]>
Commit | Line | Data |
---|---|---|
1 | /********************************************************************** | |
2 | * Copyright (c) 2013, 2014 Pieter Wuille * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
6 | ||
7 | #ifndef _SECP256K1_GROUP_IMPL_H_ | |
8 | #define _SECP256K1_GROUP_IMPL_H_ | |
9 | ||
10 | #include <string.h> | |
11 | ||
12 | #include "num.h" | |
13 | #include "field.h" | |
14 | #include "group.h" | |
15 | ||
16 | static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) { | |
17 | r->infinity = 1; | |
18 | } | |
19 | ||
20 | static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { | |
21 | r->infinity = 0; | |
22 | r->x = *x; | |
23 | r->y = *y; | |
24 | } | |
25 | ||
26 | static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { | |
27 | return a->infinity; | |
28 | } | |
29 | ||
30 | static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { | |
31 | *r = *a; | |
32 | secp256k1_fe_normalize_weak(&r->y); | |
33 | secp256k1_fe_negate(&r->y, &r->y, 1); | |
34 | } | |
35 | ||
36 | static void secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) { | |
37 | char cx[65]; int lx=65; | |
38 | char cy[65]; int ly=65; | |
39 | secp256k1_fe_get_hex(cx, &lx, &a->x); | |
40 | secp256k1_fe_get_hex(cy, &ly, &a->y); | |
41 | lx = strlen(cx); | |
42 | ly = strlen(cy); | |
43 | int len = lx + ly + 3 + 1; | |
44 | if (*rlen < len) { | |
45 | *rlen = len; | |
46 | return; | |
47 | } | |
48 | *rlen = len; | |
49 | r[0] = '('; | |
50 | memcpy(r+1, cx, lx); | |
51 | r[1+lx] = ','; | |
52 | memcpy(r+2+lx, cy, ly); | |
53 | r[2+lx+ly] = ')'; | |
54 | r[3+lx+ly] = 0; | |
55 | } | |
56 | ||
57 | static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { | |
58 | r->infinity = a->infinity; | |
59 | secp256k1_fe_inv(&a->z, &a->z); | |
60 | secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |
61 | secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2); | |
62 | secp256k1_fe_mul(&a->x, &a->x, &z2); | |
63 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
64 | secp256k1_fe_set_int(&a->z, 1); | |
65 | r->x = a->x; | |
66 | r->y = a->y; | |
67 | } | |
68 | ||
69 | static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) { | |
70 | r->infinity = a->infinity; | |
71 | if (a->infinity) { | |
72 | return; | |
73 | } | |
74 | secp256k1_fe_inv_var(&a->z, &a->z); | |
75 | secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |
76 | secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2); | |
77 | secp256k1_fe_mul(&a->x, &a->x, &z2); | |
78 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
79 | secp256k1_fe_set_int(&a->z, 1); | |
80 | r->x = a->x; | |
81 | r->y = a->y; | |
82 | } | |
83 | ||
84 | static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]) { | |
85 | size_t count = 0; | |
86 | secp256k1_fe_t *az = checked_malloc(sizeof(secp256k1_fe_t) * len); | |
87 | for (size_t i=0; i<len; i++) { | |
88 | if (!a[i].infinity) { | |
89 | az[count++] = a[i].z; | |
90 | } | |
91 | } | |
92 | ||
93 | secp256k1_fe_t *azi = checked_malloc(sizeof(secp256k1_fe_t) * count); | |
94 | secp256k1_fe_inv_all_var(count, azi, az); | |
95 | free(az); | |
96 | ||
97 | count = 0; | |
98 | for (size_t i=0; i<len; i++) { | |
99 | r[i].infinity = a[i].infinity; | |
100 | if (!a[i].infinity) { | |
101 | secp256k1_fe_t *zi = &azi[count++]; | |
102 | secp256k1_fe_t zi2; secp256k1_fe_sqr(&zi2, zi); | |
103 | secp256k1_fe_t zi3; secp256k1_fe_mul(&zi3, &zi2, zi); | |
104 | secp256k1_fe_mul(&r[i].x, &a[i].x, &zi2); | |
105 | secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3); | |
106 | } | |
107 | } | |
108 | free(azi); | |
109 | } | |
110 | ||
111 | static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) { | |
112 | r->infinity = 1; | |
113 | secp256k1_fe_set_int(&r->x, 0); | |
114 | secp256k1_fe_set_int(&r->y, 0); | |
115 | secp256k1_fe_set_int(&r->z, 0); | |
116 | } | |
117 | ||
118 | static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { | |
119 | r->infinity = 0; | |
120 | r->x = *x; | |
121 | r->y = *y; | |
122 | secp256k1_fe_set_int(&r->z, 1); | |
123 | } | |
124 | ||
125 | static void secp256k1_gej_clear(secp256k1_gej_t *r) { | |
126 | r->infinity = 0; | |
127 | secp256k1_fe_clear(&r->x); | |
128 | secp256k1_fe_clear(&r->y); | |
129 | secp256k1_fe_clear(&r->z); | |
130 | } | |
131 | ||
132 | static void secp256k1_ge_clear(secp256k1_ge_t *r) { | |
133 | r->infinity = 0; | |
134 | secp256k1_fe_clear(&r->x); | |
135 | secp256k1_fe_clear(&r->y); | |
136 | } | |
137 | ||
138 | static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { | |
139 | r->x = *x; | |
140 | secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x); | |
141 | secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2); | |
142 | r->infinity = 0; | |
143 | secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); | |
144 | secp256k1_fe_add(&c, &x3); | |
145 | if (!secp256k1_fe_sqrt_var(&r->y, &c)) | |
146 | return 0; | |
147 | secp256k1_fe_normalize_var(&r->y); | |
148 | if (secp256k1_fe_is_odd(&r->y) != odd) | |
149 | secp256k1_fe_negate(&r->y, &r->y, 1); | |
150 | return 1; | |
151 | } | |
152 | ||
153 | static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { | |
154 | r->infinity = a->infinity; | |
155 | r->x = a->x; | |
156 | r->y = a->y; | |
157 | secp256k1_fe_set_int(&r->z, 1); | |
158 | } | |
159 | ||
160 | static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) { | |
161 | VERIFY_CHECK(!a->infinity); | |
162 | secp256k1_fe_t r; secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); | |
163 | secp256k1_fe_t r2 = a->x; secp256k1_fe_normalize_weak(&r2); | |
164 | return secp256k1_fe_equal_var(&r, &r2); | |
165 | } | |
166 | ||
167 | static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { | |
168 | r->infinity = a->infinity; | |
169 | r->x = a->x; | |
170 | r->y = a->y; | |
171 | r->z = a->z; | |
172 | secp256k1_fe_normalize_weak(&r->y); | |
173 | secp256k1_fe_negate(&r->y, &r->y, 1); | |
174 | } | |
175 | ||
176 | static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { | |
177 | return a->infinity; | |
178 | } | |
179 | ||
180 | static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) { | |
181 | if (a->infinity) | |
182 | return 0; | |
183 | /** y^2 = x^3 + 7 | |
184 | * (Y/Z^3)^2 = (X/Z^2)^3 + 7 | |
185 | * Y^2 / Z^6 = X^3 / Z^6 + 7 | |
186 | * Y^2 = X^3 + 7*Z^6 | |
187 | */ | |
188 | secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); | |
189 | secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
190 | secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |
191 | secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); | |
192 | secp256k1_fe_mul_int(&z6, 7); | |
193 | secp256k1_fe_add(&x3, &z6); | |
194 | secp256k1_fe_normalize_weak(&x3); | |
195 | return secp256k1_fe_equal_var(&y2, &x3); | |
196 | } | |
197 | ||
198 | static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) { | |
199 | if (a->infinity) | |
200 | return 0; | |
201 | /* y^2 = x^3 + 7 */ | |
202 | secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); | |
203 | secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
204 | secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); | |
205 | secp256k1_fe_add(&x3, &c); | |
206 | secp256k1_fe_normalize_weak(&x3); | |
207 | return secp256k1_fe_equal_var(&y2, &x3); | |
208 | } | |
209 | ||
210 | static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) { | |
211 | // For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, | |
212 | // Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have | |
213 | // y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. | |
214 | r->infinity = a->infinity; | |
215 | if (r->infinity) { | |
216 | return; | |
217 | } | |
218 | ||
219 | secp256k1_fe_t t1,t2,t3,t4; | |
220 | secp256k1_fe_mul(&r->z, &a->z, &a->y); | |
221 | secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ | |
222 | secp256k1_fe_sqr(&t1, &a->x); | |
223 | secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ | |
224 | secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ | |
225 | secp256k1_fe_sqr(&t3, &a->y); | |
226 | secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ | |
227 | secp256k1_fe_sqr(&t4, &t3); | |
228 | secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ | |
229 | secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ | |
230 | r->x = t3; | |
231 | secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ | |
232 | secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ | |
233 | secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ | |
234 | secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ | |
235 | secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ | |
236 | secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ | |
237 | secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ | |
238 | secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ | |
239 | secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ | |
240 | } | |
241 | ||
242 | static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) { | |
243 | if (a->infinity) { | |
244 | *r = *b; | |
245 | return; | |
246 | } | |
247 | if (b->infinity) { | |
248 | *r = *a; | |
249 | return; | |
250 | } | |
251 | r->infinity = 0; | |
252 | secp256k1_fe_t z22; secp256k1_fe_sqr(&z22, &b->z); | |
253 | secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); | |
254 | secp256k1_fe_t u1; secp256k1_fe_mul(&u1, &a->x, &z22); | |
255 | secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); | |
256 | secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |
257 | secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
258 | secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
259 | secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
260 | if (secp256k1_fe_normalizes_to_zero(&h)) { | |
261 | if (secp256k1_fe_normalizes_to_zero(&i)) { | |
262 | secp256k1_gej_double_var(r, a); | |
263 | } else { | |
264 | r->infinity = 1; | |
265 | } | |
266 | return; | |
267 | } | |
268 | secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); | |
269 | secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); | |
270 | secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); | |
271 | secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h); | |
272 | secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); | |
273 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); | |
274 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
275 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); | |
276 | secp256k1_fe_add(&r->y, &h3); | |
277 | } | |
278 | ||
279 | static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { | |
280 | if (a->infinity) { | |
281 | r->infinity = b->infinity; | |
282 | r->x = b->x; | |
283 | r->y = b->y; | |
284 | secp256k1_fe_set_int(&r->z, 1); | |
285 | return; | |
286 | } | |
287 | if (b->infinity) { | |
288 | *r = *a; | |
289 | return; | |
290 | } | |
291 | r->infinity = 0; | |
292 | secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); | |
293 | secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize_weak(&u1); | |
294 | secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); | |
295 | secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize_weak(&s1); | |
296 | secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
297 | secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); | |
298 | secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); | |
299 | if (secp256k1_fe_normalizes_to_zero(&h)) { | |
300 | if (secp256k1_fe_normalizes_to_zero(&i)) { | |
301 | secp256k1_gej_double_var(r, a); | |
302 | } else { | |
303 | r->infinity = 1; | |
304 | } | |
305 | return; | |
306 | } | |
307 | secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); | |
308 | secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); | |
309 | secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); | |
310 | r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); | |
311 | secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); | |
312 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); | |
313 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
314 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); | |
315 | secp256k1_fe_add(&r->y, &h3); | |
316 | } | |
317 | ||
318 | static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { | |
319 | VERIFY_CHECK(!b->infinity); | |
320 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
321 | ||
322 | /** In: | |
323 | * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. | |
324 | * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. | |
325 | * we find as solution for a unified addition/doubling formula: | |
326 | * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. | |
327 | * x3 = lambda^2 - (x1 + x2) | |
328 | * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). | |
329 | * | |
330 | * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: | |
331 | * U1 = X1*Z2^2, U2 = X2*Z1^2 | |
332 | * S1 = Y1*Z2^3, S2 = Y2*Z1^3 | |
333 | * Z = Z1*Z2 | |
334 | * T = U1+U2 | |
335 | * M = S1+S2 | |
336 | * Q = T*M^2 | |
337 | * R = T^2-U1*U2 | |
338 | * X3 = 4*(R^2-Q) | |
339 | * Y3 = 4*(R*(3*Q-2*R^2)-M^4) | |
340 | * Z3 = 2*M*Z | |
341 | * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) | |
342 | */ | |
343 | ||
344 | secp256k1_fe_t zz; secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ | |
345 | secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ | |
346 | secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ | |
347 | secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ | |
348 | secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z2^2 (1) */ | |
349 | secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ | |
350 | secp256k1_fe_t z = a->z; /* z = Z = Z1*Z2 (8) */ | |
351 | secp256k1_fe_t t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ | |
352 | secp256k1_fe_t m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ | |
353 | secp256k1_fe_t n; secp256k1_fe_sqr(&n, &m); /* n = M^2 (1) */ | |
354 | secp256k1_fe_t q; secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*M^2 (1) */ | |
355 | secp256k1_fe_sqr(&n, &n); /* n = M^4 (1) */ | |
356 | secp256k1_fe_t rr; secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ | |
357 | secp256k1_fe_mul(&t, &u1, &u2); secp256k1_fe_negate(&t, &t, 1); /* t = -U1*U2 (2) */ | |
358 | secp256k1_fe_add(&rr, &t); /* rr = R = T^2-U1*U2 (3) */ | |
359 | secp256k1_fe_sqr(&t, &rr); /* t = R^2 (1) */ | |
360 | secp256k1_fe_mul(&r->z, &m, &z); /* r->z = M*Z (1) */ | |
361 | int infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); | |
362 | secp256k1_fe_mul_int(&r->z, 2 * (1 - a->infinity)); /* r->z = Z3 = 2*M*Z (2) */ | |
363 | r->x = t; /* r->x = R^2 (1) */ | |
364 | secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ | |
365 | secp256k1_fe_add(&r->x, &q); /* r->x = R^2-Q (3) */ | |
366 | secp256k1_fe_normalize(&r->x); | |
367 | secp256k1_fe_mul_int(&q, 3); /* q = -3*Q (6) */ | |
368 | secp256k1_fe_mul_int(&t, 2); /* t = 2*R^2 (2) */ | |
369 | secp256k1_fe_add(&t, &q); /* t = 2*R^2-3*Q (8) */ | |
370 | secp256k1_fe_mul(&t, &t, &rr); /* t = R*(2*R^2-3*Q) (1) */ | |
371 | secp256k1_fe_add(&t, &n); /* t = R*(2*R^2-3*Q)+M^4 (2) */ | |
372 | secp256k1_fe_negate(&r->y, &t, 2); /* r->y = R*(3*Q-2*R^2)-M^4 (3) */ | |
373 | secp256k1_fe_normalize_weak(&r->y); | |
374 | secp256k1_fe_mul_int(&r->x, 4 * (1 - a->infinity)); /* r->x = X3 = 4*(R^2-Q) */ | |
375 | secp256k1_fe_mul_int(&r->y, 4 * (1 - a->infinity)); /* r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) */ | |
376 | ||
377 | /** In case a->infinity == 1, the above code results in r->x, r->y, and r->z all equal to 0. | |
378 | * Add b->x to x, b->y to y, and 1 to z in that case. | |
379 | */ | |
380 | t = b->x; secp256k1_fe_mul_int(&t, a->infinity); | |
381 | secp256k1_fe_add(&r->x, &t); | |
382 | t = b->y; secp256k1_fe_mul_int(&t, a->infinity); | |
383 | secp256k1_fe_add(&r->y, &t); | |
384 | secp256k1_fe_set_int(&t, a->infinity); | |
385 | secp256k1_fe_add(&r->z, &t); | |
386 | r->infinity = infinity; | |
387 | } | |
388 | ||
389 | ||
390 | ||
391 | static void secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a) { | |
392 | secp256k1_gej_t c = *a; | |
393 | secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c); | |
394 | secp256k1_ge_get_hex(r, rlen, &t); | |
395 | } | |
396 | ||
397 | #ifdef USE_ENDOMORPHISM | |
398 | static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) { | |
399 | const secp256k1_fe_t *beta = &secp256k1_ge_consts->beta; | |
400 | *r = *a; | |
401 | secp256k1_fe_mul(&r->x, &r->x, beta); | |
402 | } | |
403 | #endif | |
404 | ||
405 | static void secp256k1_ge_start(void) { | |
406 | static const unsigned char secp256k1_ge_consts_g_x[] = { | |
407 | 0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC, | |
408 | 0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07, | |
409 | 0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9, | |
410 | 0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98 | |
411 | }; | |
412 | static const unsigned char secp256k1_ge_consts_g_y[] = { | |
413 | 0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65, | |
414 | 0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8, | |
415 | 0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19, | |
416 | 0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8 | |
417 | }; | |
418 | #ifdef USE_ENDOMORPHISM | |
419 | /* properties of secp256k1's efficiently computable endomorphism */ | |
420 | static const unsigned char secp256k1_ge_consts_beta[] = { | |
421 | 0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10, | |
422 | 0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9, | |
423 | 0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95, | |
424 | 0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee | |
425 | }; | |
426 | #endif | |
427 | if (secp256k1_ge_consts == NULL) { | |
428 | secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)checked_malloc(sizeof(secp256k1_ge_consts_t)); | |
429 | #ifdef USE_ENDOMORPHISM | |
430 | VERIFY_CHECK(secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta)); | |
431 | #endif | |
432 | secp256k1_fe_t g_x, g_y; | |
433 | VERIFY_CHECK(secp256k1_fe_set_b32(&g_x, secp256k1_ge_consts_g_x)); | |
434 | VERIFY_CHECK(secp256k1_fe_set_b32(&g_y, secp256k1_ge_consts_g_y)); | |
435 | secp256k1_ge_set_xy(&ret->g, &g_x, &g_y); | |
436 | secp256k1_ge_consts = ret; | |
437 | } | |
438 | } | |
439 | ||
440 | static void secp256k1_ge_stop(void) { | |
441 | if (secp256k1_ge_consts != NULL) { | |
442 | secp256k1_ge_consts_t *c = (secp256k1_ge_consts_t*)secp256k1_ge_consts; | |
443 | free((void*)c); | |
444 | secp256k1_ge_consts = NULL; | |
445 | } | |
446 | } | |
447 | ||
448 | #endif |