#define CPU_ALL_H
#include "qemu-common.h"
+#include "qemu-tls.h"
#include "cpu-common.h"
/* some important defines:
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
-#include "softfloat.h"
-
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
#define bswaptls(s) bswap64s(s)
#endif
-typedef union {
- float32 f;
- uint32_t l;
-} CPU_FloatU;
-
-/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
- endian ! */
-typedef union {
- float64 d;
-#if defined(HOST_WORDS_BIGENDIAN) \
- || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
- struct {
- uint32_t upper;
- uint32_t lower;
- } l;
-#else
- struct {
- uint32_t lower;
- uint32_t upper;
- } l;
-#endif
- uint64_t ll;
-} CPU_DoubleU;
-
-#ifdef TARGET_SPARC
-typedef union {
- float128 q;
-#if defined(HOST_WORDS_BIGENDIAN) \
- || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
- struct {
- uint32_t upmost;
- uint32_t upper;
- uint32_t lower;
- uint32_t lowest;
- } l;
- struct {
- uint64_t upper;
- uint64_t lower;
- } ll;
-#else
- struct {
- uint32_t lowest;
- uint32_t lower;
- uint32_t upper;
- uint32_t upmost;
- } l;
- struct {
- uint64_t lower;
- uint64_t upper;
- } ll;
-#endif
-} CPU_QuadU;
-#endif
-
/* CPU memory access without any memory or io remapping */
/*
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
-static inline int ldub_p(const void *ptr)
-{
- return *(uint8_t *)ptr;
-}
-
-static inline int ldsb_p(const void *ptr)
-{
- return *(int8_t *)ptr;
-}
-
-static inline void stb_p(void *ptr, int v)
-{
- *(uint8_t *)ptr = v;
-}
-
-/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
- kernel handles unaligned load/stores may give better results, but
- it is a system wide setting : bad */
-#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
-
-/* conservative code for little endian unaligned accesses */
-static inline int lduw_le_p(const void *ptr)
-{
-#ifdef _ARCH_PPC
- int val;
- __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
- return val;
-#else
- const uint8_t *p = ptr;
- return p[0] | (p[1] << 8);
-#endif
-}
-
-static inline int ldsw_le_p(const void *ptr)
-{
-#ifdef _ARCH_PPC
- int val;
- __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
- return (int16_t)val;
-#else
- const uint8_t *p = ptr;
- return (int16_t)(p[0] | (p[1] << 8));
-#endif
-}
-
-static inline int ldl_le_p(const void *ptr)
-{
-#ifdef _ARCH_PPC
- int val;
- __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
- return val;
-#else
- const uint8_t *p = ptr;
- return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
-#endif
-}
-
-static inline uint64_t ldq_le_p(const void *ptr)
-{
- const uint8_t *p = ptr;
- uint32_t v1, v2;
- v1 = ldl_le_p(p);
- v2 = ldl_le_p(p + 4);
- return v1 | ((uint64_t)v2 << 32);
-}
-
-static inline void stw_le_p(void *ptr, int v)
-{
-#ifdef _ARCH_PPC
- __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
-#else
- uint8_t *p = ptr;
- p[0] = v;
- p[1] = v >> 8;
-#endif
-}
-
-static inline void stl_le_p(void *ptr, int v)
-{
-#ifdef _ARCH_PPC
- __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
-#else
- uint8_t *p = ptr;
- p[0] = v;
- p[1] = v >> 8;
- p[2] = v >> 16;
- p[3] = v >> 24;
-#endif
-}
-
-static inline void stq_le_p(void *ptr, uint64_t v)
-{
- uint8_t *p = ptr;
- stl_le_p(p, (uint32_t)v);
- stl_le_p(p + 4, v >> 32);
-}
-
-/* float access */
-
-static inline float32 ldfl_le_p(const void *ptr)
-{
- union {
- float32 f;
- uint32_t i;
- } u;
- u.i = ldl_le_p(ptr);
- return u.f;
-}
-
-static inline void stfl_le_p(void *ptr, float32 v)
-{
- union {
- float32 f;
- uint32_t i;
- } u;
- u.f = v;
- stl_le_p(ptr, u.i);
-}
-
-static inline float64 ldfq_le_p(const void *ptr)
-{
- CPU_DoubleU u;
- u.l.lower = ldl_le_p(ptr);
- u.l.upper = ldl_le_p(ptr + 4);
- return u.d;
-}
-
-static inline void stfq_le_p(void *ptr, float64 v)
-{
- CPU_DoubleU u;
- u.d = v;
- stl_le_p(ptr, u.l.lower);
- stl_le_p(ptr + 4, u.l.upper);
-}
-
-#else
-
-static inline int lduw_le_p(const void *ptr)
-{
- return *(uint16_t *)ptr;
-}
-
-static inline int ldsw_le_p(const void *ptr)
-{
- return *(int16_t *)ptr;
-}
-
-static inline int ldl_le_p(const void *ptr)
-{
- return *(uint32_t *)ptr;
-}
-
-static inline uint64_t ldq_le_p(const void *ptr)
-{
- return *(uint64_t *)ptr;
-}
-
-static inline void stw_le_p(void *ptr, int v)
-{
- *(uint16_t *)ptr = v;
-}
-
-static inline void stl_le_p(void *ptr, int v)
-{
- *(uint32_t *)ptr = v;
-}
-
-static inline void stq_le_p(void *ptr, uint64_t v)
-{
- *(uint64_t *)ptr = v;
-}
-
-/* float access */
-
-static inline float32 ldfl_le_p(const void *ptr)
-{
- return *(float32 *)ptr;
-}
-
-static inline float64 ldfq_le_p(const void *ptr)
-{
- return *(float64 *)ptr;
-}
-
-static inline void stfl_le_p(void *ptr, float32 v)
-{
- *(float32 *)ptr = v;
-}
-
-static inline void stfq_le_p(void *ptr, float64 v)
-{
- *(float64 *)ptr = v;
-}
-#endif
-
-#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
-
-static inline int lduw_be_p(const void *ptr)
-{
-#if defined(__i386__)
- int val;
- asm volatile ("movzwl %1, %0\n"
- "xchgb %b0, %h0\n"
- : "=q" (val)
- : "m" (*(uint16_t *)ptr));
- return val;
-#else
- const uint8_t *b = ptr;
- return ((b[0] << 8) | b[1]);
-#endif
-}
-
-static inline int ldsw_be_p(const void *ptr)
-{
-#if defined(__i386__)
- int val;
- asm volatile ("movzwl %1, %0\n"
- "xchgb %b0, %h0\n"
- : "=q" (val)
- : "m" (*(uint16_t *)ptr));
- return (int16_t)val;
-#else
- const uint8_t *b = ptr;
- return (int16_t)((b[0] << 8) | b[1]);
-#endif
-}
-
-static inline int ldl_be_p(const void *ptr)
-{
-#if defined(__i386__) || defined(__x86_64__)
- int val;
- asm volatile ("movl %1, %0\n"
- "bswap %0\n"
- : "=r" (val)
- : "m" (*(uint32_t *)ptr));
- return val;
-#else
- const uint8_t *b = ptr;
- return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
-#endif
-}
-
-static inline uint64_t ldq_be_p(const void *ptr)
-{
- uint32_t a,b;
- a = ldl_be_p(ptr);
- b = ldl_be_p((uint8_t *)ptr + 4);
- return (((uint64_t)a<<32)|b);
-}
-
-static inline void stw_be_p(void *ptr, int v)
-{
-#if defined(__i386__)
- asm volatile ("xchgb %b0, %h0\n"
- "movw %w0, %1\n"
- : "=q" (v)
- : "m" (*(uint16_t *)ptr), "0" (v));
-#else
- uint8_t *d = (uint8_t *) ptr;
- d[0] = v >> 8;
- d[1] = v;
-#endif
-}
-
-static inline void stl_be_p(void *ptr, int v)
-{
-#if defined(__i386__) || defined(__x86_64__)
- asm volatile ("bswap %0\n"
- "movl %0, %1\n"
- : "=r" (v)
- : "m" (*(uint32_t *)ptr), "0" (v));
-#else
- uint8_t *d = (uint8_t *) ptr;
- d[0] = v >> 24;
- d[1] = v >> 16;
- d[2] = v >> 8;
- d[3] = v;
-#endif
-}
-
-static inline void stq_be_p(void *ptr, uint64_t v)
-{
- stl_be_p(ptr, v >> 32);
- stl_be_p((uint8_t *)ptr + 4, v);
-}
-
-/* float access */
-
-static inline float32 ldfl_be_p(const void *ptr)
-{
- union {
- float32 f;
- uint32_t i;
- } u;
- u.i = ldl_be_p(ptr);
- return u.f;
-}
-
-static inline void stfl_be_p(void *ptr, float32 v)
-{
- union {
- float32 f;
- uint32_t i;
- } u;
- u.f = v;
- stl_be_p(ptr, u.i);
-}
-
-static inline float64 ldfq_be_p(const void *ptr)
-{
- CPU_DoubleU u;
- u.l.upper = ldl_be_p(ptr);
- u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
- return u.d;
-}
-
-static inline void stfq_be_p(void *ptr, float64 v)
-{
- CPU_DoubleU u;
- u.d = v;
- stl_be_p(ptr, u.l.upper);
- stl_be_p((uint8_t *)ptr + 4, u.l.lower);
-}
-
-#else
-
-static inline int lduw_be_p(const void *ptr)
-{
- return *(uint16_t *)ptr;
-}
-
-static inline int ldsw_be_p(const void *ptr)
-{
- return *(int16_t *)ptr;
-}
-static inline int ldl_be_p(const void *ptr)
-{
- return *(uint32_t *)ptr;
-}
-
-static inline uint64_t ldq_be_p(const void *ptr)
-{
- return *(uint64_t *)ptr;
-}
-
-static inline void stw_be_p(void *ptr, int v)
-{
- *(uint16_t *)ptr = v;
-}
-
-static inline void stl_be_p(void *ptr, int v)
-{
- *(uint32_t *)ptr = v;
-}
-
-static inline void stq_be_p(void *ptr, uint64_t v)
-{
- *(uint64_t *)ptr = v;
-}
-
-/* float access */
-
-static inline float32 ldfl_be_p(const void *ptr)
-{
- return *(float32 *)ptr;
-}
-
-static inline float64 ldfq_be_p(const void *ptr)
-{
- return *(float64 *)ptr;
-}
-
-static inline void stfl_be_p(void *ptr, float32 v)
-{
- *(float32 *)ptr = v;
-}
-
-static inline void stfq_be_p(void *ptr, float64 v)
-{
- *(float64 *)ptr = v;
-}
-
-#endif
-
-/* target CPU memory access functions */
+/* target-endianness CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#if defined(CONFIG_USE_GUEST_BASE)
extern unsigned long guest_base;
extern int have_guest_base;
+extern unsigned long reserved_va;
#define GUEST_BASE guest_base
+#define RESERVED_VA reserved_va
#else
#define GUEST_BASE 0ul
+#define RESERVED_VA 0ul
#endif
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
-#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
+#define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
+
+#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
+#define h2g_valid(x) 1
+#else
+#define h2g_valid(x) ({ \
+ unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
+ (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
+ (!RESERVED_VA || (__guest < RESERVED_VA)); \
+})
+#endif
+
#define h2g(x) ({ \
unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
/* Check if given address fits target address space */ \
- assert(__ret == (abi_ulong)__ret); \
+ assert(h2g_valid(x)); \
(abi_ulong)__ret; \
})
-#define h2g_valid(x) ({ \
- unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
- (__guest == (abi_ulong)__guest); \
-})
#define saddr(x) g2h(x)
#define laddr(x) g2h(x)
#else /* !CONFIG_USER_ONLY */
/* NOTE: we use double casts if pointers and target_ulong have
different sizes */
-#define saddr(x) (uint8_t *)(long)(x)
-#define laddr(x) (uint8_t *)(long)(x)
+#define saddr(x) (uint8_t *)(intptr_t)(x)
+#define laddr(x) (uint8_t *)(intptr_t)(x)
#endif
#define ldub_raw(p) ldub_p(laddr((p)))
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)
+#ifndef CONFIG_TCG_PASS_AREG0
#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
#define ldq_code(p) ldq_raw(p)
+#else
+#define cpu_ldub_code(env1, p) ldub_raw(p)
+#define cpu_ldsb_code(env1, p) ldsb_raw(p)
+#define cpu_lduw_code(env1, p) lduw_raw(p)
+#define cpu_ldsw_code(env1, p) ldsw_raw(p)
+#define cpu_ldl_code(env1, p) ldl_raw(p)
+#define cpu_ldq_code(env1, p) ldq_raw(p)
+
+#define cpu_ldub_data(env, addr) ldub_raw(addr)
+#define cpu_lduw_data(env, addr) lduw_raw(addr)
+#define cpu_ldsw_data(env, addr) ldsw_raw(addr)
+#define cpu_ldl_data(env, addr) ldl_raw(addr)
+#define cpu_ldq_data(env, addr) ldq_raw(addr)
+
+#define cpu_stb_data(env, addr, data) stb_raw(addr, data)
+#define cpu_stw_data(env, addr, data) stw_raw(addr, data)
+#define cpu_stl_data(env, addr, data) stl_raw(addr, data)
+#define cpu_stq_data(env, addr, data) stq_raw(addr, data)
+
+#define cpu_ldub_kernel(env, addr) ldub_raw(addr)
+#define cpu_lduw_kernel(env, addr) lduw_raw(addr)
+#define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
+#define cpu_ldl_kernel(env, addr) ldl_raw(addr)
+#define cpu_ldq_kernel(env, addr) ldq_raw(addr)
+
+#define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
+#define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
+#define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
+#define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
+#endif
#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
+#ifdef CONFIG_TCG_PASS_AREG0
+#define cpu_ldub_data(env, addr) ldub_raw(addr)
+#define cpu_lduw_data(env, addr) lduw_raw(addr)
+#define cpu_ldl_data(env, addr) ldl_raw(addr)
+
+#define cpu_stb_data(env, addr, data) stb_raw(addr, data)
+#define cpu_stw_data(env, addr, data) stw_raw(addr, data)
+#define cpu_stl_data(env, addr, data) stl_raw(addr, data)
+#endif
#endif /* defined(CONFIG_USER_ONLY) */
/* page related stuff */
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
-/* ??? These should be the larger of unsigned long and target_ulong. */
-extern unsigned long qemu_real_host_page_size;
-extern unsigned long qemu_host_page_bits;
-extern unsigned long qemu_host_page_size;
-extern unsigned long qemu_host_page_mask;
+/* ??? These should be the larger of uintptr_t and target_ulong. */
+extern uintptr_t qemu_real_host_page_size;
+extern uintptr_t qemu_host_page_size;
+extern uintptr_t qemu_host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
+#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
+/* FIXME: Code that sets/uses this is broken and needs to go away. */
#define PAGE_RESERVED 0x0020
+#endif
+#if defined(CONFIG_USER_ONLY)
void page_dump(FILE *f);
-int walk_memory_regions(void *,
- int (*fn)(void *, unsigned long, unsigned long, unsigned long));
+
+typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
+ abi_ulong, unsigned long);
+int walk_memory_regions(void *, walk_memory_regions_fn);
+
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
int page_check_range(target_ulong start, target_ulong len, int flags);
+#endif
+
+CPUArchState *cpu_copy(CPUArchState *env);
+CPUArchState *qemu_get_cpu(int cpu);
-void cpu_exec_init_all(unsigned long tb_size);
-CPUState *cpu_copy(CPUState *env);
-CPUState *qemu_get_cpu(int cpu);
+#define CPU_DUMP_CODE 0x00010000
-void cpu_dump_state(CPUState *env, FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
+void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
int flags);
-void cpu_dump_statistics (CPUState *env, FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
- int flags);
-
-void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
- __attribute__ ((__format__ (__printf__, 2, 3)));
-extern CPUState *first_cpu;
-extern CPUState *cpu_single_env;
-extern int64_t qemu_icount;
-extern int use_icount;
-
-#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
-#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
-#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
-#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
-#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
-#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
-#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
-#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
-#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
-#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
-#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
-#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
-
-void cpu_interrupt(CPUState *s, int mask);
-void cpu_reset_interrupt(CPUState *env, int mask);
-
-void cpu_exit(CPUState *s);
-
-int qemu_cpu_has_work(CPUState *env);
+void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
+ int flags);
+
+void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
+ GCC_FMT_ATTR(2, 3);
+extern CPUArchState *first_cpu;
+DECLARE_TLS(CPUArchState *,cpu_single_env);
+#define cpu_single_env tls_var(cpu_single_env)
+
+/* Flags for use in ENV->INTERRUPT_PENDING.
+
+ The numbers assigned here are non-sequential in order to preserve
+ binary compatibility with the vmstate dump. Bit 0 (0x0001) was
+ previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
+ the vmstate dump. */
+
+/* External hardware interrupt pending. This is typically used for
+ interrupts from devices. */
+#define CPU_INTERRUPT_HARD 0x0002
+
+/* Exit the current TB. This is typically used when some system-level device
+ makes some change to the memory mapping. E.g. the a20 line change. */
+#define CPU_INTERRUPT_EXITTB 0x0004
+
+/* Halt the CPU. */
+#define CPU_INTERRUPT_HALT 0x0020
+
+/* Debug event pending. */
+#define CPU_INTERRUPT_DEBUG 0x0080
+
+/* Several target-specific external hardware interrupts. Each target/cpu.h
+ should define proper names based on these defines. */
+#define CPU_INTERRUPT_TGT_EXT_0 0x0008
+#define CPU_INTERRUPT_TGT_EXT_1 0x0010
+#define CPU_INTERRUPT_TGT_EXT_2 0x0040
+#define CPU_INTERRUPT_TGT_EXT_3 0x0200
+#define CPU_INTERRUPT_TGT_EXT_4 0x1000
+
+/* Several target-specific internal interrupts. These differ from the
+ preceding target-specific interrupts in that they are intended to
+ originate from within the cpu itself, typically in response to some
+ instruction being executed. These, therefore, are not masked while
+ single-stepping within the debugger. */
+#define CPU_INTERRUPT_TGT_INT_0 0x0100
+#define CPU_INTERRUPT_TGT_INT_1 0x0400
+#define CPU_INTERRUPT_TGT_INT_2 0x0800
+#define CPU_INTERRUPT_TGT_INT_3 0x2000
+
+/* First unused bit: 0x4000. */
+
+/* The set of all bits that should be masked when single-stepping. */
+#define CPU_INTERRUPT_SSTEP_MASK \
+ (CPU_INTERRUPT_HARD \
+ | CPU_INTERRUPT_TGT_EXT_0 \
+ | CPU_INTERRUPT_TGT_EXT_1 \
+ | CPU_INTERRUPT_TGT_EXT_2 \
+ | CPU_INTERRUPT_TGT_EXT_3 \
+ | CPU_INTERRUPT_TGT_EXT_4)
+
+#ifndef CONFIG_USER_ONLY
+typedef void (*CPUInterruptHandler)(CPUArchState *, int);
+
+extern CPUInterruptHandler cpu_interrupt_handler;
+
+static inline void cpu_interrupt(CPUArchState *s, int mask)
+{
+ cpu_interrupt_handler(s, mask);
+}
+#else /* USER_ONLY */
+void cpu_interrupt(CPUArchState *env, int mask);
+#endif /* USER_ONLY */
+
+void cpu_reset_interrupt(CPUArchState *env, int mask);
+
+void cpu_exit(CPUArchState *s);
+
+bool qemu_cpu_has_work(CPUArchState *env);
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_GDB 0x10
#define BP_CPU 0x20
-int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint);
-int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
-void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
-void cpu_breakpoint_remove_all(CPUState *env, int mask);
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
+void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
+void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint);
-int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
+int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
target_ulong len, int flags);
-void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
-void cpu_watchpoint_remove_all(CPUState *env, int mask);
+void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
-void cpu_single_step(CPUState *env, int enabled);
-void cpu_reset(CPUState *s);
+void cpu_single_step(CPUArchState *env, int enabled);
+int cpu_is_stopped(CPUArchState *env);
+void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
+
+#if !defined(CONFIG_USER_ONLY)
/* Return the physical page corresponding to a virtual one. Use it
only for debugging because no protection checks are done. Return -1
if no page found. */
-target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
-
-#define CPU_LOG_TB_OUT_ASM (1 << 0)
-#define CPU_LOG_TB_IN_ASM (1 << 1)
-#define CPU_LOG_TB_OP (1 << 2)
-#define CPU_LOG_TB_OP_OPT (1 << 3)
-#define CPU_LOG_INT (1 << 4)
-#define CPU_LOG_EXEC (1 << 5)
-#define CPU_LOG_PCALL (1 << 6)
-#define CPU_LOG_IOPORT (1 << 7)
-#define CPU_LOG_TB_CPU (1 << 8)
-#define CPU_LOG_RESET (1 << 9)
-
-/* define log items */
-typedef struct CPULogItem {
- int mask;
- const char *name;
- const char *help;
-} CPULogItem;
-
-extern const CPULogItem cpu_log_items[];
-
-void cpu_set_log(int log_flags);
-void cpu_set_log_filename(const char *filename);
-int cpu_str_to_log_mask(const char *str);
+target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
/* memory API */
extern int phys_ram_fd;
-extern uint8_t *phys_ram_dirty;
extern ram_addr_t ram_size;
-extern ram_addr_t last_ram_offset;
-extern const char *mem_path;
-extern int mem_prealloc;
-
-/* physical memory access */
+/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
+#define RAM_PREALLOC_MASK (1 << 0)
+
+typedef struct RAMBlock {
+ struct MemoryRegion *mr;
+ uint8_t *host;
+ ram_addr_t offset;
+ ram_addr_t length;
+ uint32_t flags;
+ char idstr[256];
+ QLIST_ENTRY(RAMBlock) next;
+#if defined(__linux__) && !defined(TARGET_S390X)
+ int fd;
+#endif
+} RAMBlock;
-/* MMIO pages are identified by a combination of an IO device index and
- 3 flags. The ROMD code stores the page ram offset in iotlb entry,
- so only a limited number of ids are avaiable. */
+typedef struct RAMList {
+ uint8_t *phys_dirty;
+ QLIST_HEAD(, RAMBlock) blocks;
+ uint64_t dirty_pages;
+} RAMList;
+extern RAMList ram_list;
-#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
+extern const char *mem_path;
+extern int mem_prealloc;
/* Flags stored in the low bits of the TLB virtual address. These are
defined so that fast path ram access is all zeros. */
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << 5)
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
- uint8_t *buf, int len, int is_write);
-
-#define VGA_DIRTY_FLAG 0x01
-#define CODE_DIRTY_FLAG 0x02
-#define MIGRATION_DIRTY_FLAG 0x08
-
-/* read dirty bit (return 0 or 1) */
-static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
-{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
-}
-
-static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
- int dirty_flags)
-{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
-}
-
-static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
-{
- phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
-}
-
-void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
- int dirty_flags);
-void cpu_tlb_update_dirty(CPUState *env);
-
-int cpu_physical_memory_set_dirty_tracking(int enable);
-
-int cpu_physical_memory_get_dirty_tracking(void);
-
-int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
- target_phys_addr_t end_addr);
-
-void dump_exec_info(FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
-
-/* Coalesced MMIO regions are areas where write operations can be reordered.
- * This usually implies that write operations are side-effect free. This allows
- * batching which can make a major impact on performance when using
- * virtualization.
- */
-void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
-
-void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
-
-void qemu_flush_coalesced_mmio_buffer(void);
-
-/*******************************************/
-/* host CPU ticks (if available) */
-
-#if defined(_ARCH_PPC)
-
-static inline int64_t cpu_get_real_ticks(void)
-{
- int64_t retval;
-#ifdef _ARCH_PPC64
- /* This reads timebase in one 64bit go and includes Cell workaround from:
- http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
- */
- __asm__ __volatile__ (
- "mftb %0\n\t"
- "cmpwi %0,0\n\t"
- "beq- $-8"
- : "=r" (retval));
-#else
- /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
- unsigned long junk;
- __asm__ __volatile__ (
- "mftbu %1\n\t"
- "mftb %L0\n\t"
- "mftbu %0\n\t"
- "cmpw %0,%1\n\t"
- "bne $-16"
- : "=r" (retval), "=r" (junk));
-#endif
- return retval;
-}
-
-#elif defined(__i386__)
+void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
+#endif /* !CONFIG_USER_ONLY */
-static inline int64_t cpu_get_real_ticks(void)
-{
- int64_t val;
- asm volatile ("rdtsc" : "=A" (val));
- return val;
-}
-
-#elif defined(__x86_64__)
-
-static inline int64_t cpu_get_real_ticks(void)
-{
- uint32_t low,high;
- int64_t val;
- asm volatile("rdtsc" : "=a" (low), "=d" (high));
- val = high;
- val <<= 32;
- val |= low;
- return val;
-}
-
-#elif defined(__hppa__)
-
-static inline int64_t cpu_get_real_ticks(void)
-{
- int val;
- asm volatile ("mfctl %%cr16, %0" : "=r"(val));
- return val;
-}
-
-#elif defined(__ia64)
-
-static inline int64_t cpu_get_real_ticks(void)
-{
- int64_t val;
- asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
- return val;
-}
-
-#elif defined(__s390__)
-
-static inline int64_t cpu_get_real_ticks(void)
-{
- int64_t val;
- asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
- return val;
-}
-
-#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
-
-static inline int64_t cpu_get_real_ticks (void)
-{
-#if defined(_LP64)
- uint64_t rval;
- asm volatile("rd %%tick,%0" : "=r"(rval));
- return rval;
-#else
- union {
- uint64_t i64;
- struct {
- uint32_t high;
- uint32_t low;
- } i32;
- } rval;
- asm volatile("rd %%tick,%1; srlx %1,32,%0"
- : "=r"(rval.i32.high), "=r"(rval.i32.low));
- return rval.i64;
-#endif
-}
-
-#elif defined(__mips__) && \
- ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
-/*
- * binutils wants to use rdhwr only on mips32r2
- * but as linux kernel emulate it, it's fine
- * to use it.
- *
- */
-#define MIPS_RDHWR(rd, value) { \
- __asm__ __volatile__ ( \
- ".set push\n\t" \
- ".set mips32r2\n\t" \
- "rdhwr %0, "rd"\n\t" \
- ".set pop" \
- : "=r" (value)); \
-}
-
-static inline int64_t cpu_get_real_ticks(void)
-{
-/* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
- uint32_t count;
- static uint32_t cyc_per_count = 0;
-
- if (!cyc_per_count)
- MIPS_RDHWR("$3", cyc_per_count);
-
- MIPS_RDHWR("$2", count);
- return (int64_t)(count * cyc_per_count);
-}
-
-#else
-/* The host CPU doesn't have an easily accessible cycle counter.
- Just return a monotonically increasing value. This will be
- totally wrong, but hopefully better than nothing. */
-static inline int64_t cpu_get_real_ticks (void)
-{
- static int64_t ticks = 0;
- return ticks++;
-}
-#endif
-
-/* profiling */
-#ifdef CONFIG_PROFILER
-static inline int64_t profile_getclock(void)
-{
- return cpu_get_real_ticks();
-}
-
-extern int64_t qemu_time, qemu_time_start;
-extern int64_t tlb_flush_time;
-extern int64_t dev_time;
-#endif
-
-void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
- uint64_t mcg_status, uint64_t addr, uint64_t misc);
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
+ uint8_t *buf, int len, int is_write);
#endif /* CPU_ALL_H */