wnaf_small(void) {
+ int w = 4;
int wnaf[256] = {0};
int i;
int skew;
secp256k1_scalar_set_int(&num, 0);
skew = secp256k1_wnaf_fixed(wnaf, &num, w);
-
for (i = WNAF_SIZE(w)-1; i >= 0; --i) {
int v = wnaf[i];
CHECK(v == 0);
}
CHECK(skew == 0);
+
+ secp256k1_scalar_set_int(&num, 1);
+ skew = secp256k1_wnaf_fixed(wnaf, &num, w);
+ for (i = WNAF_SIZE(w)-1; i >= 1; --i) {
+ int v = wnaf[i];
+ CHECK(v == 0);
+ }
+ CHECK(wnaf[0] == 1);
+ CHECK(skew == 0);
+
+ {
+ int wnaf_expected[8] = { 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf };
+ secp256k1_scalar_set_int(&num, 0xffffffff);
+ skew = secp256k1_wnaf_fixed(wnaf, &num, w);
+ test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
+ CHECK(skew == 0);
+ }
+ {
+ int wnaf_expected[8] = { -1, -1, -1, -1, -1, -1, -1, 0xf };
+ secp256k1_scalar_set_int(&num, 0xeeeeeeee);
+ skew = secp256k1_wnaf_fixed(wnaf, &num, w);
+ test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
+ CHECK(skew == 1);
+ }
+ {
+ int wnaf_expected[8] = { 1, 0, 1, 0, 1, 0, 1, 0 };
+ secp256k1_scalar_set_int(&num, 0x01010101);
+ skew = secp256k1_wnaf_fixed(wnaf, &num, w);
+ test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
+ CHECK(skew == 0);
+ }
+ {
+ int wnaf_expected[8] = { -0xf, 0, 0xf, -0xf, 0, 0xf, 1, 0 };
+ secp256k1_scalar_set_int(&num, 0x01ef1ef1);
+ skew = secp256k1_wnaf_fixed(wnaf, &num, w);
+ test_fixed_wnaf_small_helper(wnaf, wnaf_expected, w);
+ CHECK(skew == 0);
+ }
}
void run_wnaf(void) {
n.d[0] = 2;
test_constant_wnaf(&n, 4);
/* Test 0 */
- test_fixed_wnaf_zero(4);
+ test_fixed_wnaf_small();
/* Random tests */
for (i = 0; i < count; i++) {
random_scalar_order(&n);
ecount = 0;
VG_UNDEF(&pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeyc, 65) == 1);
+ CHECK(secp256k1_ec_pubkey_parse(secp256k1_context_no_precomp, &pubkey, pubkeyc, 65) == 1);
VG_CHECK(&pubkey, sizeof(pubkey));
CHECK(ecount == 0);
VG_UNDEF(&ge, sizeof(ge));
VG_CHECK(&pubkey, sizeof(pubkey));
CHECK(memcmp(&pubkey, zeros, sizeof(secp256k1_pubkey)) > 0);
pubkey_negone = pubkey;
- /* Tweak of zero leaves the value changed. */
+ /* Tweak of zero leaves the value unchanged. */
memset(ctmp2, 0, 32);
CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, ctmp2) == 1);
CHECK(memcmp(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40);
#ifdef ENABLE_OPENSSL_TESTS
ECDSA_SIG *sig_openssl;
+ const BIGNUM *r = NULL, *s = NULL;
const unsigned char *sigptr;
unsigned char roundtrip_openssl[2048];
int len_openssl = 2048;
sigptr = sig;
parsed_openssl = (d2i_ECDSA_SIG(&sig_openssl, &sigptr, siglen) != NULL);
if (parsed_openssl) {
- valid_openssl = !BN_is_negative(sig_openssl->r) && !BN_is_negative(sig_openssl->s) && BN_num_bits(sig_openssl->r) > 0 && BN_num_bits(sig_openssl->r) <= 256 && BN_num_bits(sig_openssl->s) > 0 && BN_num_bits(sig_openssl->s) <= 256;
+ ECDSA_SIG_get0(sig_openssl, &r, &s);
+ valid_openssl = !BN_is_negative(r) && !BN_is_negative(s) && BN_num_bits(r) > 0 && BN_num_bits(r) <= 256 && BN_num_bits(s) > 0 && BN_num_bits(s) <= 256;
if (valid_openssl) {
unsigned char tmp[32] = {0};
- BN_bn2bin(sig_openssl->r, tmp + 32 - BN_num_bytes(sig_openssl->r));
+ BN_bn2bin(r, tmp + 32 - BN_num_bytes(r));
valid_openssl = memcmp(tmp, max_scalar, 32) < 0;
}
if (valid_openssl) {
unsigned char tmp[32] = {0};
- BN_bn2bin(sig_openssl->s, tmp + 32 - BN_num_bytes(sig_openssl->s));
+ BN_bn2bin(s, tmp + 32 - BN_num_bytes(s));
valid_openssl = memcmp(tmp, max_scalar, 32) < 0;
}
}
}
} else {
FILE *frand = fopen("/dev/urandom", "r");
- if ((frand == NULL) || !fread(&seed16, sizeof(seed16), 1, frand)) {
+ if ((frand == NULL) || fread(&seed16, 1, sizeof(seed16), frand) != sizeof(seed16)) {
uint64_t t = time(NULL) * (uint64_t)1337;
+ fprintf(stderr, "WARNING: could not read 16 bytes from /dev/urandom; falling back to insecure PRNG\n");
seed16[0] ^= t;
seed16[1] ^= t >> 8;
seed16[2] ^= t >> 16;
seed16[6] ^= t >> 48;
seed16[7] ^= t >> 56;
}
- fclose(frand);
+ if (frand) {
+ fclose(frand);
+ }
}
secp256k1_rand_seed(seed16);