]> Git Repo - secp256k1.git/blame - src/field_5x52_impl.h
Merge pull request #229
[secp256k1.git] / src / field_5x52_impl.h
CommitLineData
71712b27
GM
1/**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
0a433ea2 6
7a4b7691
PW
7#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
8#define _SECP256K1_FIELD_REPR_IMPL_H_
9
78cd96b1
CF
10#if defined HAVE_CONFIG_H
11#include "libsecp256k1-config.h"
12#endif
13
910d0de4 14#include <string.h>
1c7fa133 15#include "util.h"
11ab5622
PW
16#include "num.h"
17#include "field.h"
e6d142a8 18
1ba4a60a 19#if defined(USE_ASM_X86_64)
11ab5622 20#include "field_5x52_asm_impl.h"
f0c89aad 21#else
1ba4a60a 22#include "field_5x52_int128_impl.h"
e6d142a8
PW
23#endif
24
e6d142a8
PW
25/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
26 * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
27 * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
28 * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
29 * accept any input with magnitude at most M, and have different rules for propagating magnitude to their
30 * output.
31 */
32
59447da3 33#ifdef VERIFY
a4a43d75 34static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
59447da3 35 const uint64_t *d = a->n;
21f81a84 36 int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
6efd6e77 37 /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
59447da3
PD
38 r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
39 r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
40 r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
41 r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
42 r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
7d681ac6 43 r &= (a->magnitude >= 0);
7688e341 44 r &= (a->magnitude <= 2048);
59447da3 45 if (a->normalized) {
7d681ac6 46 r &= (a->magnitude <= 1);
59447da3
PD
47 if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
48 r &= (d[0] < 0xFFFFEFFFFFC2FULL);
49 }
50 }
1c7fa133 51 VERIFY_CHECK(r == 1);
59447da3 52}
21f81a84 53#else
2cad067a
GM
54static void secp256k1_fe_verify(const secp256k1_fe_t *a) {
55 (void)a;
56}
59447da3
PD
57#endif
58
a4a43d75 59static void secp256k1_fe_normalize(secp256k1_fe_t *r) {
90377077
PD
60 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
61
71712b27 62 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
42822baa 63 uint64_t m;
25b35c7e 64 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
90377077 65
71712b27 66 /* The first pass ensures the magnitude is 1, ... */
90377077
PD
67 t0 += x * 0x1000003D1ULL;
68 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
42822baa
PD
69 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
70 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
71 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
90377077 72
71712b27 73 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
1c7fa133 74 VERIFY_CHECK(t4 >> 49 == 0);
90377077 75
71712b27 76 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
42822baa 77 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
90377077
PD
78 & (t0 >= 0xFFFFEFFFFFC2FULL));
79
71712b27 80 /* Apply the final reduction (for constant-time behaviour, we do it always) */
90377077
PD
81 t0 += x * 0x1000003D1ULL;
82 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
83 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
84 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
85 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
86
71712b27 87 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
1c7fa133 88 VERIFY_CHECK(t4 >> 48 == x);
90377077 89
71712b27 90 /* Mask off the possible multiple of 2^256 from the final reduction */
90377077
PD
91 t4 &= 0x0FFFFFFFFFFFFULL;
92
910d0de4
PW
93 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
94
95#ifdef VERIFY
96 r->magnitude = 1;
97 r->normalized = 1;
21f81a84 98 secp256k1_fe_verify(r);
910d0de4
PW
99#endif
100}
e6d142a8 101
0295f0a3
PW
102static void secp256k1_fe_normalize_weak(secp256k1_fe_t *r) {
103 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
104
105 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
106 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
107
108 /* The first pass ensures the magnitude is 1, ... */
109 t0 += x * 0x1000003D1ULL;
110 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
111 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
112 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
113 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
114
115 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
116 VERIFY_CHECK(t4 >> 49 == 0);
117
118 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
119
120#ifdef VERIFY
121 r->magnitude = 1;
122 secp256k1_fe_verify(r);
123#endif
124}
125
39bd94d8
PW
126static void secp256k1_fe_normalize_var(secp256k1_fe_t *r) {
127 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
128
129 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
39bd94d8 130 uint64_t m;
25b35c7e 131 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
39bd94d8
PW
132
133 /* The first pass ensures the magnitude is 1, ... */
134 t0 += x * 0x1000003D1ULL;
135 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
136 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
137 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
138 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
139
140 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
141 VERIFY_CHECK(t4 >> 49 == 0);
142
143 /* At most a single final reduction is needed; check if the value is >= the field characteristic */
144 x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
145 & (t0 >= 0xFFFFEFFFFFC2FULL));
146
147 if (x) {
148 t0 += 0x1000003D1ULL;
149 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
150 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
151 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
152 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
153
154 /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
155 VERIFY_CHECK(t4 >> 48 == x);
156
157 /* Mask off the possible multiple of 2^256 from the final reduction */
158 t4 &= 0x0FFFFFFFFFFFFULL;
159 }
160
161 r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
162
163#ifdef VERIFY
164 r->magnitude = 1;
165 r->normalized = 1;
166 secp256k1_fe_verify(r);
167#endif
168}
169
eed599dd
PD
170static int secp256k1_fe_normalizes_to_zero(secp256k1_fe_t *r) {
171 uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
172
eed599dd
PD
173 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
174 uint64_t z0, z1;
175
25b35c7e
GM
176 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
177 uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
178
eed599dd
PD
179 /* The first pass ensures the magnitude is 1, ... */
180 t0 += x * 0x1000003D1ULL;
181 t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
182 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
183 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
184 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
185 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
49ee0dbe
PD
186
187 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
188 VERIFY_CHECK(t4 >> 49 == 0);
189
190 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
191}
192
193static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe_t *r) {
25b35c7e
GM
194 uint64_t t0, t1, t2, t3, t4;
195 uint64_t z0, z1;
196 uint64_t x;
197
198 t0 = r->n[0];
199 t4 = r->n[4];
49ee0dbe
PD
200
201 /* Reduce t4 at the start so there will be at most a single carry from the first pass */
25b35c7e 202 x = t4 >> 48;
49ee0dbe
PD
203
204 /* The first pass ensures the magnitude is 1, ... */
205 t0 += x * 0x1000003D1ULL;
206
207 /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
25b35c7e
GM
208 z0 = t0 & 0xFFFFFFFFFFFFFULL;
209 z1 = z0 ^ 0x1000003D0ULL;
49ee0dbe
PD
210
211 /* Fast return path should catch the majority of cases */
212 if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL))
213 return 0;
214
25b35c7e
GM
215 t1 = r->n[1];
216 t2 = r->n[2];
217 t3 = r->n[3];
218
49ee0dbe
PD
219 t4 &= 0x0FFFFFFFFFFFFULL;
220
221 t1 += (t0 >> 52); t0 = z0;
222 t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
223 t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
224 t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
225 z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
eed599dd
PD
226
227 /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
228 VERIFY_CHECK(t4 >> 49 == 0);
229
230 return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
231}
232
a4a43d75 233SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a) {
910d0de4
PW
234 r->n[0] = a;
235 r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
236#ifdef VERIFY
237 r->magnitude = 1;
238 r->normalized = 1;
21f81a84 239 secp256k1_fe_verify(r);
e6d142a8
PW
240#endif
241}
242
a4a43d75 243SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe_t *a) {
25b35c7e 244 const uint64_t *t = a->n;
910d0de4 245#ifdef VERIFY
1c7fa133 246 VERIFY_CHECK(a->normalized);
21f81a84 247 secp256k1_fe_verify(a);
e6d142a8 248#endif
137e77af 249 return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
e6d142a8
PW
250}
251
a4a43d75 252SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe_t *a) {
910d0de4 253#ifdef VERIFY
1c7fa133 254 VERIFY_CHECK(a->normalized);
21f81a84 255 secp256k1_fe_verify(a);
e6d142a8 256#endif
910d0de4 257 return a->n[0] & 1;
e6d142a8
PW
258}
259
a4a43d75 260SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe_t *a) {
25b35c7e 261 int i;
2f6c8019
GM
262#ifdef VERIFY
263 a->magnitude = 0;
7d681ac6 264 a->normalized = 1;
2f6c8019 265#endif
25b35c7e 266 for (i=0; i<5; i++) {
2f6c8019
GM
267 a->n[i] = 0;
268 }
269}
270
f24041d6 271static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
25b35c7e 272 int i;
f24041d6
PW
273#ifdef VERIFY
274 VERIFY_CHECK(a->normalized);
275 VERIFY_CHECK(b->normalized);
276 secp256k1_fe_verify(a);
277 secp256k1_fe_verify(b);
278#endif
25b35c7e 279 for (i = 4; i >= 0; i--) {
f24041d6
PW
280 if (a->n[i] > b->n[i]) return 1;
281 if (a->n[i] < b->n[i]) return -1;
282 }
283 return 0;
284}
285
d907ebc0 286static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a) {
25b35c7e 287 int i;
910d0de4 288 r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
25b35c7e
GM
289 for (i=0; i<32; i++) {
290 int j;
291 for (j=0; j<2; j++) {
e6d142a8
PW
292 int limb = (8*i+4*j)/52;
293 int shift = (8*i+4*j)%52;
910d0de4 294 r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
e6d142a8 295 }
e6d142a8 296 }
d907ebc0
PW
297 if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
298 return 0;
299 }
910d0de4
PW
300#ifdef VERIFY
301 r->magnitude = 1;
eb0be8ee 302 r->normalized = 1;
21f81a84 303 secp256k1_fe_verify(r);
910d0de4 304#endif
d907ebc0 305 return 1;
e6d142a8
PW
306}
307
910d0de4 308/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
a4a43d75 309static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a) {
25b35c7e 310 int i;
910d0de4 311#ifdef VERIFY
1c7fa133 312 VERIFY_CHECK(a->normalized);
21f81a84 313 secp256k1_fe_verify(a);
910d0de4 314#endif
25b35c7e
GM
315 for (i=0; i<32; i++) {
316 int j;
910d0de4 317 int c = 0;
25b35c7e 318 for (j=0; j<2; j++) {
e6d142a8
PW
319 int limb = (8*i+4*j)/52;
320 int shift = (8*i+4*j)%52;
910d0de4 321 c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
e6d142a8 322 }
910d0de4 323 r[31-i] = c;
e6d142a8 324 }
e6d142a8
PW
325}
326
a4a43d75 327SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m) {
910d0de4 328#ifdef VERIFY
1c7fa133 329 VERIFY_CHECK(a->magnitude <= m);
21f81a84 330 secp256k1_fe_verify(a);
e6d142a8 331#endif
7a8e385d
PW
332 r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
333 r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
334 r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
335 r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
336 r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
910d0de4 337#ifdef VERIFY
21f81a84 338 r->magnitude = m + 1;
eb0be8ee 339 r->normalized = 0;
21f81a84 340 secp256k1_fe_verify(r);
e6d142a8 341#endif
21f81a84
PW
342}
343
a4a43d75 344SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a) {
910d0de4
PW
345 r->n[0] *= a;
346 r->n[1] *= a;
347 r->n[2] *= a;
348 r->n[3] *= a;
349 r->n[4] *= a;
910d0de4 350#ifdef VERIFY
21f81a84 351 r->magnitude *= a;
910d0de4 352 r->normalized = 0;
21f81a84 353 secp256k1_fe_verify(r);
e6d142a8 354#endif
21f81a84
PW
355}
356
a4a43d75 357SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
7d681ac6
PD
358#ifdef VERIFY
359 secp256k1_fe_verify(a);
360#endif
910d0de4
PW
361 r->n[0] += a->n[0];
362 r->n[1] += a->n[1];
363 r->n[2] += a->n[2];
364 r->n[3] += a->n[3];
365 r->n[4] += a->n[4];
21f81a84
PW
366#ifdef VERIFY
367 r->magnitude += a->magnitude;
368 r->normalized = 0;
369 secp256k1_fe_verify(r);
21f81a84 370#endif
e6d142a8
PW
371}
372
be82e92f 373static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b) {
910d0de4 374#ifdef VERIFY
1c7fa133
PW
375 VERIFY_CHECK(a->magnitude <= 8);
376 VERIFY_CHECK(b->magnitude <= 8);
21f81a84
PW
377 secp256k1_fe_verify(a);
378 secp256k1_fe_verify(b);
be82e92f 379 VERIFY_CHECK(r != b);
21f81a84 380#endif
b2c9681c 381 secp256k1_fe_mul_inner(r->n, a->n, b->n);
21f81a84 382#ifdef VERIFY
910d0de4
PW
383 r->magnitude = 1;
384 r->normalized = 0;
21f81a84 385 secp256k1_fe_verify(r);
e6d142a8
PW
386#endif
387}
388
a4a43d75 389static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
910d0de4 390#ifdef VERIFY
1c7fa133 391 VERIFY_CHECK(a->magnitude <= 8);
7d681ac6 392 secp256k1_fe_verify(a);
21f81a84 393#endif
b2c9681c 394 secp256k1_fe_sqr_inner(r->n, a->n);
21f81a84 395#ifdef VERIFY
fba1d58d
PW
396 r->magnitude = 1;
397 r->normalized = 0;
7d681ac6 398 secp256k1_fe_verify(r);
e6d142a8
PW
399#endif
400}
7a4b7691 401
f735446c 402static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage_t *r, const secp256k1_fe_storage_t *a, int flag) {
27bc1311
GM
403 uint64_t mask0, mask1;
404 mask0 = flag + ~((uint64_t)0);
405 mask1 = ~mask0;
ff889f7d
PW
406 r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
407 r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
408 r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
409 r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
410}
411
412static void secp256k1_fe_to_storage(secp256k1_fe_storage_t *r, const secp256k1_fe_t *a) {
413#ifdef VERIFY
414 VERIFY_CHECK(a->normalized);
415#endif
416 r->n[0] = a->n[0] | a->n[1] << 52;
417 r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
418 r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
419 r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
420}
421
f735446c 422static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe_t *r, const secp256k1_fe_storage_t *a) {
ff889f7d
PW
423 r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
424 r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
425 r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
426 r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
427 r->n[4] = a->n[3] >> 16;
428#ifdef VERIFY
429 r->magnitude = 1;
430 r->normalized = 1;
431#endif
432}
433
7a4b7691 434#endif
This page took 0.091374 seconds and 4 git commands to generate.