-// Copyright (c) 2013 Pieter Wuille
-// Distributed under the MIT/X11 software license, see the accompanying
-// file COPYING or http://www.opensource.org/licenses/mit-license.php.
+/**********************************************************************
+ * Copyright (c) 2013, 2014 Pieter Wuille *
+ * Distributed under the MIT software license, see the accompanying *
+ * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
+ **********************************************************************/
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
secp256k1_num_set_bin(&num, b32, 32);
if (secp256k1_num_cmp(&num, &secp256k1_fe_consts->p) >= 0)
continue;
- secp256k1_fe_set_b32(fe, b32);
+ VERIFY_CHECK(secp256k1_fe_set_b32(fe, b32));
break;
} while(1);
}
secp256k1_num_set_hex(&n2, c, 64);
CHECK(secp256k1_num_eq(&n1, &n2));
for (int i=0; i<64; i++) {
- // check whether the lower 4 bits correspond to the last hex character
+ /* check whether the lower 4 bits correspond to the last hex character */
int low1 = secp256k1_num_shift(&n1, 4);
int lowh = c[63];
int low2 = ((lowh>>6)*9+(lowh-'0'))&15;
CHECK(low1 == low2);
- // shift bits off the hex representation, and compare
+ /* shift bits off the hex representation, and compare */
memmove(c+1, c, 63);
c[0] = '0';
secp256k1_num_set_hex(&n2, c, 64);
secp256k1_num_set_bin(&n2, c, 32);
CHECK(secp256k1_num_eq(&n1, &n2));
for (int i=0; i<32; i++) {
- // check whether the lower 8 bits correspond to the last byte
+ /* check whether the lower 8 bits correspond to the last byte */
int low1 = secp256k1_num_shift(&n1, 8);
int low2 = c[31];
CHECK(low1 == low2);
- // shift bits off the byte representation, and compare
+ /* shift bits off the byte representation, and compare */
memmove(c+1, c, 31);
c[0] = 0;
secp256k1_num_set_bin(&n2, c, 32);
void test_num_negate(void) {
secp256k1_num_t n1;
secp256k1_num_t n2;
- random_num_order_test(&n1); // n1 = R
+ random_num_order_test(&n1); /* n1 = R */
random_num_negate(&n1);
- secp256k1_num_copy(&n2, &n1); // n2 = R
- secp256k1_num_sub(&n1, &n2, &n1); // n1 = n2-n1 = 0
+ secp256k1_num_copy(&n2, &n1); /* n2 = R */
+ secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */
CHECK(secp256k1_num_is_zero(&n1));
- secp256k1_num_copy(&n1, &n2); // n1 = R
- secp256k1_num_negate(&n1); // n1 = -R
+ secp256k1_num_copy(&n1, &n2); /* n1 = R */
+ secp256k1_num_negate(&n1); /* n1 = -R */
CHECK(!secp256k1_num_is_zero(&n1));
- secp256k1_num_add(&n1, &n2, &n1); // n1 = n2+n1 = 0
+ secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */
CHECK(secp256k1_num_is_zero(&n1));
- secp256k1_num_copy(&n1, &n2); // n1 = R
- secp256k1_num_negate(&n1); // n1 = -R
+ secp256k1_num_copy(&n1, &n2); /* n1 = R */
+ secp256k1_num_negate(&n1); /* n1 = -R */
CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
- secp256k1_num_negate(&n1); // n1 = R
+ secp256k1_num_negate(&n1); /* n1 = R */
CHECK(secp256k1_num_eq(&n1, &n2));
}
int r = secp256k1_rand32();
secp256k1_num_t n1;
secp256k1_num_t n2;
- random_num_order_test(&n1); // n1 = R1
+ random_num_order_test(&n1); /* n1 = R1 */
if (r & 1) {
random_num_negate(&n1);
}
- random_num_order_test(&n2); // n2 = R2
+ random_num_order_test(&n2); /* n2 = R2 */
if (r & 2) {
random_num_negate(&n2);
}
secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
- secp256k1_num_add(&n1p2, &n1, &n2); // n1p2 = R1 + R2
- secp256k1_num_add(&n2p1, &n2, &n1); // n2p1 = R2 + R1
- secp256k1_num_sub(&n1m2, &n1, &n2); // n1m2 = R1 - R2
- secp256k1_num_sub(&n2m1, &n2, &n1); // n2m1 = R2 - R1
+ secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
+ secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */
+ secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */
+ secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */
CHECK(secp256k1_num_eq(&n1p2, &n2p1));
CHECK(!secp256k1_num_eq(&n1p2, &n1m2));
- secp256k1_num_negate(&n2m1); // n2m1 = -R2 + R1
+ secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */
CHECK(secp256k1_num_eq(&n2m1, &n1m2));
CHECK(!secp256k1_num_eq(&n2m1, &n1));
- secp256k1_num_add(&n2m1, &n2m1, &n2); // n2m1 = -R2 + R1 + R2 = R1
+ secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */
CHECK(secp256k1_num_eq(&n2m1, &n1));
CHECK(!secp256k1_num_eq(&n2p1, &n1));
- secp256k1_num_sub(&n2p1, &n2p1, &n2); // n2p1 = R2 + R1 - R2 = R1
+ secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
CHECK(secp256k1_num_eq(&n2p1, &n1));
}
void scalar_test(void) {
unsigned char c[32];
- // Set 's' to a random scalar, with value 'snum'.
+ /* Set 's' to a random scalar, with value 'snum'. */
secp256k1_rand256_test(c);
secp256k1_scalar_t s;
secp256k1_scalar_set_b32(&s, c, NULL);
secp256k1_num_set_bin(&snum, c, 32);
secp256k1_num_mod(&snum, &secp256k1_ge_consts->order);
- // Set 's1' to a random scalar, with value 's1num'.
+ /* Set 's1' to a random scalar, with value 's1num'. */
secp256k1_rand256_test(c);
secp256k1_scalar_t s1;
secp256k1_scalar_set_b32(&s1, c, NULL);
secp256k1_num_set_bin(&s1num, c, 32);
secp256k1_num_mod(&s1num, &secp256k1_ge_consts->order);
- // Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'.
+ /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
secp256k1_rand256_test(c);
secp256k1_scalar_t s2;
int overflow = 0;
secp256k1_num_mod(&s2num, &secp256k1_ge_consts->order);
{
- // Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it.
+ /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
secp256k1_num_t n, t, m;
secp256k1_num_set_int(&n, 0);
secp256k1_num_set_int(&m, 16);
}
{
- // Test that get_b32 returns the same as get_bin on the number.
+ /* Test that get_b32 returns the same as get_bin on the number. */
unsigned char r1[32];
secp256k1_scalar_get_b32(r1, &s2);
unsigned char r2[32];
secp256k1_num_get_bin(r2, 32, &s2num);
CHECK(memcmp(r1, r2, 32) == 0);
- // If no overflow occurred when assigning, it should also be equal to the original byte array.
+ /* If no overflow occurred when assigning, it should also be equal to the original byte array. */
CHECK((memcmp(r1, c, 32) == 0) == (overflow == 0));
}
{
- // Test that adding the scalars together is equal to adding their numbers together modulo the order.
+ /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
secp256k1_num_t rnum;
secp256k1_num_add(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
}
{
- // Test that multipying the scalars is equal to multiplying their numbers modulo the order.
+ /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
secp256k1_num_t rnum;
secp256k1_num_mul(&rnum, &snum, &s2num);
secp256k1_num_mod(&rnum, &secp256k1_ge_consts->order);
secp256k1_num_t r2num;
secp256k1_scalar_get_num(&r2num, &r);
CHECK(secp256k1_num_eq(&rnum, &r2num));
- // The result can only be zero if at least one of the factors was zero.
+ /* The result can only be zero if at least one of the factors was zero. */
CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
- // The results can only be equal to one of the factors if that factor was zero, or the other factor was one.
+ /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
}
{
- // Check that comparison with zero matches comparison with zero on the number.
+ /* Check that comparison with zero matches comparison with zero on the number. */
CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
- // Check that comparison with the half order is equal to testing for high scalar.
+ /* Check that comparison with the half order is equal to testing for high scalar. */
CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &secp256k1_ge_consts->half_order) > 0));
secp256k1_scalar_t neg;
secp256k1_scalar_negate(&neg, &s);
secp256k1_num_t negnum;
secp256k1_num_sub(&negnum, &secp256k1_ge_consts->order, &snum);
secp256k1_num_mod(&negnum, &secp256k1_ge_consts->order);
- // Check that comparison with the half order is equal to testing for high scalar after negation.
+ /* Check that comparison with the half order is equal to testing for high scalar after negation. */
CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &secp256k1_ge_consts->half_order) > 0));
- // Negating should change the high property, unless the value was already zero.
+ /* Negating should change the high property, unless the value was already zero. */
CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
secp256k1_num_t negnum2;
secp256k1_scalar_get_num(&negnum2, &neg);
- // Negating a scalar should be equal to (order - n) mod order on the number.
+ /* Negating a scalar should be equal to (order - n) mod order on the number. */
CHECK(secp256k1_num_eq(&negnum, &negnum2));
secp256k1_scalar_add(&neg, &neg, &s);
- // Adding a number to its negation should result in zero.
+ /* Adding a number to its negation should result in zero. */
CHECK(secp256k1_scalar_is_zero(&neg));
secp256k1_scalar_negate(&neg, &neg);
- // Negating zero should still result in zero.
+ /* Negating zero should still result in zero. */
CHECK(secp256k1_scalar_is_zero(&neg));
}
{
- // Test that scalar inverses are equal to the inverse of their number modulo the order.
+ /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
if (!secp256k1_scalar_is_zero(&s)) {
secp256k1_scalar_t inv;
secp256k1_scalar_inverse(&inv, &s);
secp256k1_scalar_get_num(&invnum2, &inv);
CHECK(secp256k1_num_eq(&invnum, &invnum2));
secp256k1_scalar_mul(&inv, &inv, &s);
- // Multiplying a scalar with its inverse must result in one.
+ /* Multiplying a scalar with its inverse must result in one. */
CHECK(secp256k1_scalar_is_one(&inv));
secp256k1_scalar_inverse(&inv, &inv);
- // Inverting one must result in one.
+ /* Inverting one must result in one. */
CHECK(secp256k1_scalar_is_one(&inv));
}
}
{
- // Test commutativity of add.
+ /* Test commutativity of add. */
secp256k1_scalar_t r1, r2;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_add(&r2, &s2, &s1);
}
{
- // Test commutativity of mul.
+ /* Test add_bit. */
+ int bit = secp256k1_rand32() % 256;
+ secp256k1_scalar_t b;
+ secp256k1_scalar_clear(&b);
+ secp256k1_scalar_add_bit(&b, 0);
+ CHECK(secp256k1_scalar_is_one(&b));
+ for (int i = 0; i < bit; i++) {
+ secp256k1_scalar_add(&b, &b, &b);
+ }
+ secp256k1_scalar_t r1 = s1, r2 = s1;
+ secp256k1_scalar_add(&r1, &r1, &b);
+ if (!(secp256k1_scalar_get_bits(&s1, 255, 1) == 1 && secp256k1_scalar_get_bits(&r1, 255, 1) == 0)) {
+ /* No overflow happened. */
+ secp256k1_scalar_add_bit(&r2, bit);
+ CHECK(secp256k1_scalar_eq(&r1, &r2));
+ }
+ }
+
+ {
+ /* Test commutativity of mul. */
secp256k1_scalar_t r1, r2;
secp256k1_scalar_mul(&r1, &s1, &s2);
secp256k1_scalar_mul(&r2, &s2, &s1);
}
{
- // Test associativity of add.
+ /* Test associativity of add. */
secp256k1_scalar_t r1, r2;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_add(&r1, &r1, &s);
}
{
- // Test associativity of mul.
+ /* Test associativity of mul. */
secp256k1_scalar_t r1, r2;
secp256k1_scalar_mul(&r1, &s1, &s2);
secp256k1_scalar_mul(&r1, &r1, &s);
}
{
- // Test distributitivity of mul over add.
+ /* Test distributitivity of mul over add. */
secp256k1_scalar_t r1, r2, t;
secp256k1_scalar_add(&r1, &s1, &s2);
secp256k1_scalar_mul(&r1, &r1, &s);
}
{
- // Test square.
+ /* Test square. */
secp256k1_scalar_t r1, r2;
secp256k1_scalar_sqr(&r1, &s1);
secp256k1_scalar_mul(&r2, &s1, &s1);
void random_fe(secp256k1_fe_t *x) {
unsigned char bin[32];
- secp256k1_rand256(bin);
- secp256k1_fe_set_b32(x, bin);
+ do {
+ secp256k1_rand256(bin);
+ if (secp256k1_fe_set_b32(x, bin)) {
+ return;
+ }
+ } while(1);
}
void random_fe_non_zero(secp256k1_fe_t *nz) {
if (!secp256k1_fe_is_zero(nz))
break;
}
- // Infinitesimal probability of spurious failure here
+ /* Infinitesimal probability of spurious failure here */
CHECK(tries >= 0);
}
void run_field_inv_all(void) {
secp256k1_fe_t x[16], xi[16], xii[16];
- // Check it's safe to call for 0 elements
+ /* Check it's safe to call for 0 elements */
secp256k1_fe_inv_all(0, xi, x);
for (int i=0; i<count; i++) {
size_t len = (secp256k1_rand32() & 15) + 1;
void run_field_inv_all_var(void) {
secp256k1_fe_t x[16], xi[16], xii[16];
- // Check it's safe to call for 0 elements
+ /* Check it's safe to call for 0 elements */
secp256k1_fe_inv_all_var(0, xi, x);
for (int i=0; i<count; i++) {
size_t len = (secp256k1_rand32() & 15) + 1;
CHECK((v == 0) == (k == NULL));
if (k != NULL) {
- // Check that the returned root is +/- the given known answer
+ /* Check that the returned root is +/- the given known answer */
secp256k1_fe_negate(&r2, &r1, 1);
secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
void run_sqrt(void) {
secp256k1_fe_t ns, x, s, t;
- // Check sqrt(0) is 0
+ /* Check sqrt(0) is 0 */
secp256k1_fe_set_int(&x, 0);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&s, &x);
- // Check sqrt of small squares (and their negatives)
+ /* Check sqrt of small squares (and their negatives) */
for (int i=1; i<=100; i++) {
secp256k1_fe_set_int(&x, i);
secp256k1_fe_sqr(&s, &x);
test_sqrt(&t, NULL);
}
- // Consistency checks for large random values
+ /* Consistency checks for large random values */
for (int i=0; i<10; i++) {
random_fe_non_square(&ns);
for (int j=0; j<count; j++) {
random_field_element_magnitude(&nj.y);
random_field_element_magnitude(&nj.z);
- // gej + gej adds
+ /* gej + gej adds */
secp256k1_gej_t aaj; secp256k1_gej_add_var(&aaj, &aj, &aj);
secp256k1_gej_t abj; secp256k1_gej_add_var(&abj, &aj, &bj);
secp256k1_gej_t aij; secp256k1_gej_add_var(&aij, &aj, &ij);
secp256k1_gej_t iaj; secp256k1_gej_add_var(&iaj, &ij, &aj);
secp256k1_gej_t iij; secp256k1_gej_add_var(&iij, &ij, &ij);
- // gej + ge adds
+ /* gej + ge adds */
secp256k1_gej_t aa; secp256k1_gej_add_ge_var(&aa, &aj, &a);
secp256k1_gej_t ab; secp256k1_gej_add_ge_var(&ab, &aj, &b);
secp256k1_gej_t ai; secp256k1_gej_add_ge_var(&ai, &aj, &i);
secp256k1_gej_t ia; secp256k1_gej_add_ge_var(&ia, &ij, &a);
secp256k1_gej_t ii; secp256k1_gej_add_ge_var(&ii, &ij, &i);
- // const gej + ge adds
+ /* const gej + ge adds */
secp256k1_gej_t aac; secp256k1_gej_add_ge(&aac, &aj, &a);
secp256k1_gej_t abc; secp256k1_gej_add_ge(&abc, &aj, &b);
secp256k1_gej_t anc; secp256k1_gej_add_ge(&anc, &aj, &n);
/***** ECMULT TESTS *****/
void run_ecmult_chain(void) {
- // random starting point A (on the curve)
- secp256k1_fe_t ax; secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64);
- secp256k1_fe_t ay; secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64);
+ /* random starting point A (on the curve) */
+ secp256k1_fe_t ax; VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64));
+ secp256k1_fe_t ay; VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64));
secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay);
- // two random initial factors xn and gn
+ /* two random initial factors xn and gn */
secp256k1_num_t xn;
secp256k1_num_set_hex(&xn, "84cc5452f7fde1edb4d38a8ce9b1b84ccef31f146e569be9705d357a42985407", 64);
secp256k1_num_t gn;
secp256k1_num_set_hex(&gn, "a1e58d22553dcd42b23980625d4c57a96e9323d42b3152e5ca2c3990edc7c9de", 64);
- // two small multipliers to be applied to xn and gn in every iteration:
+ /* two small multipliers to be applied to xn and gn in every iteration: */
secp256k1_num_t xf;
secp256k1_num_set_hex(&xf, "1337", 4);
secp256k1_num_t gf;
secp256k1_num_set_hex(&gf, "7113", 4);
- // accumulators with the resulting coefficients to A and G
+ /* accumulators with the resulting coefficients to A and G */
secp256k1_num_t ae;
secp256k1_num_set_int(&ae, 1);
secp256k1_num_t ge;
secp256k1_num_set_int(&ge, 0);
- // the point being computed
+ /* the point being computed */
secp256k1_gej_t x = a;
const secp256k1_num_t *order = &secp256k1_ge_consts->order;
for (int i=0; i<200*count; i++) {
- // in each iteration, compute X = xn*X + gn*G;
+ /* in each iteration, compute X = xn*X + gn*G; */
secp256k1_ecmult(&x, &x, &xn, &gn);
- // also compute ae and ge: the actual accumulated factors for A and G
- // if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G)
+ /* also compute ae and ge: the actual accumulated factors for A and G */
+ /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
secp256k1_num_mod_mul(&ae, &ae, &xn, order);
secp256k1_num_mod_mul(&ge, &ge, &xn, order);
secp256k1_num_add(&ge, &ge, &gn);
secp256k1_num_mod(&ge, order);
- // modify xn and gn
+ /* modify xn and gn */
secp256k1_num_mod_mul(&xn, &xn, &xf, order);
secp256k1_num_mod_mul(&gn, &gn, &gf, order);
- // verify
+ /* verify */
if (i == 19999) {
char res[132]; int resl = 132;
secp256k1_gej_get_hex(res, &resl, &x);
CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0);
}
}
- // redo the computation, but directly with the resulting ae and ge coefficients:
+ /* redo the computation, but directly with the resulting ae and ge coefficients: */
secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge);
char res[132]; int resl = 132;
char res2[132]; int resl2 = 132;
}
void test_point_times_order(const secp256k1_gej_t *point) {
- // multiplying a point by the order results in O
+ /* multiplying a point by the order results in O */
const secp256k1_num_t *order = &secp256k1_ge_consts->order;
secp256k1_num_t zero;
secp256k1_num_set_int(&zero, 0);
secp256k1_gej_t res;
- secp256k1_ecmult(&res, point, order, order); // calc res = order * point + order * G;
+ secp256k1_ecmult(&res, point, order, order); /* calc res = order * point + order * G; */
CHECK(secp256k1_gej_is_infinity(&res));
}
void run_point_times_order(void) {
- secp256k1_fe_t x; secp256k1_fe_set_hex(&x, "02", 2);
+ secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "02", 2));
for (int i=0; i<500; i++) {
secp256k1_ge_t p;
if (secp256k1_ge_set_xo(&p, &x, 1)) {
secp256k1_num_mul(&x, &x, &two);
int v = wnaf[i];
if (v) {
- CHECK(zeroes == -1 || zeroes >= w-1); // check that distance between non-zero elements is at least w-1
+ CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */
zeroes=0;
- CHECK((v & 1) == 1); // check non-zero elements are odd
- CHECK(v <= (1 << (w-1)) - 1); // check range below
- CHECK(v >= -(1 << (w-1)) - 1); // check range above
+ CHECK((v & 1) == 1); /* check non-zero elements are odd */
+ CHECK(v <= (1 << (w-1)) - 1); /* check range below */
+ CHECK(v >= -(1 << (w-1)) - 1); /* check range above */
} else {
- CHECK(zeroes != -1); // check that no unnecessary zero padding exists
+ CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */
zeroes++;
}
secp256k1_num_set_int(&t, v);
secp256k1_num_add(&x, &x, &t);
}
- CHECK(secp256k1_num_eq(&x, number)); // check that wnaf represents number
+ CHECK(secp256k1_num_eq(&x, number)); /* check that wnaf represents number */
}
void run_wnaf(void) {
unsigned char privkey[32];
unsigned char message[32];
- // Generate a random key and message.
+ /* Generate a random key and message. */
{
secp256k1_num_t msg, key;
random_num_order_test(&msg);
secp256k1_num_get_bin(message, 32, &msg);
}
- // Construct and verify corresponding public key.
+ /* Construct and verify corresponding public key. */
CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
unsigned char pubkey[65]; int pubkeylen = 65;
CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, secp256k1_rand32() % 2) == 1);
CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));
- // Verify private key import and export.
+ /* Verify private key import and export. */
unsigned char seckey[300]; int seckeylen = 300;
CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1);
unsigned char privkey2[32];
CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1);
CHECK(memcmp(privkey, privkey2, 32) == 0);
- // Optionally tweak the keys using addition.
+ /* Optionally tweak the keys using addition. */
if (secp256k1_rand32() % 3 == 0) {
unsigned char rnd[32];
secp256k1_rand256_test(rnd);
CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
}
- // Optionally tweak the keys using multiplication.
+ /* Optionally tweak the keys using multiplication. */
if (secp256k1_rand32() % 3 == 0) {
unsigned char rnd[32];
secp256k1_rand256_test(rnd);
CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
}
- // Sign.
+ /* Sign. */
unsigned char signature[72]; int signaturelen = 72;
while(1) {
unsigned char rnd[32];
break;
}
}
- // Verify.
+ /* Verify. */
CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) == 1);
- // Destroy signature and verify again.
+ /* Destroy signature and verify again. */
signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) != 1);
- // Compact sign.
+ /* Compact sign. */
unsigned char csignature[64]; int recid = 0;
while(1) {
unsigned char rnd[32];
break;
}
}
- // Recover.
+ /* Recover. */
unsigned char recpubkey[65]; int recpubkeylen = 0;
CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
CHECK(recpubkeylen == pubkeylen);
CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
- // Destroy signature and verify again.
+ /* Destroy signature and verify again. */
csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 ||
memcmp(pubkey, recpubkey, pubkeylen) != 0);
}
}
+/* Tests several edge cases. */
+void test_ecdsa_edge_cases(void) {
+ const unsigned char msg32[32] = {
+ 'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
+ 'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
+ 'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
+ 's', 's', 'a', 'g', 'e', '.', '.', '.'
+ };
+ const unsigned char sig64[64] = {
+ /* Generated by signing the above message with nonce 'This is the nonce we will use...'
+ * and secret key 0 (which is not valid), resulting in recid 0. */
+ 0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
+ 0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
+ 0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
+ 0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
+ 0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
+ 0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
+ 0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
+ 0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
+ };
+ unsigned char pubkey[65];
+ int pubkeylen = 65;
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 0));
+ CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 1));
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 2));
+ CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 3));
+
+ /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
+ const unsigned char sigb64[64] = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
+ };
+ unsigned char pubkeyb[33];
+ int pubkeyblen = 33;
+ for (int recid = 0; recid < 4; recid++) {
+ unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
+ CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkeyb, &pubkeyblen, 1, recid));
+ CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1);
+ /* Damage signature. */
+ sigbder[7]++;
+ CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0);
+ }
+}
+
+void run_ecdsa_edge_cases(void) {
+ test_ecdsa_edge_cases();
+}
#ifdef ENABLE_OPENSSL_TESTS
EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) {
#endif
int main(int argc, char **argv) {
- // find iteration count
+ /* find iteration count */
if (argc > 1) {
count = strtol(argv[1], NULL, 0);
}
- // find random seed
+ /* find random seed */
uint64_t seed;
if (argc > 2) {
seed = strtoull(argv[2], NULL, 0);
printf("test count = %i\n", count);
printf("random seed = %llu\n", (unsigned long long)seed);
- // initialize
+ /* initialize */
secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);
- // num tests
+ /* num tests */
run_num_smalltests();
- // scalar tests
+ /* scalar tests */
run_scalar_tests();
- // field tests
+ /* field tests */
run_field_inv();
run_field_inv_var();
run_field_inv_all();
run_sqr();
run_sqrt();
- // group tests
+ /* group tests */
run_ge();
- // ecmult tests
+ /* ecmult tests */
run_wnaf();
run_point_times_order();
run_ecmult_chain();
- // ecdsa tests
+ /* ecdsa tests */
run_ecdsa_sign_verify();
run_ecdsa_end_to_end();
+ run_ecdsa_edge_cases();
#ifdef ENABLE_OPENSSL_TESTS
run_ecdsa_openssl();
#endif
printf("random run = %llu\n", (unsigned long long)secp256k1_rand32() + ((unsigned long long)secp256k1_rand32() << 32));
- // shutdown
+ /* shutdown */
secp256k1_stop();
return 0;
}