1 /***********************************************************************
2 * Copyright (c) 2014-2015 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
9 #include "../include/secp256k1.h"
11 #include "assumptions.h"
13 #include "hash_impl.h"
14 #include "field_impl.h"
15 #include "group_impl.h"
16 #include "scalar_impl.h"
17 #include "ecmult_const_impl.h"
18 #include "ecmult_impl.h"
22 secp256k1_scalar scalar[2];
26 unsigned char data[64];
30 void bench_setup(void* arg) {
31 bench_inv *data = (bench_inv*)arg;
33 static const unsigned char init[4][32] = {
34 /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
35 and the (implied affine) X coordinate of gej[0]. */
37 0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
38 0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
39 0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
40 0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
42 /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
43 and the (implied affine) X coordinate of gej[1]. */
45 0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
46 0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
47 0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
48 0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
50 /* Initializer for fe[2] and the Z coordinate of gej[0]. */
52 0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
53 0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
54 0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
55 0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
57 /* Initializer for fe[3] and the Z coordinate of gej[1]. */
59 0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
60 0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
61 0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
62 0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
66 secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
67 secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
68 secp256k1_fe_set_b32(&data->fe[0], init[0]);
69 secp256k1_fe_set_b32(&data->fe[1], init[1]);
70 secp256k1_fe_set_b32(&data->fe[2], init[2]);
71 secp256k1_fe_set_b32(&data->fe[3], init[3]);
72 CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
73 CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
74 secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
75 secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
76 secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
77 secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
78 memcpy(data->data, init[0], 32);
79 memcpy(data->data + 32, init[1], 32);
82 void bench_scalar_add(void* arg, int iters) {
84 bench_inv *data = (bench_inv*)arg;
86 for (i = 0; i < iters; i++) {
87 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
92 void bench_scalar_negate(void* arg, int iters) {
94 bench_inv *data = (bench_inv*)arg;
96 for (i = 0; i < iters; i++) {
97 secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
101 void bench_scalar_mul(void* arg, int iters) {
103 bench_inv *data = (bench_inv*)arg;
105 for (i = 0; i < iters; i++) {
106 secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
110 void bench_scalar_split(void* arg, int iters) {
112 bench_inv *data = (bench_inv*)arg;
114 for (i = 0; i < iters; i++) {
115 secp256k1_scalar_split_lambda(&data->scalar[0], &data->scalar[1], &data->scalar[0]);
116 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
121 void bench_scalar_inverse(void* arg, int iters) {
123 bench_inv *data = (bench_inv*)arg;
125 for (i = 0; i < iters; i++) {
126 secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
127 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
132 void bench_scalar_inverse_var(void* arg, int iters) {
134 bench_inv *data = (bench_inv*)arg;
136 for (i = 0; i < iters; i++) {
137 secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
138 j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
143 void bench_field_normalize(void* arg, int iters) {
145 bench_inv *data = (bench_inv*)arg;
147 for (i = 0; i < iters; i++) {
148 secp256k1_fe_normalize(&data->fe[0]);
152 void bench_field_normalize_weak(void* arg, int iters) {
154 bench_inv *data = (bench_inv*)arg;
156 for (i = 0; i < iters; i++) {
157 secp256k1_fe_normalize_weak(&data->fe[0]);
161 void bench_field_mul(void* arg, int iters) {
163 bench_inv *data = (bench_inv*)arg;
165 for (i = 0; i < iters; i++) {
166 secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
170 void bench_field_sqr(void* arg, int iters) {
172 bench_inv *data = (bench_inv*)arg;
174 for (i = 0; i < iters; i++) {
175 secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
179 void bench_field_inverse(void* arg, int iters) {
181 bench_inv *data = (bench_inv*)arg;
183 for (i = 0; i < iters; i++) {
184 secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
185 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
189 void bench_field_inverse_var(void* arg, int iters) {
191 bench_inv *data = (bench_inv*)arg;
193 for (i = 0; i < iters; i++) {
194 secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
195 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
199 void bench_field_sqrt(void* arg, int iters) {
201 bench_inv *data = (bench_inv*)arg;
204 for (i = 0; i < iters; i++) {
206 j += secp256k1_fe_sqrt(&data->fe[0], &t);
207 secp256k1_fe_add(&data->fe[0], &data->fe[1]);
212 void bench_group_double_var(void* arg, int iters) {
214 bench_inv *data = (bench_inv*)arg;
216 for (i = 0; i < iters; i++) {
217 secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
221 void bench_group_add_var(void* arg, int iters) {
223 bench_inv *data = (bench_inv*)arg;
225 for (i = 0; i < iters; i++) {
226 secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
230 void bench_group_add_affine(void* arg, int iters) {
232 bench_inv *data = (bench_inv*)arg;
234 for (i = 0; i < iters; i++) {
235 secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
239 void bench_group_add_affine_var(void* arg, int iters) {
241 bench_inv *data = (bench_inv*)arg;
243 for (i = 0; i < iters; i++) {
244 secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
248 void bench_group_to_affine_var(void* arg, int iters) {
250 bench_inv *data = (bench_inv*)arg;
252 for (i = 0; i < iters; ++i) {
253 secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
254 /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
255 Note that the resulting coordinates will generally not correspond to a point
256 on the curve, but this is not a problem for the code being benchmarked here.
257 Adding and normalizing have less overhead than EC operations (which could
258 guarantee the point remains on the curve). */
259 secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
260 secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
261 secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
262 secp256k1_fe_normalize_var(&data->gej[0].x);
263 secp256k1_fe_normalize_var(&data->gej[0].y);
264 secp256k1_fe_normalize_var(&data->gej[0].z);
268 void bench_ecmult_wnaf(void* arg, int iters) {
269 int i, bits = 0, overflow = 0;
270 bench_inv *data = (bench_inv*)arg;
272 for (i = 0; i < iters; i++) {
273 bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
274 overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
276 CHECK(overflow >= 0);
277 CHECK(bits <= 256*iters);
280 void bench_wnaf_const(void* arg, int iters) {
281 int i, bits = 0, overflow = 0;
282 bench_inv *data = (bench_inv*)arg;
284 for (i = 0; i < iters; i++) {
285 bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
286 overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
288 CHECK(overflow >= 0);
289 CHECK(bits <= 256*iters);
293 void bench_sha256(void* arg, int iters) {
295 bench_inv *data = (bench_inv*)arg;
296 secp256k1_sha256 sha;
298 for (i = 0; i < iters; i++) {
299 secp256k1_sha256_initialize(&sha);
300 secp256k1_sha256_write(&sha, data->data, 32);
301 secp256k1_sha256_finalize(&sha, data->data);
305 void bench_hmac_sha256(void* arg, int iters) {
307 bench_inv *data = (bench_inv*)arg;
308 secp256k1_hmac_sha256 hmac;
310 for (i = 0; i < iters; i++) {
311 secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
312 secp256k1_hmac_sha256_write(&hmac, data->data, 32);
313 secp256k1_hmac_sha256_finalize(&hmac, data->data);
317 void bench_rfc6979_hmac_sha256(void* arg, int iters) {
319 bench_inv *data = (bench_inv*)arg;
320 secp256k1_rfc6979_hmac_sha256 rng;
322 for (i = 0; i < iters; i++) {
323 secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
324 secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
328 void bench_context_verify(void* arg, int iters) {
331 for (i = 0; i < iters; i++) {
332 secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
336 void bench_context_sign(void* arg, int iters) {
339 for (i = 0; i < iters; i++) {
340 secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
344 int main(int argc, char **argv) {
346 int iters = get_iters(20000);
348 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
349 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
350 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
351 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
352 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
353 if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);
355 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
356 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
357 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
358 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
359 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
360 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
361 if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);
363 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
364 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
365 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
366 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
367 if (have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);
369 if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
370 if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);
372 if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
373 if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
374 if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);
376 if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000);
377 if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100);