* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
- * This code is licenced under the GPL.
+ * This code is licensed under the GPL.
*/
+#include "config.h"
#include "hw.h"
#include "arm-misc.h"
#include "sysemu.h"
+#include "boards.h"
#include "loader.h"
#include "elf.h"
+#include "device_tree.h"
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
-#define INITRD_LOAD_ADDR 0x00800000
+#define INITRD_LOAD_ADDR 0x00d00000
/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
static uint32_t bootloader[] = {
0xe3a00000, /* mov r0, #0 */
- 0xe3a01000, /* mov r1, #0x?? */
- 0xe3811c00, /* orr r1, r1, #0x??00 */
- 0xe59f2000, /* ldr r2, [pc, #0] */
- 0xe59ff000, /* ldr pc, [pc, #0] */
+ 0xe59f1004, /* ldr r1, [pc, #4] */
+ 0xe59f2004, /* ldr r2, [pc, #4] */
+ 0xe59ff004, /* ldr pc, [pc, #4] */
+ 0, /* Board ID */
0, /* Address of kernel args. Set by integratorcp_init. */
0 /* Kernel entry point. Set by integratorcp_init. */
};
-/* Entry point for secondary CPUs. Enable interrupt controller and
- Issue WFI until start address is written to system controller. */
+/* Handling for secondary CPU boot in a multicore system.
+ * Unlike the uniprocessor/primary CPU boot, this is platform
+ * dependent. The default code here is based on the secondary
+ * CPU boot protocol used on realview/vexpress boards, with
+ * some parameterisation to increase its flexibility.
+ * QEMU platform models for which this code is not appropriate
+ * should override write_secondary_boot and secondary_cpu_reset_hook
+ * instead.
+ *
+ * This code enables the interrupt controllers for the secondary
+ * CPUs and then puts all the secondary CPUs into a loop waiting
+ * for an interprocessor interrupt and polling a configurable
+ * location for the kernel secondary CPU entry point.
+ */
static uint32_t smpboot[] = {
- 0xe59f0020, /* ldr r0, privbase */
- 0xe3a01001, /* mov r1, #1 */
- 0xe5801100, /* str r1, [r0, #0x100] */
- 0xe3a00201, /* mov r0, #0x10000000 */
- 0xe3800030, /* orr r0, #0x30 */
+ 0xe59f201c, /* ldr r2, gic_cpu_if */
+ 0xe59f001c, /* ldr r0, startaddr */
+ 0xe3a01001, /* mov r1, #1 */
+ 0xe5821000, /* str r1, [r2] */
0xe320f003, /* wfi */
0xe5901000, /* ldr r1, [r0] */
0xe1110001, /* tst r1, r1 */
0x0afffffb, /* beq <wfi> */
0xe12fff11, /* bx r1 */
- 0 /* privbase: Private memory region base address. */
+ 0, /* gic_cpu_if: base address of GIC CPU interface */
+ 0 /* bootreg: Boot register address is held here */
};
+static void default_write_secondary(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ int n;
+ smpboot[ARRAY_SIZE(smpboot) - 1] = info->smp_bootreg_addr;
+ smpboot[ARRAY_SIZE(smpboot) - 2] = info->gic_cpu_if_addr;
+ for (n = 0; n < ARRAY_SIZE(smpboot); n++) {
+ smpboot[n] = tswap32(smpboot[n]);
+ }
+ rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot),
+ info->smp_loader_start);
+}
+
+static void default_reset_secondary(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ CPUARMState *env = &cpu->env;
+
+ stl_phys_notdirty(info->smp_bootreg_addr, 0);
+ env->regs[15] = info->smp_loader_start;
+}
+
#define WRITE_WORD(p, value) do { \
stl_phys_notdirty(p, value); \
p += 4; \
} while (0)
-static void set_kernel_args(struct arm_boot_info *info,
- int initrd_size, target_phys_addr_t base)
+static void set_kernel_args(const struct arm_boot_info *info)
{
+ int initrd_size = info->initrd_size;
+ target_phys_addr_t base = info->loader_start;
target_phys_addr_t p;
p = base + KERNEL_ARGS_ADDR;
WRITE_WORD(p, 0);
}
-static void set_kernel_args_old(struct arm_boot_info *info,
- int initrd_size, target_phys_addr_t base)
+static void set_kernel_args_old(const struct arm_boot_info *info)
{
target_phys_addr_t p;
const char *s;
-
+ int initrd_size = info->initrd_size;
+ target_phys_addr_t base = info->loader_start;
/* see linux/include/asm-arm/setup.h */
p = base + KERNEL_ARGS_ADDR;
}
}
-static void main_cpu_reset(void *opaque)
+static int load_dtb(target_phys_addr_t addr, const struct arm_boot_info *binfo)
+{
+#ifdef CONFIG_FDT
+ uint32_t mem_reg_property[] = { cpu_to_be32(binfo->loader_start),
+ cpu_to_be32(binfo->ram_size) };
+ void *fdt = NULL;
+ char *filename;
+ int size, rc;
+
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
+ if (!filename) {
+ fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
+ return -1;
+ }
+
+ fdt = load_device_tree(filename, &size);
+ if (!fdt) {
+ fprintf(stderr, "Couldn't open dtb file %s\n", filename);
+ g_free(filename);
+ return -1;
+ }
+ g_free(filename);
+
+ rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
+ sizeof(mem_reg_property));
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /memory/reg\n");
+ }
+
+ rc = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
+ binfo->kernel_cmdline);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/bootargs\n");
+ }
+
+ if (binfo->initrd_size) {
+ rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
+ binfo->loader_start + INITRD_LOAD_ADDR);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
+ }
+
+ rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
+ binfo->loader_start + INITRD_LOAD_ADDR +
+ binfo->initrd_size);
+ if (rc < 0) {
+ fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
+ }
+ }
+
+ cpu_physical_memory_write(addr, fdt, size);
+
+ return 0;
+
+#else
+ fprintf(stderr, "Device tree requested, "
+ "but qemu was compiled without fdt support\n");
+ return -1;
+#endif
+}
+
+static void do_cpu_reset(void *opaque)
{
- CPUState *env = opaque;
- struct arm_boot_info *info = env->boot_info;
+ ARMCPU *cpu = opaque;
+ CPUARMState *env = &cpu->env;
+ const struct arm_boot_info *info = env->boot_info;
- cpu_reset(env);
+ cpu_reset(CPU(cpu));
if (info) {
if (!info->is_linux) {
/* Jump to the entry point. */
env->regs[15] = info->entry & 0xfffffffe;
env->thumb = info->entry & 1;
} else {
- if (old_param) {
- set_kernel_args_old(info, info->initrd_size,
- info->loader_start);
+ if (env == first_cpu) {
+ env->regs[15] = info->loader_start;
+ if (!info->dtb_filename) {
+ if (old_param) {
+ set_kernel_args_old(info);
+ } else {
+ set_kernel_args(info);
+ }
+ }
} else {
- set_kernel_args(info, info->initrd_size, info->loader_start);
+ info->secondary_cpu_reset_hook(cpu, info);
}
}
}
- /* TODO: Reset secondary CPUs. */
}
-void arm_load_kernel(CPUState *env, struct arm_boot_info *info)
+void arm_load_kernel(CPUARMState *env, struct arm_boot_info *info)
{
+ ARMCPU *cpu = arm_env_get_cpu(env);
int kernel_size;
int initrd_size;
int n;
uint64_t elf_entry;
target_phys_addr_t entry;
int big_endian;
+ QemuOpts *machine_opts;
/* Load the kernel. */
if (!info->kernel_filename) {
exit(1);
}
+ machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
+ if (machine_opts) {
+ info->dtb_filename = qemu_opt_get(machine_opts, "dtb");
+ } else {
+ info->dtb_filename = NULL;
+ }
+
+ if (!info->secondary_cpu_reset_hook) {
+ info->secondary_cpu_reset_hook = default_reset_secondary;
+ }
+ if (!info->write_secondary_boot) {
+ info->write_secondary_boot = default_write_secondary;
+ }
+
if (info->nb_cpus == 0)
info->nb_cpus = 1;
- env->boot_info = info;
#ifdef TARGET_WORDS_BIGENDIAN
big_endian = 1;
#endif
/* Assume that raw images are linux kernels, and ELF images are not. */
- kernel_size = load_elf(info->kernel_filename, 0, &elf_entry, NULL, NULL,
- big_endian, ELF_MACHINE, 1);
+ kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
+ NULL, NULL, big_endian, ELF_MACHINE, 1);
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
} else {
initrd_size = 0;
}
- bootloader[1] |= info->board_id & 0xff;
- bootloader[2] |= (info->board_id >> 8) & 0xff;
- bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR;
+ info->initrd_size = initrd_size;
+
+ bootloader[4] = info->board_id;
+
+ /* for device tree boot, we pass the DTB directly in r2. Otherwise
+ * we point to the kernel args.
+ */
+ if (info->dtb_filename) {
+ /* Place the DTB after the initrd in memory */
+ target_phys_addr_t dtb_start = TARGET_PAGE_ALIGN(info->loader_start
+ + INITRD_LOAD_ADDR
+ + initrd_size);
+ if (load_dtb(dtb_start, info)) {
+ exit(1);
+ }
+ bootloader[5] = dtb_start;
+ } else {
+ bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR;
+ }
bootloader[6] = entry;
for (n = 0; n < sizeof(bootloader) / 4; n++) {
bootloader[n] = tswap32(bootloader[n]);
rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader),
info->loader_start);
if (info->nb_cpus > 1) {
- smpboot[10] = info->smp_priv_base;
- for (n = 0; n < sizeof(smpboot) / 4; n++) {
- smpboot[n] = tswap32(smpboot[n]);
- }
- rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot),
- info->smp_loader_start);
+ info->write_secondary_boot(cpu, info);
}
- info->initrd_size = initrd_size;
}
info->is_linux = is_linux;
- qemu_register_reset(main_cpu_reset, env);
+
+ for (; env; env = env->next_cpu) {
+ cpu = arm_env_get_cpu(env);
+ env->boot_info = info;
+ qemu_register_reset(do_cpu_reset, cpu);
+ }
}