#include "secp256k1.c"
#include "include/secp256k1.h"
+#include "include/secp256k1_preallocated.h"
#include "testrand_impl.h"
#ifdef ENABLE_OPENSSL_TESTS
#include "contrib/lax_der_parsing.c"
#include "contrib/lax_der_privatekey_parsing.c"
-#if !defined(VG_CHECK)
-# if defined(VALGRIND)
-# include <valgrind/memcheck.h>
-# define VG_UNDEF(x,y) VALGRIND_MAKE_MEM_UNDEFINED((x),(y))
-# define VG_CHECK(x,y) VALGRIND_CHECK_MEM_IS_DEFINED((x),(y))
-# else
-# define VG_UNDEF(x,y)
-# define VG_CHECK(x,y)
-# endif
-#endif
-
static int count = 64;
static secp256k1_context *ctx = NULL;
secp256k1_fe_negate(&zero, &zero, 0);
secp256k1_fe_mul_int(&zero, n - 1);
secp256k1_fe_add(fe, &zero);
- VERIFY_CHECK(fe->magnitude == n);
+#ifdef VERIFY
+ CHECK(fe->magnitude == n);
+#endif
}
void random_group_element_test(secp256k1_ge *ge) {
} while(1);
}
-void run_context_tests(void) {
+void random_scalar_order_b32(unsigned char *b32) {
+ secp256k1_scalar num;
+ random_scalar_order(&num);
+ secp256k1_scalar_get_b32(b32, &num);
+}
+
+void run_context_tests(int use_prealloc) {
secp256k1_pubkey pubkey;
secp256k1_pubkey zero_pubkey;
secp256k1_ecdsa_signature sig;
unsigned char ctmp[32];
int32_t ecount;
int32_t ecount2;
- secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
- secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
- secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
- secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+ secp256k1_context *none;
+ secp256k1_context *sign;
+ secp256k1_context *vrfy;
+ secp256k1_context *both;
+ void *none_prealloc = NULL;
+ void *sign_prealloc = NULL;
+ void *vrfy_prealloc = NULL;
+ void *both_prealloc = NULL;
secp256k1_gej pubj;
secp256k1_ge pub;
secp256k1_scalar msg, key, nonce;
secp256k1_scalar sigr, sigs;
+ if (use_prealloc) {
+ none_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE));
+ sign_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN));
+ vrfy_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY));
+ both_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY));
+ CHECK(none_prealloc != NULL);
+ CHECK(sign_prealloc != NULL);
+ CHECK(vrfy_prealloc != NULL);
+ CHECK(both_prealloc != NULL);
+ none = secp256k1_context_preallocated_create(none_prealloc, SECP256K1_CONTEXT_NONE);
+ sign = secp256k1_context_preallocated_create(sign_prealloc, SECP256K1_CONTEXT_SIGN);
+ vrfy = secp256k1_context_preallocated_create(vrfy_prealloc, SECP256K1_CONTEXT_VERIFY);
+ both = secp256k1_context_preallocated_create(both_prealloc, SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+ } else {
+ none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
+ sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
+ vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
+ both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
+ }
+
memset(&zero_pubkey, 0, sizeof(zero_pubkey));
ecount = 0;
secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, NULL);
CHECK(vrfy->error_callback.fn != sign->error_callback.fn);
+ /* check if sizes for cloning are consistent */
+ CHECK(secp256k1_context_preallocated_clone_size(none) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE));
+ CHECK(secp256k1_context_preallocated_clone_size(sign) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN));
+ CHECK(secp256k1_context_preallocated_clone_size(vrfy) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY));
+ CHECK(secp256k1_context_preallocated_clone_size(both) == secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY));
+
/*** clone and destroy all of them to make sure cloning was complete ***/
{
secp256k1_context *ctx_tmp;
- ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_destroy(ctx_tmp);
- ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_destroy(ctx_tmp);
- ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_destroy(ctx_tmp);
- ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_destroy(ctx_tmp);
+ if (use_prealloc) {
+ /* clone into a non-preallocated context and then again into a new preallocated one. */
+ ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(none_prealloc); none_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); CHECK(none_prealloc != NULL);
+ ctx_tmp = none; none = secp256k1_context_preallocated_clone(none, none_prealloc); secp256k1_context_destroy(ctx_tmp);
+
+ ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(sign_prealloc); sign_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); CHECK(sign_prealloc != NULL);
+ ctx_tmp = sign; sign = secp256k1_context_preallocated_clone(sign, sign_prealloc); secp256k1_context_destroy(ctx_tmp);
+
+ ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(vrfy_prealloc); vrfy_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); CHECK(vrfy_prealloc != NULL);
+ ctx_tmp = vrfy; vrfy = secp256k1_context_preallocated_clone(vrfy, vrfy_prealloc); secp256k1_context_destroy(ctx_tmp);
+
+ ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(both_prealloc); both_prealloc = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); CHECK(both_prealloc != NULL);
+ ctx_tmp = both; both = secp256k1_context_preallocated_clone(both, both_prealloc); secp256k1_context_destroy(ctx_tmp);
+ } else {
+ /* clone into a preallocated context and then again into a new non-preallocated one. */
+ void *prealloc_tmp;
+
+ prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_NONE)); CHECK(prealloc_tmp != NULL);
+ ctx_tmp = none; none = secp256k1_context_preallocated_clone(none, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = none; none = secp256k1_context_clone(none); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(prealloc_tmp);
+
+ prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN)); CHECK(prealloc_tmp != NULL);
+ ctx_tmp = sign; sign = secp256k1_context_preallocated_clone(sign, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = sign; sign = secp256k1_context_clone(sign); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(prealloc_tmp);
+
+ prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_VERIFY)); CHECK(prealloc_tmp != NULL);
+ ctx_tmp = vrfy; vrfy = secp256k1_context_preallocated_clone(vrfy, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = vrfy; vrfy = secp256k1_context_clone(vrfy); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(prealloc_tmp);
+
+ prealloc_tmp = malloc(secp256k1_context_preallocated_size(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY)); CHECK(prealloc_tmp != NULL);
+ ctx_tmp = both; both = secp256k1_context_preallocated_clone(both, prealloc_tmp); secp256k1_context_destroy(ctx_tmp);
+ ctx_tmp = both; both = secp256k1_context_clone(both); secp256k1_context_preallocated_destroy(ctx_tmp);
+ free(prealloc_tmp);
+ }
}
/* Verify that the error callback makes it across the clone. */
secp256k1_context_set_illegal_callback(vrfy, NULL, NULL);
secp256k1_context_set_illegal_callback(sign, NULL, NULL);
- /* This shouldn't leak memory, due to already-set tests. */
- secp256k1_ecmult_gen_context_build(&sign->ecmult_gen_ctx, NULL);
- secp256k1_ecmult_context_build(&vrfy->ecmult_ctx, NULL);
-
/* obtain a working nonce */
do {
random_scalar_order_test(&nonce);
CHECK(secp256k1_ecdsa_sig_verify(&both->ecmult_ctx, &sigr, &sigs, &pub, &msg));
/* cleanup */
- secp256k1_context_destroy(none);
- secp256k1_context_destroy(sign);
- secp256k1_context_destroy(vrfy);
- secp256k1_context_destroy(both);
+ if (use_prealloc) {
+ secp256k1_context_preallocated_destroy(none);
+ secp256k1_context_preallocated_destroy(sign);
+ secp256k1_context_preallocated_destroy(vrfy);
+ secp256k1_context_preallocated_destroy(both);
+ free(none_prealloc);
+ free(sign_prealloc);
+ free(vrfy_prealloc);
+ free(both_prealloc);
+ } else {
+ secp256k1_context_destroy(none);
+ secp256k1_context_destroy(sign);
+ secp256k1_context_destroy(vrfy);
+ secp256k1_context_destroy(both);
+ }
/* Defined as no-op. */
secp256k1_context_destroy(NULL);
+ secp256k1_context_preallocated_destroy(NULL);
+
}
void run_scratch_tests(void) {
+ const size_t adj_alloc = ((500 + ALIGNMENT - 1) / ALIGNMENT) * ALIGNMENT;
+
int32_t ecount = 0;
+ size_t checkpoint;
+ size_t checkpoint_2;
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_scratch_space *scratch;
+ secp256k1_scratch_space local_scratch;
/* Test public API */
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
+ secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
scratch = secp256k1_scratch_space_create(none, 1000);
CHECK(scratch != NULL);
CHECK(ecount == 0);
/* Test internal API */
- CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
- CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 1000);
-
- /* Allocating 500 bytes with no frame fails */
- CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL);
- CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
-
- /* ...but pushing a new stack frame does affect the max allocation */
- CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1 == 1));
- CHECK(secp256k1_scratch_max_allocation(scratch, 1) < 500); /* 500 - ALIGNMENT */
- CHECK(secp256k1_scratch_alloc(scratch, 500) != NULL);
- CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL);
-
- CHECK(secp256k1_scratch_allocate_frame(scratch, 500, 1) == 0);
+ CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000);
+ CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - (ALIGNMENT - 1));
+ CHECK(scratch->alloc_size == 0);
+ CHECK(scratch->alloc_size % ALIGNMENT == 0);
+
+ /* Allocating 500 bytes succeeds */
+ checkpoint = secp256k1_scratch_checkpoint(&none->error_callback, scratch);
+ CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) != NULL);
+ CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000 - adj_alloc);
+ CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1));
+ CHECK(scratch->alloc_size != 0);
+ CHECK(scratch->alloc_size % ALIGNMENT == 0);
+
+ /* Allocating another 500 bytes fails */
+ CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) == NULL);
+ CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000 - adj_alloc);
+ CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 1) == 1000 - adj_alloc - (ALIGNMENT - 1));
+ CHECK(scratch->alloc_size != 0);
+ CHECK(scratch->alloc_size % ALIGNMENT == 0);
+
+ /* ...but it succeeds once we apply the checkpoint to undo it */
+ secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint);
+ CHECK(scratch->alloc_size == 0);
+ CHECK(secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0) == 1000);
+ CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) != NULL);
+ CHECK(scratch->alloc_size != 0);
+
+ /* try to apply a bad checkpoint */
+ checkpoint_2 = secp256k1_scratch_checkpoint(&none->error_callback, scratch);
+ secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint);
+ CHECK(ecount == 0);
+ secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, checkpoint_2); /* checkpoint_2 is after checkpoint */
+ CHECK(ecount == 1);
+ secp256k1_scratch_apply_checkpoint(&none->error_callback, scratch, (size_t) -1); /* this is just wildly invalid */
+ CHECK(ecount == 2);
- /* ...and this effect is undone by popping the frame */
- secp256k1_scratch_deallocate_frame(scratch);
- CHECK(secp256k1_scratch_max_allocation(scratch, 0) == 1000);
- CHECK(secp256k1_scratch_alloc(scratch, 500) == NULL);
+ /* try to use badly initialized scratch space */
+ secp256k1_scratch_space_destroy(none, scratch);
+ memset(&local_scratch, 0, sizeof(local_scratch));
+ scratch = &local_scratch;
+ CHECK(!secp256k1_scratch_max_allocation(&none->error_callback, scratch, 0));
+ CHECK(ecount == 3);
+ CHECK(secp256k1_scratch_alloc(&none->error_callback, scratch, 500) == NULL);
+ CHECK(ecount == 4);
+ secp256k1_scratch_space_destroy(none, scratch);
+ CHECK(ecount == 5);
/* cleanup */
- secp256k1_scratch_space_destroy(scratch);
+ secp256k1_scratch_space_destroy(none, NULL); /* no-op */
secp256k1_context_destroy(none);
}
}
+void run_scalar_set_b32_seckey_tests(void) {
+ unsigned char b32[32];
+ secp256k1_scalar s1;
+ secp256k1_scalar s2;
+
+ /* Usually set_b32 and set_b32_seckey give the same result */
+ random_scalar_order_b32(b32);
+ secp256k1_scalar_set_b32(&s1, b32, NULL);
+ CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 1);
+ CHECK(secp256k1_scalar_eq(&s1, &s2) == 1);
+
+ memset(b32, 0, sizeof(b32));
+ CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0);
+ memset(b32, 0xFF, sizeof(b32));
+ CHECK(secp256k1_scalar_set_b32_seckey(&s2, b32) == 0);
+}
+
void run_scalar_tests(void) {
int i;
for (i = 0; i < 128 * count; i++) {
scalar_test();
}
+ for (i = 0; i < count; i++) {
+ run_scalar_set_b32_seckey_tests();
+ }
{
/* (-1)+1 should be zero. */
#ifndef USE_NUM_NONE
{
- /* A scalar with value of the curve order should be 0. */
+ /* Test secp256k1_scalar_set_b32 boundary conditions */
secp256k1_num order;
- secp256k1_scalar zero;
+ secp256k1_scalar scalar;
unsigned char bin[32];
+ unsigned char bin_tmp[32];
int overflow = 0;
+ /* 2^256-1 - order */
+ static const secp256k1_scalar all_ones_minus_order = SECP256K1_SCALAR_CONST(
+ 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000001UL,
+ 0x45512319UL, 0x50B75FC4UL, 0x402DA173UL, 0x2FC9BEBEUL
+ );
+
+ /* A scalar set to 0s should be 0. */
+ memset(bin, 0, 32);
+ secp256k1_scalar_set_b32(&scalar, bin, &overflow);
+ CHECK(overflow == 0);
+ CHECK(secp256k1_scalar_is_zero(&scalar));
+
+ /* A scalar with value of the curve order should be 0. */
secp256k1_scalar_order_get_num(&order);
secp256k1_num_get_bin(bin, 32, &order);
- secp256k1_scalar_set_b32(&zero, bin, &overflow);
+ secp256k1_scalar_set_b32(&scalar, bin, &overflow);
CHECK(overflow == 1);
- CHECK(secp256k1_scalar_is_zero(&zero));
+ CHECK(secp256k1_scalar_is_zero(&scalar));
+
+ /* A scalar with value of the curve order minus one should not overflow. */
+ bin[31] -= 1;
+ secp256k1_scalar_set_b32(&scalar, bin, &overflow);
+ CHECK(overflow == 0);
+ secp256k1_scalar_get_b32(bin_tmp, &scalar);
+ CHECK(memcmp(bin, bin_tmp, 32) == 0);
+
+ /* A scalar set to all 1s should overflow. */
+ memset(bin, 0xFF, 32);
+ secp256k1_scalar_set_b32(&scalar, bin, &overflow);
+ CHECK(overflow == 1);
+ CHECK(secp256k1_scalar_eq(&scalar, &all_ones_minus_order));
}
#endif
/* Test fe conditional move; z is not normalized here. */
q = x;
secp256k1_fe_cmov(&x, &z, 0);
- VERIFY_CHECK(!x.normalized && x.magnitude == z.magnitude);
+#ifdef VERIFY
+ CHECK(x.normalized && x.magnitude == 1);
+#endif
secp256k1_fe_cmov(&x, &x, 1);
CHECK(fe_memcmp(&x, &z) != 0);
CHECK(fe_memcmp(&x, &q) == 0);
secp256k1_fe_cmov(&q, &z, 1);
- VERIFY_CHECK(!q.normalized && q.magnitude == z.magnitude);
+#ifdef VERIFY
+ CHECK(!q.normalized && q.magnitude == z.magnitude);
+#endif
CHECK(fe_memcmp(&q, &z) == 0);
secp256k1_fe_normalize_var(&x);
secp256k1_fe_normalize_var(&z);
CHECK(!secp256k1_fe_equal_var(&x, &z));
secp256k1_fe_normalize_var(&q);
secp256k1_fe_cmov(&q, &z, (i&1));
- VERIFY_CHECK(q.normalized && q.magnitude == 1);
+#ifdef VERIFY
+ CHECK(q.normalized && q.magnitude == 1);
+#endif
for (j = 0; j < 6; j++) {
secp256k1_fe_negate(&z, &z, j+1);
secp256k1_fe_normalize_var(&q);
secp256k1_fe_cmov(&q, &z, (j&1));
- VERIFY_CHECK(!q.normalized && q.magnitude == (j+2));
+#ifdef VERIFY
+ CHECK((q.normalized != (j&1)) && q.magnitude == ((j&1) ? z.magnitude : 1));
+#endif
}
secp256k1_fe_normalize_var(&z);
/* Test storage conversion and conditional moves. */
/* Test batch gej -> ge conversion with many infinities. */
for (i = 0; i < 4 * runs + 1; i++) {
random_group_element_test(&ge[i]);
- /* randomly set half the points to infinitiy */
+ /* randomly set half the points to infinity */
if(secp256k1_fe_is_odd(&ge[i].x)) {
secp256k1_ge_set_infinity(&ge[i]);
}
secp256k1_gej r;
secp256k1_gej r2;
ecmult_multi_data data;
- secp256k1_scratch *scratch_empty;
data.sc = sc;
data.pt = pt;
secp256k1_scalar_set_int(&szero, 0);
/* No points to multiply */
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, NULL, ecmult_multi_callback, &data, 0));
/* Check 1- and 2-point multiplies against ecmult */
for (ncount = 0; ncount < count; ncount++) {
/* only G scalar */
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &szero, &sc[0]);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &sc[0], ecmult_multi_callback, &data, 0));
secp256k1_gej_neg(&r2, &r2);
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
/* 1-point */
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &szero);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 1));
secp256k1_gej_neg(&r2, &r2);
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
- /* Try to multiply 1 point, but scratch space is empty */
- scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0);
- CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1));
- secp256k1_scratch_destroy(scratch_empty);
-
/* Try to multiply 1 point, but callback returns false */
- CHECK(!ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1));
+ CHECK(!ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_false_callback, &data, 1));
/* 2-point */
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 2));
secp256k1_gej_neg(&r2, &r2);
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
/* 2-point with G scalar */
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &ptgj, &sc[0], &sc[1]);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &sc[1], ecmult_multi_callback, &data, 1));
secp256k1_gej_neg(&r2, &r2);
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
random_scalar_order(&sc[i]);
secp256k1_ge_set_infinity(&pt[i]);
}
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
CHECK(secp256k1_gej_is_infinity(&r));
}
pt[i] = ptg;
secp256k1_scalar_set_int(&sc[i], 0);
}
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
CHECK(secp256k1_gej_is_infinity(&r));
}
pt[2 * i + 1] = ptg;
}
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
CHECK(secp256k1_gej_is_infinity(&r));
random_scalar_order(&sc[0]);
secp256k1_ge_neg(&pt[2*i+1], &pt[2*i]);
}
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, sizes[j]));
CHECK(secp256k1_gej_is_infinity(&r));
}
secp256k1_scalar_negate(&sc[i], &sc[i]);
}
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 32));
CHECK(secp256k1_gej_is_infinity(&r));
}
}
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &r, &sc[0], &szero);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
secp256k1_gej_neg(&r2, &r2);
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
secp256k1_gej_set_ge(&p0j, &pt[0]);
secp256k1_ecmult(&ctx->ecmult_ctx, &r2, &p0j, &rs, &szero);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
secp256k1_gej_neg(&r2, &r2);
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
}
secp256k1_scalar_clear(&sc[0]);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 20));
secp256k1_scalar_clear(&sc[1]);
secp256k1_scalar_clear(&sc[2]);
secp256k1_scalar_clear(&sc[3]);
secp256k1_scalar_clear(&sc[4]);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6));
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 6));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &szero, ecmult_multi_callback, &data, 5));
CHECK(secp256k1_gej_is_infinity(&r));
/* Run through s0*(t0*P) + s1*(t1*P) exhaustively for many small values of s0, s1, t0, t1 */
secp256k1_scalar_add(&tmp1, &tmp1, &tmp2);
secp256k1_ecmult(&ctx->ecmult_ctx, &expected, &ptgj, &tmp1, &szero);
- CHECK(ecmult_multi(&ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2));
+ CHECK(ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &actual, &szero, ecmult_multi_callback, &data, 2));
secp256k1_gej_neg(&expected, &expected);
secp256k1_gej_add_var(&actual, &actual, &expected, NULL);
CHECK(secp256k1_gej_is_infinity(&actual));
}
}
+void test_ecmult_multi_batch_single(secp256k1_ecmult_multi_func ecmult_multi) {
+ secp256k1_scalar szero;
+ secp256k1_scalar sc;
+ secp256k1_ge pt;
+ secp256k1_gej r;
+ ecmult_multi_data data;
+ secp256k1_scratch *scratch_empty;
+
+ random_group_element_test(&pt);
+ random_scalar_order(&sc);
+ data.sc = ≻
+ data.pt = &pt;
+ secp256k1_scalar_set_int(&szero, 0);
+
+ /* Try to multiply 1 point, but scratch space is empty.*/
+ scratch_empty = secp256k1_scratch_create(&ctx->error_callback, 0);
+ CHECK(!ecmult_multi(&ctx->error_callback, &ctx->ecmult_ctx, scratch_empty, &r, &szero, ecmult_multi_callback, &data, 1));
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch_empty);
+}
+
void test_secp256k1_pippenger_bucket_window_inv(void) {
int i;
int bucket_window = 0;
for(; scratch_size < max_size; scratch_size+=256) {
+ size_t i;
+ size_t total_alloc;
+ size_t checkpoint;
scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size);
CHECK(scratch != NULL);
- n_points_supported = secp256k1_pippenger_max_points(scratch);
+ checkpoint = secp256k1_scratch_checkpoint(&ctx->error_callback, scratch);
+ n_points_supported = secp256k1_pippenger_max_points(&ctx->error_callback, scratch);
if (n_points_supported == 0) {
- secp256k1_scratch_destroy(scratch);
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch);
continue;
}
bucket_window = secp256k1_pippenger_bucket_window(n_points_supported);
- CHECK(secp256k1_scratch_allocate_frame(scratch, secp256k1_pippenger_scratch_size(n_points_supported, bucket_window), PIPPENGER_SCRATCH_OBJECTS));
- secp256k1_scratch_deallocate_frame(scratch);
- secp256k1_scratch_destroy(scratch);
+ /* allocate `total_alloc` bytes over `PIPPENGER_SCRATCH_OBJECTS` many allocations */
+ total_alloc = secp256k1_pippenger_scratch_size(n_points_supported, bucket_window);
+ for (i = 0; i < PIPPENGER_SCRATCH_OBJECTS - 1; i++) {
+ CHECK(secp256k1_scratch_alloc(&ctx->error_callback, scratch, 1));
+ total_alloc--;
+ }
+ CHECK(secp256k1_scratch_alloc(&ctx->error_callback, scratch, total_alloc));
+ secp256k1_scratch_apply_checkpoint(&ctx->error_callback, scratch, checkpoint);
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch);
}
CHECK(bucket_window == PIPPENGER_MAX_BUCKET_WINDOW);
}
}
data.sc = sc;
data.pt = pt;
+ secp256k1_gej_neg(&r2, &r2);
- /* Test with empty scratch space */
+ /* Test with empty scratch space. It should compute the correct result using
+ * ecmult_mult_simple algorithm which doesn't require a scratch space. */
scratch = secp256k1_scratch_create(&ctx->error_callback, 0);
- CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1));
- secp256k1_scratch_destroy(scratch);
+ CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
+ secp256k1_gej_add_var(&r, &r, &r2, NULL);
+ CHECK(secp256k1_gej_is_infinity(&r));
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch);
/* Test with space for 1 point in pippenger. That's not enough because
- * ecmult_multi selects strauss which requires more memory. */
+ * ecmult_multi selects strauss which requires more memory. It should
+ * therefore select the simple algorithm. */
scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_pippenger_scratch_size(1, 1) + PIPPENGER_SCRATCH_OBJECTS*ALIGNMENT);
- CHECK(!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, 1));
- secp256k1_scratch_destroy(scratch);
+ CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
+ secp256k1_gej_add_var(&r, &r, &r2, NULL);
+ CHECK(secp256k1_gej_is_infinity(&r));
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch);
- secp256k1_gej_neg(&r2, &r2);
for(i = 1; i <= n_points; i++) {
if (i > ECMULT_PIPPENGER_THRESHOLD) {
int bucket_window = secp256k1_pippenger_bucket_window(i);
size_t scratch_size = secp256k1_strauss_scratch_size(i);
scratch = secp256k1_scratch_create(&ctx->error_callback, scratch_size + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
}
- CHECK(secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
+ CHECK(secp256k1_ecmult_multi_var(&ctx->error_callback, &ctx->ecmult_ctx, scratch, &r, &scG, ecmult_multi_callback, &data, n_points));
secp256k1_gej_add_var(&r, &r, &r2, NULL);
CHECK(secp256k1_gej_is_infinity(&r));
- secp256k1_scratch_destroy(scratch);
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch);
}
free(sc);
free(pt);
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
test_ecmult_multi(NULL, secp256k1_ecmult_multi_var);
test_ecmult_multi(scratch, secp256k1_ecmult_pippenger_batch_single);
+ test_ecmult_multi_batch_single(secp256k1_ecmult_pippenger_batch_single);
test_ecmult_multi(scratch, secp256k1_ecmult_strauss_batch_single);
- secp256k1_scratch_destroy(scratch);
+ test_ecmult_multi_batch_single(secp256k1_ecmult_strauss_batch_single);
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch);
/* Run test_ecmult_multi with space for exactly one point */
scratch = secp256k1_scratch_create(&ctx->error_callback, secp256k1_strauss_scratch_size(1) + STRAUSS_SCRATCH_OBJECTS*ALIGNMENT);
test_ecmult_multi(scratch, secp256k1_ecmult_multi_var);
- secp256k1_scratch_destroy(scratch);
+ secp256k1_scratch_destroy(&ctx->error_callback, scratch);
test_ecmult_multi_batch_size_helper();
test_ecmult_multi_batching();
int skew;
int bits = 256;
secp256k1_scalar num = *number;
+ secp256k1_scalar scalar_skew;
secp256k1_scalar_set_int(&x, 0);
secp256k1_scalar_set_int(&shift, 1 << w);
secp256k1_scalar_add(&x, &x, &t);
}
/* Skew num because when encoding numbers as odd we use an offset */
- secp256k1_scalar_cadd_bit(&num, skew == 2, 1);
+ secp256k1_scalar_set_int(&scalar_skew, 1 << (skew == 2));
+ secp256k1_scalar_add(&num, &num, &scalar_skew);
CHECK(secp256k1_scalar_eq(&x, &num));
}
int i;
secp256k1_scalar n = {{0}};
+ test_constant_wnaf(&n, 4);
/* Sanity check: 1 and 2 are the smallest odd and even numbers and should
* have easier-to-diagnose failure modes */
n.d[0] = 1;
test_constant_wnaf(&n, 4);
n.d[0] = 2;
test_constant_wnaf(&n, 4);
- /* Test 0 */
+ /* Test -1, because it's a special case in wnaf_const */
+ n = secp256k1_scalar_one;
+ secp256k1_scalar_negate(&n, &n);
+ test_constant_wnaf(&n, 4);
+
+ /* Test -2, which may not lead to overflows in wnaf_const */
+ secp256k1_scalar_add(&n, &secp256k1_scalar_one, &secp256k1_scalar_one);
+ secp256k1_scalar_negate(&n, &n);
+ test_constant_wnaf(&n, 4);
+
+ /* Test (1/2) - 1 = 1/-2 and 1/2 = (1/-2) + 1
+ as corner cases of negation handling in wnaf_const */
+ secp256k1_scalar_inverse(&n, &n);
+ test_constant_wnaf(&n, 4);
+
+ secp256k1_scalar_add(&n, &n, &secp256k1_scalar_one);
+ test_constant_wnaf(&n, 4);
+
+ /* Test 0 for fixed wnaf */
test_fixed_wnaf_small();
/* Random tests */
for (i = 0; i < count; i++) {
pubkey_negone = pubkey;
/* Tweak of zero leaves the value unchanged. */
memset(ctmp2, 0, 32);
- CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, ctmp2) == 1);
+ CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 1);
CHECK(memcmp(orderc, ctmp, 31) == 0 && ctmp[31] == 0x40);
memcpy(&pubkey2, &pubkey, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
/* Multiply tweak of zero zeroizes the output. */
- CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, ctmp2) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0);
CHECK(memcmp(zeros, ctmp, 32) == 0);
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, ctmp2) == 0);
CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
- /* Overflowing key tweak zeroizes. */
+ /* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing
+ seckey, the seckey is zeroized. */
+ memcpy(ctmp, orderc, 32);
+ memset(ctmp2, 0, 32);
+ ctmp2[31] = 0x01;
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp2) == 1);
+ CHECK(secp256k1_ec_seckey_verify(ctx, ctmp) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, ctmp2) == 0);
+ CHECK(memcmp(zeros, ctmp, 32) == 0);
+ memcpy(ctmp, orderc, 32);
+ CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, ctmp2) == 0);
+ CHECK(memcmp(zeros, ctmp, 32) == 0);
+ /* If seckey_tweak_add or seckey_tweak_mul are called with an overflowing
+ tweak, the seckey is zeroized. */
memcpy(ctmp, orderc, 32);
ctmp[31] = 0x40;
- CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, orderc) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, orderc) == 0);
CHECK(memcmp(zeros, ctmp, 32) == 0);
memcpy(ctmp, orderc, 32);
ctmp[31] = 0x40;
- CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, orderc) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, orderc) == 0);
CHECK(memcmp(zeros, ctmp, 32) == 0);
memcpy(ctmp, orderc, 32);
ctmp[31] = 0x40;
+ /* If pubkey_tweak_add or pubkey_tweak_mul are called with an overflowing
+ tweak, the pubkey is zeroized. */
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, orderc) == 0);
CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
CHECK(secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, orderc) == 0);
CHECK(memcmp(&pubkey, zeros, sizeof(pubkey)) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
- /* Private key tweaks results in a key of zero. */
+ /* If the resulting key in secp256k1_ec_seckey_tweak_add and
+ * secp256k1_ec_pubkey_tweak_add is 0 the functions fail and in the latter
+ * case the pubkey is zeroized. */
+ memcpy(ctmp, orderc, 32);
+ ctmp[31] = 0x40;
+ memset(ctmp2, 0, 32);
ctmp2[31] = 1;
- CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 0);
CHECK(memcmp(zeros, ctmp2, 32) == 0);
ctmp2[31] = 1;
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 0);
memcpy(&pubkey, &pubkey2, sizeof(pubkey));
/* Tweak computation wraps and results in a key of 1. */
ctmp2[31] = 2;
- CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp2, ctmp) == 1);
+ CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp2, ctmp) == 1);
CHECK(memcmp(ctmp2, zeros, 31) == 0 && ctmp2[31] == 1);
ctmp2[31] = 2;
CHECK(secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, ctmp2) == 1);
CHECK(ecount == 2);
ecount = 0;
memset(ctmp2, 0, 32);
- CHECK(secp256k1_ec_privkey_tweak_add(ctx, NULL, ctmp2) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_add(ctx, NULL, ctmp2) == 0);
CHECK(ecount == 1);
- CHECK(secp256k1_ec_privkey_tweak_add(ctx, ctmp, NULL) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_add(ctx, ctmp, NULL) == 0);
CHECK(ecount == 2);
ecount = 0;
memset(ctmp2, 0, 32);
ctmp2[31] = 1;
- CHECK(secp256k1_ec_privkey_tweak_mul(ctx, NULL, ctmp2) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_mul(ctx, NULL, ctmp2) == 0);
CHECK(ecount == 1);
- CHECK(secp256k1_ec_privkey_tweak_mul(ctx, ctmp, NULL) == 0);
+ CHECK(secp256k1_ec_seckey_tweak_mul(ctx, ctmp, NULL) == 0);
CHECK(ecount == 2);
ecount = 0;
CHECK(secp256k1_ec_pubkey_create(ctx, NULL, ctmp) == 0);
secp256k1_context_set_illegal_callback(ctx, NULL, NULL);
}
+void run_eckey_negate_test(void) {
+ unsigned char seckey[32];
+ unsigned char seckey_tmp[32];
+
+ random_scalar_order_b32(seckey);
+ memcpy(seckey_tmp, seckey, 32);
+
+ /* Verify negation changes the key and changes it back */
+ CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
+ CHECK(memcmp(seckey, seckey_tmp, 32) != 0);
+ CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
+ CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+
+ /* Check that privkey alias gives same result */
+ CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 1);
+ CHECK(secp256k1_ec_privkey_negate(ctx, seckey_tmp) == 1);
+ CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+
+ /* Negating all 0s fails */
+ memset(seckey, 0, 32);
+ memset(seckey_tmp, 0, 32);
+ CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0);
+ /* Check that seckey is not modified */
+ CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+
+ /* Negating an overflowing seckey fails and the seckey is zeroed. In this
+ * test, the seckey has 16 random bytes to ensure that ec_seckey_negate
+ * doesn't just set seckey to a constant value in case of failure. */
+ random_scalar_order_b32(seckey);
+ memset(seckey, 0xFF, 16);
+ memset(seckey_tmp, 0, 32);
+ CHECK(secp256k1_ec_seckey_negate(ctx, seckey) == 0);
+ CHECK(memcmp(seckey, seckey_tmp, 32) == 0);
+}
+
void random_sign(secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *key, const secp256k1_scalar *msg, int *recid) {
secp256k1_scalar nonce;
do {
if (secp256k1_rand_int(3) == 0) {
int ret1;
int ret2;
+ int ret3;
unsigned char rnd[32];
+ unsigned char privkey_tmp[32];
secp256k1_pubkey pubkey2;
secp256k1_rand256_test(rnd);
- ret1 = secp256k1_ec_privkey_tweak_add(ctx, privkey, rnd);
+ memcpy(privkey_tmp, privkey, 32);
+ ret1 = secp256k1_ec_seckey_tweak_add(ctx, privkey, rnd);
ret2 = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, rnd);
+ /* Check that privkey alias gives same result */
+ ret3 = secp256k1_ec_privkey_tweak_add(ctx, privkey_tmp, rnd);
CHECK(ret1 == ret2);
+ CHECK(ret2 == ret3);
if (ret1 == 0) {
return;
}
+ CHECK(memcmp(privkey, privkey_tmp, 32) == 0);
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
}
if (secp256k1_rand_int(3) == 0) {
int ret1;
int ret2;
+ int ret3;
unsigned char rnd[32];
+ unsigned char privkey_tmp[32];
secp256k1_pubkey pubkey2;
secp256k1_rand256_test(rnd);
- ret1 = secp256k1_ec_privkey_tweak_mul(ctx, privkey, rnd);
+ memcpy(privkey_tmp, privkey, 32);
+ ret1 = secp256k1_ec_seckey_tweak_mul(ctx, privkey, rnd);
ret2 = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, rnd);
+ /* Check that privkey alias gives same result */
+ ret3 = secp256k1_ec_privkey_tweak_mul(ctx, privkey_tmp, rnd);
CHECK(ret1 == ret2);
+ CHECK(ret2 == ret3);
if (ret1 == 0) {
return;
}
+ CHECK(memcmp(privkey, privkey_tmp, 32) == 0);
CHECK(secp256k1_ec_pubkey_create(ctx, &pubkey2, privkey) == 1);
CHECK(memcmp(&pubkey, &pubkey2, sizeof(pubkey)) == 0);
}
if (valid_der) {
ret |= (!roundtrips_der_lax) << 12;
ret |= (len_der != len_der_lax) << 13;
- ret |= (memcmp(roundtrip_der_lax, roundtrip_der, len_der) != 0) << 14;
+ ret |= ((len_der != len_der_lax) || (memcmp(roundtrip_der_lax, roundtrip_der, len_der) != 0)) << 14;
}
ret |= (roundtrips_der != roundtrips_der_lax) << 15;
if (parsed_der) {
ret |= (roundtrips_der != roundtrips_openssl) << 7;
if (roundtrips_openssl) {
ret |= (len_der != (size_t)len_openssl) << 8;
- ret |= (memcmp(roundtrip_der, roundtrip_openssl, len_der) != 0) << 9;
+ ret |= ((len_der != (size_t)len_openssl) || (memcmp(roundtrip_der, roundtrip_openssl, len_der) != 0)) << 9;
}
#endif
return ret;
# include "modules/recovery/tests_impl.h"
#endif
+void run_memczero_test(void) {
+ unsigned char buf1[6] = {1, 2, 3, 4, 5, 6};
+ unsigned char buf2[sizeof(buf1)];
+
+ /* memczero(..., ..., 0) is a noop. */
+ memcpy(buf2, buf1, sizeof(buf1));
+ memczero(buf1, sizeof(buf1), 0);
+ CHECK(memcmp(buf1, buf2, sizeof(buf1)) == 0);
+
+ /* memczero(..., ..., 1) zeros the buffer. */
+ memset(buf2, 0, sizeof(buf2));
+ memczero(buf1, sizeof(buf1) , 1);
+ CHECK(memcmp(buf1, buf2, sizeof(buf1)) == 0);
+}
+
+void int_cmov_test(void) {
+ int r = INT_MAX;
+ int a = 0;
+
+ secp256k1_int_cmov(&r, &a, 0);
+ CHECK(r == INT_MAX);
+
+ r = 0; a = INT_MAX;
+ secp256k1_int_cmov(&r, &a, 1);
+ CHECK(r == INT_MAX);
+
+ a = 0;
+ secp256k1_int_cmov(&r, &a, 1);
+ CHECK(r == 0);
+
+ a = 1;
+ secp256k1_int_cmov(&r, &a, 1);
+ CHECK(r == 1);
+
+ r = 1; a = 0;
+ secp256k1_int_cmov(&r, &a, 0);
+ CHECK(r == 1);
+
+}
+
+void fe_cmov_test(void) {
+ static const secp256k1_fe zero = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ static const secp256k1_fe one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ static const secp256k1_fe max = SECP256K1_FE_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
+ );
+ secp256k1_fe r = max;
+ secp256k1_fe a = zero;
+
+ secp256k1_fe_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ r = zero; a = max;
+ secp256k1_fe_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ a = zero;
+ secp256k1_fe_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+
+ a = one;
+ secp256k1_fe_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+
+ r = one; a = zero;
+ secp256k1_fe_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+}
+
+void fe_storage_cmov_test(void) {
+ static const secp256k1_fe_storage zero = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ static const secp256k1_fe_storage one = SECP256K1_FE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ static const secp256k1_fe_storage max = SECP256K1_FE_STORAGE_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
+ );
+ secp256k1_fe_storage r = max;
+ secp256k1_fe_storage a = zero;
+
+ secp256k1_fe_storage_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ r = zero; a = max;
+ secp256k1_fe_storage_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ a = zero;
+ secp256k1_fe_storage_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+
+ a = one;
+ secp256k1_fe_storage_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+
+ r = one; a = zero;
+ secp256k1_fe_storage_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+}
+
+void scalar_cmov_test(void) {
+ static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
+ static const secp256k1_scalar one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
+ static const secp256k1_scalar max = SECP256K1_SCALAR_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
+ );
+ secp256k1_scalar r = max;
+ secp256k1_scalar a = zero;
+
+ secp256k1_scalar_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ r = zero; a = max;
+ secp256k1_scalar_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ a = zero;
+ secp256k1_scalar_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+
+ a = one;
+ secp256k1_scalar_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+
+ r = one; a = zero;
+ secp256k1_scalar_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+}
+
+void ge_storage_cmov_test(void) {
+ static const secp256k1_ge_storage zero = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
+ static const secp256k1_ge_storage one = SECP256K1_GE_STORAGE_CONST(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1);
+ static const secp256k1_ge_storage max = SECP256K1_GE_STORAGE_CONST(
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
+ 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL
+ );
+ secp256k1_ge_storage r = max;
+ secp256k1_ge_storage a = zero;
+
+ secp256k1_ge_storage_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ r = zero; a = max;
+ secp256k1_ge_storage_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &max, sizeof(r)) == 0);
+
+ a = zero;
+ secp256k1_ge_storage_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &zero, sizeof(r)) == 0);
+
+ a = one;
+ secp256k1_ge_storage_cmov(&r, &a, 1);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+
+ r = one; a = zero;
+ secp256k1_ge_storage_cmov(&r, &a, 0);
+ CHECK(memcmp(&r, &one, sizeof(r)) == 0);
+}
+
+void run_cmov_tests(void) {
+ int_cmov_test();
+ fe_cmov_test();
+ fe_storage_cmov_test();
+ scalar_cmov_test();
+ ge_storage_cmov_test();
+}
+
int main(int argc, char **argv) {
unsigned char seed16[16] = {0};
unsigned char run32[32] = {0};
+
+ /* Disable buffering for stdout to improve reliability of getting
+ * diagnostic information. Happens right at the start of main because
+ * setbuf must be used before any other operation on the stream. */
+ setbuf(stdout, NULL);
+ /* Also disable buffering for stderr because it's not guaranteed that it's
+ * unbuffered on all systems. */
+ setbuf(stderr, NULL);
+
/* find iteration count */
if (argc > 1) {
count = strtol(argv[1], NULL, 0);
const char* ch = argv[2];
while (pos < 16 && ch[0] != 0 && ch[1] != 0) {
unsigned short sh;
- if (sscanf(ch, "%2hx", &sh)) {
+ if ((sscanf(ch, "%2hx", &sh)) == 1) {
seed16[pos] = sh;
} else {
break;
printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);
/* initialize */
- run_context_tests();
+ run_context_tests(0);
+ run_context_tests(1);
run_scratch_tests();
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
if (secp256k1_rand_bits(1)) {
/* EC key edge cases */
run_eckey_edge_case_test();
+ /* EC key arithmetic test */
+ run_eckey_negate_test();
+
#ifdef ENABLE_MODULE_ECDH
/* ecdh tests */
run_ecdh_tests();
run_recovery_tests();
#endif
+ /* util tests */
+ run_memczero_test();
+
+ run_cmov_tests();
+
secp256k1_rand256(run32);
printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);