free(zinv);
}
+
+void test_intialized_inf(void) {
+ secp256k1_ge p;
+ secp256k1_gej pj, npj, infj1, infj2, infj3;
+ secp256k1_fe zinv;
+
+ /* Test that adding P+(-P) results in a fully initalized infinity*/
+ random_group_element_test(&p);
+ secp256k1_gej_set_ge(&pj, &p);
+ secp256k1_gej_neg(&npj, &pj);
+
+ secp256k1_gej_add_var(&infj1, &pj, &npj, NULL);
+ CHECK(secp256k1_gej_is_infinity(&infj1));
+ CHECK(secp256k1_fe_is_zero(&infj1.x));
+ CHECK(secp256k1_fe_is_zero(&infj1.y));
+ CHECK(secp256k1_fe_is_zero(&infj1.z));
+
+ secp256k1_gej_add_ge_var(&infj2, &npj, &p, NULL);
+ CHECK(secp256k1_gej_is_infinity(&infj2));
+ CHECK(secp256k1_fe_is_zero(&infj2.x));
+ CHECK(secp256k1_fe_is_zero(&infj2.y));
+ CHECK(secp256k1_fe_is_zero(&infj2.z));
+
+ secp256k1_fe_set_int(&zinv, 1);
+ secp256k1_gej_add_zinv_var(&infj3, &npj, &p, &zinv);
+ CHECK(secp256k1_gej_is_infinity(&infj3));
+ CHECK(secp256k1_fe_is_zero(&infj3.x));
+ CHECK(secp256k1_fe_is_zero(&infj3.y));
+ CHECK(secp256k1_fe_is_zero(&infj3.z));
+
+
+}
+
void test_add_neg_y_diff_x(void) {
/* The point of this test is to check that we can add two points
* whose y-coordinates are negatives of each other but whose x
test_ge();
}
test_add_neg_y_diff_x();
+ test_intialized_inf();
}
void test_ec_combine(void) {