#include "hw/qdev.h"
#include "osdep.h"
#include "kvm.h"
+#include "hw/xen.h"
#include "qemu-timer.h"
#if defined(CONFIG_USER_ONLY)
#include <qemu.h>
#include <libutil.h>
#endif
#endif
+#else /* !CONFIG_USER_ONLY */
+#include "xen-mapcache.h"
#endif
//#define DEBUG_TB_INVALIDATE
env->numa_node = 0;
QTAILQ_INIT(&env->breakpoints);
QTAILQ_INIT(&env->watchpoints);
+#ifndef CONFIG_USER_ONLY
+ env->thread_id = qemu_get_thread_id();
+#endif
*penv = env;
#if defined(CONFIG_USER_ONLY)
cpu_list_unlock();
restore the CPU state */
current_tb_modified = 1;
- cpu_restore_state(current_tb, env,
- env->mem_io_pc, NULL);
+ cpu_restore_state(current_tb, env, env->mem_io_pc);
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
¤t_flags);
}
restore the CPU state */
current_tb_modified = 1;
- cpu_restore_state(current_tb, env, pc, puc);
+ cpu_restore_state(current_tb, env, pc);
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
¤t_flags);
}
spin_unlock(&interrupt_lock);
}
+#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
-void cpu_interrupt(CPUState *env, int mask)
+static void tcg_handle_interrupt(CPUState *env, int mask)
{
int old_mask;
old_mask = env->interrupt_request;
env->interrupt_request |= mask;
-#ifndef CONFIG_USER_ONLY
/*
* If called from iothread context, wake the target cpu in
* case its halted.
qemu_cpu_kick(env);
return;
}
-#endif
if (use_icount) {
env->icount_decr.u16.high = 0xffff;
-#ifndef CONFIG_USER_ONLY
if (!can_do_io(env)
&& (mask & ~old_mask) != 0) {
cpu_abort(env, "Raised interrupt while not in I/O function");
}
-#endif
} else {
cpu_unlink_tb(env);
}
}
+CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
+
+#else /* CONFIG_USER_ONLY */
+
+void cpu_interrupt(CPUState *env, int mask)
+{
+ env->interrupt_request |= mask;
+ cpu_unlink_tb(env);
+}
+#endif /* CONFIG_USER_ONLY */
+
void cpu_reset_interrupt(CPUState *env, int mask)
{
env->interrupt_request &= ~mask;
static void cpu_notify_set_memory(target_phys_addr_t start_addr,
ram_addr_t size,
- ram_addr_t phys_offset)
+ ram_addr_t phys_offset,
+ bool log_dirty)
{
CPUPhysMemoryClient *client;
QLIST_FOREACH(client, &memory_client_list, list) {
- client->set_memory(client, start_addr, size, phys_offset);
+ client->set_memory(client, start_addr, size, phys_offset, log_dirty);
}
}
return 0;
}
+/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
+ * address. Each intermediate table provides the next L2_BITs of guest
+ * physical address space. The number of levels vary based on host and
+ * guest configuration, making it efficient to build the final guest
+ * physical address by seeding the L1 offset and shifting and adding in
+ * each L2 offset as we recurse through them. */
static void phys_page_for_each_1(CPUPhysMemoryClient *client,
- int level, void **lp)
+ int level, void **lp, target_phys_addr_t addr)
{
int i;
}
if (level == 0) {
PhysPageDesc *pd = *lp;
+ addr <<= L2_BITS + TARGET_PAGE_BITS;
for (i = 0; i < L2_SIZE; ++i) {
if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
- client->set_memory(client, pd[i].region_offset,
- TARGET_PAGE_SIZE, pd[i].phys_offset);
+ client->set_memory(client, addr | i << TARGET_PAGE_BITS,
+ TARGET_PAGE_SIZE, pd[i].phys_offset, false);
}
}
} else {
void **pp = *lp;
for (i = 0; i < L2_SIZE; ++i) {
- phys_page_for_each_1(client, level - 1, pp + i);
+ phys_page_for_each_1(client, level - 1, pp + i,
+ (addr << L2_BITS) | i);
}
}
}
int i;
for (i = 0; i < P_L1_SIZE; ++i) {
phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
- l1_phys_map + 1);
+ l1_phys_map + i, i);
}
}
/* we modify the TLB cache so that the dirty bit will be set again
when accessing the range */
start1 = (unsigned long)qemu_safe_ram_ptr(start);
- /* Chek that we don't span multiple blocks - this breaks the
+ /* Check that we don't span multiple blocks - this breaks the
address comparisons below. */
if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
!= (end - 1) - start) {
start_addr and region_offset are rounded down to a page boundary
before calculating this offset. This should not be a problem unless
the low bits of start_addr and region_offset differ. */
-void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
+void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset,
- ram_addr_t region_offset)
+ ram_addr_t region_offset,
+ bool log_dirty)
{
target_phys_addr_t addr, end_addr;
PhysPageDesc *p;
ram_addr_t orig_size = size;
subpage_t *subpage;
- cpu_notify_set_memory(start_addr, size, phys_offset);
+ assert(size);
+ cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
if (phys_offset == IO_MEM_UNASSIGNED) {
region_offset = start_addr;
region_offset &= TARGET_PAGE_MASK;
size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
end_addr = start_addr + (target_phys_addr_t)size;
- for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
+
+ addr = start_addr;
+ do {
p = phys_page_find(addr >> TARGET_PAGE_BITS);
if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
ram_addr_t orig_memory = p->phys_offset;
}
}
region_offset += TARGET_PAGE_SIZE;
- }
+ addr += TARGET_PAGE_SIZE;
+ } while (addr != end_addr);
/* since each CPU stores ram addresses in its TLB cache, we must
reset the modified entries */
}
}
+ new_block->offset = find_ram_offset(size);
if (host) {
new_block->host = host;
new_block->flags |= RAM_PREALLOC_MASK;
#endif
} else {
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
- /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
- new_block->host = mmap((void*)0x1000000, size,
+ /* S390 KVM requires the topmost vma of the RAM to be smaller than
+ an system defined value, which is at least 256GB. Larger systems
+ have larger values. We put the guest between the end of data
+ segment (system break) and this value. We use 32GB as a base to
+ have enough room for the system break to grow. */
+ new_block->host = mmap((void*)0x800000000, size,
PROT_EXEC|PROT_READ|PROT_WRITE,
- MAP_SHARED | MAP_ANONYMOUS, -1, 0);
+ MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
+ if (new_block->host == MAP_FAILED) {
+ fprintf(stderr, "Allocating RAM failed\n");
+ abort();
+ }
#else
- new_block->host = qemu_vmalloc(size);
+ if (xen_mapcache_enabled()) {
+ xen_ram_alloc(new_block->offset, size);
+ } else {
+ new_block->host = qemu_vmalloc(size);
+ }
#endif
qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
}
}
-
- new_block->offset = find_ram_offset(size);
new_block->length = size;
QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
munmap(block->host, block->length);
#else
- qemu_vfree(block->host);
+ if (xen_mapcache_enabled()) {
+ qemu_invalidate_entry(block->host);
+ } else {
+ qemu_vfree(block->host);
+ }
#endif
}
qemu_free(block);
QLIST_REMOVE(block, next);
QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
}
+ if (xen_mapcache_enabled()) {
+ /* We need to check if the requested address is in the RAM
+ * because we don't want to map the entire memory in QEMU.
+ */
+ if (block->offset == 0) {
+ return qemu_map_cache(addr, 0, 1);
+ } else if (block->host == NULL) {
+ block->host = xen_map_block(block->offset, block->length);
+ }
+ }
return block->host + (addr - block->offset);
}
}
QLIST_FOREACH(block, &ram_list.blocks, next) {
if (addr - block->offset < block->length) {
+ if (xen_mapcache_enabled()) {
+ /* We need to check if the requested address is in the RAM
+ * because we don't want to map the entire memory in QEMU.
+ */
+ if (block->offset == 0) {
+ return qemu_map_cache(addr, 0, 1);
+ } else if (block->host == NULL) {
+ block->host = xen_map_block(block->offset, block->length);
+ }
+ }
return block->host + (addr - block->offset);
}
}
return NULL;
}
+void qemu_put_ram_ptr(void *addr)
+{
+ trace_qemu_put_ram_ptr(addr);
+
+ if (xen_mapcache_enabled()) {
+ RAMBlock *block;
+
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ if (addr == block->host) {
+ break;
+ }
+ }
+ if (block && block->host) {
+ xen_unmap_block(block->host, block->length);
+ block->host = NULL;
+ } else {
+ qemu_map_cache_unlock(addr);
+ }
+ }
+}
+
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
{
RAMBlock *block;
uint8_t *host = ptr;
QLIST_FOREACH(block, &ram_list.blocks, next) {
+ /* This case append when the block is not mapped. */
+ if (block->host == NULL) {
+ continue;
+ }
if (host - block->host < block->length) {
*ram_addr = block->offset + (host - block->host);
return 0;
}
}
+
+ if (xen_mapcache_enabled()) {
+ *ram_addr = qemu_ram_addr_from_mapcache(ptr);
+ return 0;
+ }
+
return -1;
}
cpu_abort(env, "check_watchpoint: could not find TB for "
"pc=%p", (void *)env->mem_io_pc);
}
- cpu_restore_state(tb, env, env->mem_io_pc, NULL);
+ cpu_restore_state(tb, env, env->mem_io_pc);
tb_phys_invalidate(tb, -1);
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
env->exception_index = EXCP_DEBUG;
cpu_physical_memory_set_dirty_flags(
addr1, (0xff & ~CODE_DIRTY_FLAG));
}
+ qemu_put_ram_ptr(ptr);
}
} else {
if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
}
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
- memcpy(buf, ptr, l);
+ ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
+ memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
+ qemu_put_ram_ptr(ptr);
}
}
len -= l;
/* ROM/RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
+ qemu_put_ram_ptr(ptr);
}
len -= l;
buf += l;
bounce.addr = addr;
bounce.len = l;
if (!is_write) {
- cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
+ cpu_physical_memory_read(addr, bounce.buffer, l);
}
ptr = bounce.buffer;
} else {
access_len -= l;
}
}
+ if (xen_mapcache_enabled()) {
+ uint8_t *buffer1 = buffer;
+ uint8_t *end_buffer = buffer + len;
+
+ while (buffer1 < end_buffer) {
+ qemu_put_ram_ptr(buffer1);
+ buffer1 += TARGET_PAGE_SIZE;
+ }
+ }
return;
}
if (is_write) {
void stq_phys(target_phys_addr_t addr, uint64_t val)
{
val = tswap64(val);
- cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
+ cpu_physical_memory_write(addr, &val, 8);
}
/* virtual memory access for debug (includes writing to ROM) */
retaddr);
}
n = env->icount_decr.u16.low + tb->icount;
- cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
+ cpu_restore_state(tb, env, (unsigned long)retaddr);
/* Calculate how many instructions had been executed before the fault
occurred. */
n = n - env->icount_decr.u16.low;