1 /**********************************************************************
2 * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
7 #ifndef SECP256K1_ECMULT_GEN_IMPL_H
8 #define SECP256K1_ECMULT_GEN_IMPL_H
13 #include "ecmult_gen.h"
14 #include "hash_impl.h"
15 #ifdef USE_ECMULT_STATIC_PRECOMPUTATION
16 #include "ecmult_static_context.h"
19 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
20 static const size_t SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE = ROUND_TO_ALIGN(sizeof(*((secp256k1_ecmult_gen_context*) NULL)->prec));
22 static const size_t SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE = 0;
25 static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
29 static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
30 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
31 secp256k1_ge prec[1024];
33 secp256k1_gej nums_gej;
37 if (ctx->prec != NULL) {
40 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
41 ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
43 /* get the generator */
44 secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
46 /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
48 static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
52 r = secp256k1_fe_set_b32(&nums_x, nums_b32);
55 r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
58 secp256k1_gej_set_ge(&nums_gej, &nums_ge);
59 /* Add G to make the bits in x uniformly distributed. */
60 secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
65 secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
67 secp256k1_gej numsbase;
68 gbase = gj; /* 16^j * G */
69 numsbase = nums_gej; /* 2^j * nums. */
70 for (j = 0; j < 64; j++) {
71 /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
72 precj[j*16] = numsbase;
73 for (i = 1; i < 16; i++) {
74 secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
76 /* Multiply gbase by 16. */
77 for (i = 0; i < 4; i++) {
78 secp256k1_gej_double_var(&gbase, &gbase, NULL);
80 /* Multiply numbase by 2. */
81 secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
83 /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
84 secp256k1_gej_neg(&numsbase, &numsbase);
85 secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
88 secp256k1_ge_set_all_gej_var(prec, precj, 1024);
90 for (j = 0; j < 64; j++) {
91 for (i = 0; i < 16; i++) {
92 secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
97 ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
99 secp256k1_ecmult_gen_blind(ctx, NULL);
102 static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
103 return ctx->prec != NULL;
106 static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
107 const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
108 if (src->prec == NULL) {
111 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
112 dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
113 memcpy(dst->prec, src->prec, sizeof(*dst->prec));
116 dst->prec = src->prec;
118 dst->initial = src->initial;
119 dst->blind = src->blind;
123 static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
124 #ifndef USE_ECMULT_STATIC_PRECOMPUTATION
127 secp256k1_scalar_clear(&ctx->blind);
128 secp256k1_gej_clear(&ctx->initial);
132 static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
134 secp256k1_ge_storage adds;
135 secp256k1_scalar gnb;
138 memset(&adds, 0, sizeof(adds));
140 /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
141 secp256k1_scalar_add(&gnb, gn, &ctx->blind);
143 for (j = 0; j < 64; j++) {
144 bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
145 for (i = 0; i < 16; i++) {
146 /** This uses a conditional move to avoid any secret data in array indexes.
147 * _Any_ use of secret indexes has been demonstrated to result in timing
148 * sidechannels, even when the cache-line access patterns are uniform.
150 * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
151 * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
152 * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
153 * by Dag Arne Osvik, Adi Shamir, and Eran Tromer
154 * (http://www.tau.ac.il/~tromer/papers/cache.pdf)
156 secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
158 secp256k1_ge_from_storage(&add, &adds);
159 secp256k1_gej_add_ge(r, r, &add);
162 secp256k1_ge_clear(&add);
163 secp256k1_scalar_clear(&gnb);
166 /* Setup blinding values for secp256k1_ecmult_gen. */
167 static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
171 unsigned char nonce32[32];
172 secp256k1_rfc6979_hmac_sha256 rng;
174 unsigned char keydata[64] = {0};
175 if (seed32 == NULL) {
176 /* When seed is NULL, reset the initial point and blinding value. */
177 secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
178 secp256k1_gej_neg(&ctx->initial, &ctx->initial);
179 secp256k1_scalar_set_int(&ctx->blind, 1);
181 /* The prior blinding value (if not reset) is chained forward by including it in the hash. */
182 secp256k1_scalar_get_b32(nonce32, &ctx->blind);
183 /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
184 * and guards against weak or adversarial seeds. This is a simpler and safer interface than
185 * asking the caller for blinding values directly and expecting them to retry on failure.
187 memcpy(keydata, nonce32, 32);
188 if (seed32 != NULL) {
189 memcpy(keydata + 32, seed32, 32);
191 secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
192 memset(keydata, 0, sizeof(keydata));
193 /* Retry for out of range results to achieve uniformity. */
195 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
196 retry = !secp256k1_fe_set_b32(&s, nonce32);
197 retry |= secp256k1_fe_is_zero(&s);
198 } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
199 /* Randomize the projection to defend against multiplier sidechannels. */
200 secp256k1_gej_rescale(&ctx->initial, &s);
201 secp256k1_fe_clear(&s);
203 secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
204 secp256k1_scalar_set_b32(&b, nonce32, &retry);
205 /* A blinding value of 0 works, but would undermine the projection hardening. */
206 retry |= secp256k1_scalar_is_zero(&b);
207 } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
208 secp256k1_rfc6979_hmac_sha256_finalize(&rng);
209 memset(nonce32, 0, 32);
210 secp256k1_ecmult_gen(ctx, &gb, &b);
211 secp256k1_scalar_negate(&b, &b);
214 secp256k1_scalar_clear(&b);
215 secp256k1_gej_clear(&gb);
218 #endif /* SECP256K1_ECMULT_GEN_IMPL_H */