]> Git Repo - secp256k1.git/blame - src/ecdsa_impl.h
Merge #713: Docstrings
[secp256k1.git] / src / ecdsa_impl.h
CommitLineData
71712b27 1/**********************************************************************
fea19e7b 2 * Copyright (c) 2013-2015 Pieter Wuille *
71712b27
GM
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
0a433ea2 7
abe2d3e8
DR
8#ifndef SECP256K1_ECDSA_IMPL_H
9#define SECP256K1_ECDSA_IMPL_H
7a4b7691 10
f24041d6 11#include "scalar.h"
11ab5622
PW
12#include "field.h"
13#include "group.h"
14#include "ecmult.h"
949c1ebb 15#include "ecmult_gen.h"
11ab5622 16#include "ecdsa.h"
607884fc 17
6efd6e77
GM
18/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
19 * sage: for t in xrange(1023, -1, -1):
20 * .. p = 2**256 - 2**32 - t
21 * .. if p.is_prime():
22 * .. print '%x'%p
23 * .. break
24 * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
25 * sage: a = 0
26 * sage: b = 7
27 * sage: F = FiniteField (p)
28 * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
29 * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
30 */
dd891e0e 31static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
4732d260
PW
32 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
33 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
34);
f24041d6 35
6efd6e77
GM
36/** Difference between field and order, values 'p' and 'n' values defined in
37 * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
38 * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
39 * sage: a = 0
40 * sage: b = 7
41 * sage: F = FiniteField (p)
42 * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
43 * '14551231950b75fc4402da1722fc9baee'
44 */
dd891e0e 45static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
4732d260
PW
46 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
47);
f24041d6 48
01ee1b3b
TR
49static int secp256k1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) {
50 size_t lenleft;
51 unsigned char b1;
52 VERIFY_CHECK(len != NULL);
53 *len = 0;
3bb9c447 54 if (*sigp >= sigend) {
01ee1b3b 55 return 0;
26320197 56 }
3bb9c447
PW
57 b1 = *((*sigp)++);
58 if (b1 == 0xFF) {
59 /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
01ee1b3b 60 return 0;
26320197 61 }
3bb9c447
PW
62 if ((b1 & 0x80) == 0) {
63 /* X.690-0207 8.1.3.4 short form length octets */
01ee1b3b
TR
64 *len = b1;
65 return 1;
26320197 66 }
3bb9c447
PW
67 if (b1 == 0x80) {
68 /* Indefinite length is not allowed in DER. */
01ee1b3b 69 return 0;
3bb9c447
PW
70 }
71 /* X.690-207 8.1.3.5 long form length octets */
3cb057f8 72 lenleft = b1 & 0x7F; /* lenleft is at least 1 */
01ee1b3b
TR
73 if (lenleft > (size_t)(sigend - *sigp)) {
74 return 0;
3bb9c447
PW
75 }
76 if (**sigp == 0) {
77 /* Not the shortest possible length encoding. */
01ee1b3b 78 return 0;
3bb9c447 79 }
01ee1b3b 80 if (lenleft > sizeof(size_t)) {
269d4227
GM
81 /* The resulting length would exceed the range of a size_t, so
82 * certainly longer than the passed array size.
83 */
01ee1b3b 84 return 0;
26320197 85 }
3bb9c447 86 while (lenleft > 0) {
01ee1b3b 87 *len = (*len << 8) | **sigp;
3bb9c447
PW
88 (*sigp)++;
89 lenleft--;
90 }
01ee1b3b 91 if (*len > (size_t)(sigend - *sigp)) {
3cb057f8 92 /* Result exceeds the length of the passed array. */
01ee1b3b 93 return 0;
3cb057f8 94 }
01ee1b3b 95 if (*len < 128) {
3bb9c447 96 /* Not the shortest possible length encoding. */
01ee1b3b 97 return 0;
3bb9c447 98 }
01ee1b3b 99 return 1;
3bb9c447
PW
100}
101
102static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
103 int overflow = 0;
104 unsigned char ra[32] = {0};
01ee1b3b 105 size_t rlen;
3bb9c447
PW
106
107 if (*sig == sigend || **sig != 0x02) {
108 /* Not a primitive integer (X.690-0207 8.3.1). */
26320197
GM
109 return 0;
110 }
3bb9c447 111 (*sig)++;
01ee1b3b
TR
112 if (secp256k1_der_read_len(&rlen, sig, sigend) == 0) {
113 return 0;
114 }
115 if (rlen == 0 || *sig + rlen > sigend) {
3bb9c447 116 /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
26320197
GM
117 return 0;
118 }
3bb9c447
PW
119 if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
120 /* Excessive 0x00 padding. */
26320197
GM
121 return 0;
122 }
3bb9c447
PW
123 if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
124 /* Excessive 0xFF padding. */
26320197
GM
125 return 0;
126 }
3bb9c447
PW
127 if ((**sig & 0x80) == 0x80) {
128 /* Negative. */
129 overflow = 1;
130 }
14c7dbd4
TR
131 /* There is at most one leading zero byte:
132 * if there were two leading zero bytes, we would have failed and returned 0
133 * because of excessive 0x00 padding already. */
134 if (rlen > 0 && **sig == 0) {
135 /* Skip leading zero byte */
3bb9c447
PW
136 rlen--;
137 (*sig)++;
138 }
139 if (rlen > 32) {
140 overflow = 1;
f24041d6 141 }
3bb9c447
PW
142 if (!overflow) {
143 memcpy(ra + 32 - rlen, *sig, rlen);
144 secp256k1_scalar_set_b32(r, ra, &overflow);
145 }
146 if (overflow) {
147 secp256k1_scalar_set_int(r, 0);
148 }
149 (*sig) += rlen;
150 return 1;
151}
152
153static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
154 const unsigned char *sigend = sig + size;
01ee1b3b 155 size_t rlen;
3bb9c447
PW
156 if (sig == sigend || *(sig++) != 0x30) {
157 /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
26320197
GM
158 return 0;
159 }
01ee1b3b
TR
160 if (secp256k1_der_read_len(&rlen, &sig, sigend) == 0) {
161 return 0;
162 }
ec8f20ba
TR
163 if (rlen != (size_t)(sigend - sig)) {
164 /* Tuple exceeds bounds or garage after tuple. */
26320197
GM
165 return 0;
166 }
3bb9c447
PW
167
168 if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
26320197
GM
169 return 0;
170 }
3bb9c447 171 if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
26320197
GM
172 return 0;
173 }
3bb9c447
PW
174
175 if (sig != sigend) {
176 /* Trailing garbage inside tuple. */
177 return 0;
178 }
179
d41e93a5 180 return 1;
607884fc
PW
181}
182
dd891e0e 183static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
f24041d6 184 unsigned char r[33] = {0}, s[33] = {0};
f24041d6 185 unsigned char *rp = r, *sp = s;
788038d3 186 size_t lenR = 33, lenS = 33;
18c329c5
PW
187 secp256k1_scalar_get_b32(&r[1], ar);
188 secp256k1_scalar_get_b32(&s[1], as);
f24041d6
PW
189 while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
190 while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
26320197 191 if (*size < 6+lenS+lenR) {
74a2acdb 192 *size = 6 + lenS + lenR;
d41e93a5 193 return 0;
26320197 194 }
0a07e62f
PW
195 *size = 6 + lenS + lenR;
196 sig[0] = 0x30;
197 sig[1] = 4 + lenS + lenR;
198 sig[2] = 0x02;
199 sig[3] = lenR;
f24041d6 200 memcpy(sig+4, rp, lenR);
0a07e62f
PW
201 sig[4+lenR] = 0x02;
202 sig[5+lenR] = lenS;
f24041d6 203 memcpy(sig+lenR+6, sp, lenS);
d41e93a5 204 return 1;
0a07e62f
PW
205}
206
dd891e0e 207static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
792bcdb0 208 unsigned char c[32];
dd891e0e 209 secp256k1_scalar sn, u1, u2;
b4ceedf1 210#if !defined(EXHAUSTIVE_TEST_ORDER)
dd891e0e 211 secp256k1_fe xr;
b4ceedf1 212#endif
dd891e0e
PW
213 secp256k1_gej pubkeyj;
214 secp256k1_gej pr;
792bcdb0 215
18c329c5 216 if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
d41e93a5 217 return 0;
26320197 218 }
607884fc 219
18c329c5 220 secp256k1_scalar_inverse_var(&sn, sigs);
f24041d6 221 secp256k1_scalar_mul(&u1, &sn, message);
18c329c5 222 secp256k1_scalar_mul(&u2, &sn, sigr);
792bcdb0 223 secp256k1_gej_set_ge(&pubkeyj, pubkey);
a9b6595e 224 secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
ce7eb6fb
PW
225 if (secp256k1_gej_is_infinity(&pr)) {
226 return 0;
227 }
b4ceedf1
AP
228
229#if defined(EXHAUSTIVE_TEST_ORDER)
230{
231 secp256k1_scalar computed_r;
b4ceedf1
AP
232 secp256k1_ge pr_ge;
233 secp256k1_ge_set_gej(&pr_ge, &pr);
234 secp256k1_fe_normalize(&pr_ge.x);
235
236 secp256k1_fe_get_b32(c, &pr_ge.x);
678b0e54 237 secp256k1_scalar_set_b32(&computed_r, c, NULL);
b4ceedf1
AP
238 return secp256k1_scalar_eq(sigr, &computed_r);
239}
240#else
18c329c5 241 secp256k1_scalar_get_b32(c, sigr);
ce7eb6fb 242 secp256k1_fe_set_b32(&xr, c);
13278f64 243
3627437d
GM
244 /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
245 * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
246 * compute the remainder modulo n, and compare it to xr. However:
247 *
248 * xr == X(pr) mod n
249 * <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
250 * [Since 2 * n > p, h can only be 0 or 1]
251 * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
252 * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
253 * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
254 * [Multiplying both sides of the equations by pr.z^2 mod p]
255 * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
256 *
257 * Thus, we can avoid the inversion, but we have to check both cases separately.
258 * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
259 */
ce7eb6fb 260 if (secp256k1_gej_eq_x_var(&xr, &pr)) {
6c476a8a 261 /* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
ce7eb6fb
PW
262 return 1;
263 }
4732d260 264 if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
6c476a8a 265 /* xr + n >= p, so we can skip testing the second case. */
ce7eb6fb 266 return 0;
4adf6b2a 267 }
4732d260 268 secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
ce7eb6fb 269 if (secp256k1_gej_eq_x_var(&xr, &pr)) {
3627437d 270 /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
ce7eb6fb
PW
271 return 1;
272 }
273 return 0;
b4ceedf1 274#endif
607884fc
PW
275}
276
dd891e0e 277static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
792bcdb0 278 unsigned char b[32];
dd891e0e
PW
279 secp256k1_gej rp;
280 secp256k1_ge r;
281 secp256k1_scalar n;
792bcdb0
GM
282 int overflow = 0;
283
a9b6595e 284 secp256k1_ecmult_gen(ctx, &rp, nonce);
50eb498e 285 secp256k1_ge_set_gej(&r, &rp);
50eb498e
PW
286 secp256k1_fe_normalize(&r.x);
287 secp256k1_fe_normalize(&r.y);
288 secp256k1_fe_get_b32(b, &r.x);
18c329c5 289 secp256k1_scalar_set_b32(sigr, b, &overflow);
25e3cfbf
AP
290 /* These two conditions should be checked before calling */
291 VERIFY_CHECK(!secp256k1_scalar_is_zero(sigr));
292 VERIFY_CHECK(overflow == 0);
293
26320197 294 if (recid) {
269d4227
GM
295 /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
296 * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
297 */
a9f5c8b8 298 *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
26320197 299 }
18c329c5 300 secp256k1_scalar_mul(&n, sigr, seckey);
a9f5c8b8 301 secp256k1_scalar_add(&n, &n, message);
18c329c5
PW
302 secp256k1_scalar_inverse(sigs, nonce);
303 secp256k1_scalar_mul(sigs, sigs, &n);
a9f5c8b8 304 secp256k1_scalar_clear(&n);
2f6c8019
GM
305 secp256k1_gej_clear(&rp);
306 secp256k1_ge_clear(&r);
18c329c5 307 if (secp256k1_scalar_is_zero(sigs)) {
d41e93a5 308 return 0;
26320197 309 }
18c329c5
PW
310 if (secp256k1_scalar_is_high(sigs)) {
311 secp256k1_scalar_negate(sigs, sigs);
26320197 312 if (recid) {
50eb498e 313 *recid ^= 1;
26320197 314 }
50eb498e 315 }
eb0be8ee 316 return 1;
0a07e62f
PW
317}
318
abe2d3e8 319#endif /* SECP256K1_ECDSA_IMPL_H */
This page took 0.114669 seconds and 4 git commands to generate.