return ret;
}
+static bool ramblock_is_ignored(RAMBlock *block)
+{
+ return !qemu_ram_is_migratable(block) ||
+ (migrate_ignore_shared() && qemu_ram_is_shared(block));
+}
+
/* Should be holding either ram_list.mutex, or the RCU lock. */
+#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
+ INTERNAL_RAMBLOCK_FOREACH(block) \
+ if (ramblock_is_ignored(block)) {} else
+
#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
INTERNAL_RAMBLOCK_FOREACH(block) \
if (!qemu_ram_is_migratable(block)) {} else
#undef RAMBLOCK_FOREACH
+int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
+{
+ RAMBlock *block;
+ int ret = 0;
+
+ rcu_read_lock();
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
+ ret = func(block, opaque);
+ if (ret) {
+ break;
+ }
+ }
+ rcu_read_unlock();
+ return ret;
+}
+
static void ramblock_recv_map_init(void)
{
RAMBlock *rb;
- RAMBLOCK_FOREACH_MIGRATABLE(rb) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
assert(!rb->receivedmap);
rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
}
uint32_t last_version;
/* We are in the first round */
bool ram_bulk_stage;
+ /* The free page optimization is enabled */
+ bool fpo_enabled;
/* How many times we have dirty too many pages */
int dirty_rate_high_cnt;
/* these variables are used for bitmap sync */
uint64_t target_page_count;
/* number of dirty bits in the bitmap */
uint64_t migration_dirty_pages;
- /* protects modification of the bitmap */
+ /* Protects modification of the bitmap and migration dirty pages */
QemuMutex bitmap_mutex;
/* The RAMBlock used in the last src_page_requests */
RAMBlock *last_req_rb;
/* Queue of outstanding page requests from the destination */
QemuMutex src_page_req_mutex;
- QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
+ QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
};
typedef struct RAMState RAMState;
static RAMState *ram_state;
+static NotifierWithReturnList precopy_notifier_list;
+
+void precopy_infrastructure_init(void)
+{
+ notifier_with_return_list_init(&precopy_notifier_list);
+}
+
+void precopy_add_notifier(NotifierWithReturn *n)
+{
+ notifier_with_return_list_add(&precopy_notifier_list, n);
+}
+
+void precopy_remove_notifier(NotifierWithReturn *n)
+{
+ notifier_with_return_remove(n);
+}
+
+int precopy_notify(PrecopyNotifyReason reason, Error **errp)
+{
+ PrecopyNotifyData pnd;
+ pnd.reason = reason;
+ pnd.errp = errp;
+
+ return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
+}
+
+void precopy_enable_free_page_optimization(void)
+{
+ if (!ram_state) {
+ return;
+ }
+
+ ram_state->fpo_enabled = true;
+}
+
uint64_t ram_bytes_remaining(void)
{
return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
#define MULTIFD_FLAG_SYNC (1 << 0)
+/* This value needs to be a multiple of qemu_target_page_size() */
+#define MULTIFD_PACKET_SIZE (512 * 1024)
+
typedef struct {
uint32_t magic;
uint32_t version;
unsigned char uuid[16]; /* QemuUUID */
uint8_t id;
+ uint8_t unused1[7]; /* Reserved for future use */
+ uint64_t unused2[4]; /* Reserved for future use */
} __attribute__((packed)) MultiFDInit_t;
typedef struct {
uint32_t magic;
uint32_t version;
uint32_t flags;
- uint32_t size;
- uint32_t used;
+ /* maximum number of allocated pages */
+ uint32_t pages_alloc;
+ uint32_t pages_used;
+ /* size of the next packet that contains pages */
+ uint32_t next_packet_size;
uint64_t packet_num;
+ uint64_t unused[4]; /* Reserved for future use */
char ramblock[256];
uint64_t offset[];
} __attribute__((packed)) MultiFDPacket_t;
MultiFDPacket_t *packet;
/* multifd flags for each packet */
uint32_t flags;
+ /* size of the next packet that contains pages */
+ uint32_t next_packet_size;
/* global number of generated multifd packets */
uint64_t packet_num;
/* thread local variables */
uint64_t num_packets;
/* pages sent through this channel */
uint64_t num_pages;
- /* syncs main thread and channels */
- QemuSemaphore sem_sync;
} MultiFDSendParams;
typedef struct {
QemuMutex mutex;
/* is this channel thread running */
bool running;
+ /* should this thread finish */
+ bool quit;
/* array of pages to receive */
MultiFDPages_t *pages;
/* packet allocated len */
/* global number of generated multifd packets */
uint64_t packet_num;
/* thread local variables */
+ /* size of the next packet that contains pages */
+ uint32_t next_packet_size;
/* packets sent through this channel */
uint64_t num_packets;
/* pages sent through this channel */
static void multifd_send_fill_packet(MultiFDSendParams *p)
{
MultiFDPacket_t *packet = p->packet;
+ uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
int i;
packet->magic = cpu_to_be32(MULTIFD_MAGIC);
packet->version = cpu_to_be32(MULTIFD_VERSION);
packet->flags = cpu_to_be32(p->flags);
- packet->size = cpu_to_be32(migrate_multifd_page_count());
- packet->used = cpu_to_be32(p->pages->used);
+ packet->pages_alloc = cpu_to_be32(page_max);
+ packet->pages_used = cpu_to_be32(p->pages->used);
+ packet->next_packet_size = cpu_to_be32(p->next_packet_size);
packet->packet_num = cpu_to_be64(p->packet_num);
if (p->pages->block) {
static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
{
MultiFDPacket_t *packet = p->packet;
+ uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
RAMBlock *block;
int i;
p->flags = be32_to_cpu(packet->flags);
- packet->size = be32_to_cpu(packet->size);
- if (packet->size > migrate_multifd_page_count()) {
+ packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
+ /*
+ * If we recevied a packet that is 100 times bigger than expected
+ * just stop migration. It is a magic number.
+ */
+ if (packet->pages_alloc > pages_max * 100) {
error_setg(errp, "multifd: received packet "
- "with size %d and expected maximum size %d",
- packet->size, migrate_multifd_page_count()) ;
+ "with size %d and expected a maximum size of %d",
+ packet->pages_alloc, pages_max * 100) ;
return -1;
}
+ /*
+ * We received a packet that is bigger than expected but inside
+ * reasonable limits (see previous comment). Just reallocate.
+ */
+ if (packet->pages_alloc > p->pages->allocated) {
+ multifd_pages_clear(p->pages);
+ p->pages = multifd_pages_init(packet->pages_alloc);
+ }
- p->pages->used = be32_to_cpu(packet->used);
- if (p->pages->used > packet->size) {
+ p->pages->used = be32_to_cpu(packet->pages_used);
+ if (p->pages->used > packet->pages_alloc) {
error_setg(errp, "multifd: received packet "
- "with size %d and expected maximum size %d",
- p->pages->used, packet->size) ;
+ "with %d pages and expected maximum pages are %d",
+ p->pages->used, packet->pages_alloc) ;
return -1;
}
+ p->next_packet_size = be32_to_cpu(packet->next_packet_size);
p->packet_num = be64_to_cpu(packet->packet_num);
if (p->pages->used) {
struct {
MultiFDSendParams *params;
- /* number of created threads */
- int count;
/* array of pages to sent */
MultiFDPages_t *pages;
/* syncs main thread and channels */
* - to make easier to know what to free at the end of migration
*
* This way we always know who is the owner of each "pages" struct,
- * and we don't need any loocking. It belongs to the migration thread
+ * and we don't need any locking. It belongs to the migration thread
* or to the channel thread. Switching is safe because the migration
* thread is using the channel mutex when changing it, and the channel
* have to had finish with its own, otherwise pending_job can't be
* false.
*/
-static void multifd_send_pages(void)
+static int multifd_send_pages(RAMState *rs)
{
int i;
static int next_channel;
p = &multifd_send_state->params[i];
qemu_mutex_lock(&p->mutex);
+ if (p->quit) {
+ error_report("%s: channel %d has already quit!", __func__, i);
+ qemu_mutex_unlock(&p->mutex);
+ return -1;
+ }
if (!p->pending_job) {
p->pending_job++;
next_channel = (i + 1) % migrate_multifd_channels();
multifd_send_state->pages = p->pages;
p->pages = pages;
transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
+ qemu_file_update_transfer(rs->f, transferred);
ram_counters.multifd_bytes += transferred;
ram_counters.transferred += transferred;;
qemu_mutex_unlock(&p->mutex);
qemu_sem_post(&p->sem);
+
+ return 1;
}
-static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
+static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
{
MultiFDPages_t *pages = multifd_send_state->pages;
pages->used++;
if (pages->used < pages->allocated) {
- return;
+ return 1;
}
}
- multifd_send_pages();
+ if (multifd_send_pages(rs) < 0) {
+ return -1;
+ }
if (pages->block != block) {
- multifd_queue_page(block, offset);
+ return multifd_queue_page(rs, block, offset);
}
+
+ return 1;
}
static void multifd_send_terminate_threads(Error *err)
}
}
-int multifd_save_cleanup(Error **errp)
+void multifd_save_cleanup(void)
{
int i;
- int ret = 0;
if (!migrate_use_multifd()) {
- return 0;
+ return;
}
multifd_send_terminate_threads(NULL);
for (i = 0; i < migrate_multifd_channels(); i++) {
p->c = NULL;
qemu_mutex_destroy(&p->mutex);
qemu_sem_destroy(&p->sem);
- qemu_sem_destroy(&p->sem_sync);
g_free(p->name);
p->name = NULL;
multifd_pages_clear(p->pages);
multifd_send_state->pages = NULL;
g_free(multifd_send_state);
multifd_send_state = NULL;
- return ret;
}
-static void multifd_send_sync_main(void)
+static void multifd_send_sync_main(RAMState *rs)
{
int i;
return;
}
if (multifd_send_state->pages->used) {
- multifd_send_pages();
+ if (multifd_send_pages(rs) < 0) {
+ error_report("%s: multifd_send_pages fail", __func__);
+ return;
+ }
}
for (i = 0; i < migrate_multifd_channels(); i++) {
MultiFDSendParams *p = &multifd_send_state->params[i];
qemu_mutex_lock(&p->mutex);
+ if (p->quit) {
+ error_report("%s: channel %d has already quit", __func__, i);
+ qemu_mutex_unlock(&p->mutex);
+ return;
+ }
+
p->packet_num = multifd_send_state->packet_num++;
p->flags |= MULTIFD_FLAG_SYNC;
p->pending_job++;
+ qemu_file_update_transfer(rs->f, p->packet_len);
+ ram_counters.multifd_bytes += p->packet_len;
+ ram_counters.transferred += p->packet_len;
qemu_mutex_unlock(&p->mutex);
qemu_sem_post(&p->sem);
}
{
MultiFDSendParams *p = opaque;
Error *local_err = NULL;
- int ret;
+ int ret = 0;
+ uint32_t flags = 0;
trace_multifd_send_thread_start(p->id);
rcu_register_thread();
if (p->pending_job) {
uint32_t used = p->pages->used;
uint64_t packet_num = p->packet_num;
- uint32_t flags = p->flags;
+ flags = p->flags;
+ p->next_packet_size = used * qemu_target_page_size();
multifd_send_fill_packet(p);
p->flags = 0;
p->num_packets++;
p->pages->used = 0;
qemu_mutex_unlock(&p->mutex);
- trace_multifd_send(p->id, packet_num, used, flags);
+ trace_multifd_send(p->id, packet_num, used, flags,
+ p->next_packet_size);
ret = qio_channel_write_all(p->c, (void *)p->packet,
p->packet_len, &local_err);
break;
}
- ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
- if (ret != 0) {
- break;
+ if (used) {
+ ret = qio_channel_writev_all(p->c, p->pages->iov,
+ used, &local_err);
+ if (ret != 0) {
+ break;
+ }
}
qemu_mutex_lock(&p->mutex);
multifd_send_terminate_threads(local_err);
}
+ /*
+ * Error happen, I will exit, but I can't just leave, tell
+ * who pay attention to me.
+ */
+ if (ret != 0) {
+ if (flags & MULTIFD_FLAG_SYNC) {
+ qemu_sem_post(&multifd_send_state->sem_sync);
+ }
+ qemu_sem_post(&multifd_send_state->channels_ready);
+ }
+
qemu_mutex_lock(&p->mutex);
p->running = false;
qemu_mutex_unlock(&p->mutex);
Error *local_err = NULL;
if (qio_task_propagate_error(task, &local_err)) {
- if (multifd_save_cleanup(&local_err) != 0) {
- migrate_set_error(migrate_get_current(), local_err);
- }
+ migrate_set_error(migrate_get_current(), local_err);
+ multifd_save_cleanup();
} else {
p->c = QIO_CHANNEL(sioc);
qio_channel_set_delay(p->c, false);
p->running = true;
qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
QEMU_THREAD_JOINABLE);
-
- atomic_inc(&multifd_send_state->count);
}
}
int multifd_save_setup(void)
{
int thread_count;
- uint32_t page_count = migrate_multifd_page_count();
+ uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
uint8_t i;
if (!migrate_use_multifd()) {
thread_count = migrate_multifd_channels();
multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
- atomic_set(&multifd_send_state->count, 0);
multifd_send_state->pages = multifd_pages_init(page_count);
qemu_sem_init(&multifd_send_state->sem_sync, 0);
qemu_sem_init(&multifd_send_state->channels_ready, 0);
qemu_mutex_init(&p->mutex);
qemu_sem_init(&p->sem, 0);
- qemu_sem_init(&p->sem_sync, 0);
p->quit = false;
p->pending_job = 0;
p->id = i;
MultiFDRecvParams *p = &multifd_recv_state->params[i];
qemu_mutex_lock(&p->mutex);
+ p->quit = true;
/* We could arrive here for two reasons:
- normal quit, i.e. everything went fine, just finished
- error quit: We close the channels so the channel threads
MultiFDRecvParams *p = &multifd_recv_state->params[i];
if (p->running) {
+ p->quit = true;
+ /*
+ * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
+ * however try to wakeup it without harm in cleanup phase.
+ */
+ qemu_sem_post(&p->sem_sync);
qemu_thread_join(&p->thread);
}
object_unref(OBJECT(p->c));
trace_multifd_recv_sync_main_wait(p->id);
qemu_sem_wait(&multifd_recv_state->sem_sync);
+ }
+ for (i = 0; i < migrate_multifd_channels(); i++) {
+ MultiFDRecvParams *p = &multifd_recv_state->params[i];
+
qemu_mutex_lock(&p->mutex);
if (multifd_recv_state->packet_num < p->packet_num) {
multifd_recv_state->packet_num = p->packet_num;
}
qemu_mutex_unlock(&p->mutex);
- }
- for (i = 0; i < migrate_multifd_channels(); i++) {
- MultiFDRecvParams *p = &multifd_recv_state->params[i];
-
trace_multifd_recv_sync_main_signal(p->id);
qemu_sem_post(&p->sem_sync);
}
uint32_t used;
uint32_t flags;
+ if (p->quit) {
+ break;
+ }
+
ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
p->packet_len, &local_err);
if (ret == 0) { /* EOF */
used = p->pages->used;
flags = p->flags;
- trace_multifd_recv(p->id, p->packet_num, used, flags);
+ trace_multifd_recv(p->id, p->packet_num, used, flags,
+ p->next_packet_size);
p->num_packets++;
p->num_pages += used;
qemu_mutex_unlock(&p->mutex);
- ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
- if (ret != 0) {
- break;
+ if (used) {
+ ret = qio_channel_readv_all(p->c, p->pages->iov,
+ used, &local_err);
+ if (ret != 0) {
+ break;
+ }
}
if (flags & MULTIFD_FLAG_SYNC) {
int multifd_load_setup(void)
{
int thread_count;
- uint32_t page_count = migrate_multifd_page_count();
+ uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
uint8_t i;
if (!migrate_use_multifd()) {
qemu_mutex_init(&p->mutex);
qemu_sem_init(&p->sem_sync, 0);
+ p->quit = false;
p->id = i;
p->pages = multifd_pages_init(page_count);
p->packet_len = sizeof(MultiFDPacket_t)
return thread_count == atomic_read(&multifd_recv_state->count);
}
-/* Return true if multifd is ready for the migration, otherwise false */
-bool multifd_recv_new_channel(QIOChannel *ioc)
+/*
+ * Try to receive all multifd channels to get ready for the migration.
+ * - Return true and do not set @errp when correctly receving all channels;
+ * - Return false and do not set @errp when correctly receiving the current one;
+ * - Return false and set @errp when failing to receive the current channel.
+ */
+bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
{
MultiFDRecvParams *p;
Error *local_err = NULL;
id = multifd_recv_initial_packet(ioc, &local_err);
if (id < 0) {
multifd_recv_terminate_threads(local_err);
+ error_propagate_prepend(errp, local_err,
+ "failed to receive packet"
+ " via multifd channel %d: ",
+ atomic_read(&multifd_recv_state->count));
return false;
}
error_setg(&local_err, "multifd: received id '%d' already setup'",
id);
multifd_recv_terminate_threads(local_err);
+ error_propagate(errp, local_err);
return false;
}
p->c = ioc;
qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
QEMU_THREAD_JOINABLE);
atomic_inc(&multifd_recv_state->count);
- return multifd_recv_state->count == migrate_multifd_channels();
+ return atomic_read(&multifd_recv_state->count) ==
+ migrate_multifd_channels();
}
/**
encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
TARGET_PAGE_SIZE);
+
+ /*
+ * Update the cache contents, so that it corresponds to the data
+ * sent, in all cases except where we skip the page.
+ */
+ if (!last_stage && encoded_len != 0) {
+ memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
+ /*
+ * In the case where we couldn't compress, ensure that the caller
+ * sends the data from the cache, since the guest might have
+ * changed the RAM since we copied it.
+ */
+ *current_data = prev_cached_page;
+ }
+
if (encoded_len == 0) {
trace_save_xbzrle_page_skipping();
return 0;
} else if (encoded_len == -1) {
trace_save_xbzrle_page_overflow();
xbzrle_counters.overflow++;
- /* update data in the cache */
- if (!last_stage) {
- memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
- *current_data = prev_cached_page;
- }
return -1;
}
- /* we need to update the data in the cache, in order to get the same data */
- if (!last_stage) {
- memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
- }
-
/* Send XBZRLE based compressed page */
bytes_xbzrle = save_page_header(rs, rs->f, block,
offset | RAM_SAVE_FLAG_XBZRLE);
/**
* migration_bitmap_find_dirty: find the next dirty page from start
*
- * Called with rcu_read_lock() to protect migration_bitmap
- *
- * Returns the byte offset within memory region of the start of a dirty page
+ * Returns the page offset within memory region of the start of a dirty page
*
* @rs: current RAM state
* @rb: RAMBlock where to search for dirty pages
unsigned long *bitmap = rb->bmap;
unsigned long next;
- if (!qemu_ram_is_migratable(rb)) {
+ if (ramblock_is_ignored(rb)) {
return size;
}
- if (rs->ram_bulk_stage && start > 0) {
+ /*
+ * When the free page optimization is enabled, we need to check the bitmap
+ * to send the non-free pages rather than all the pages in the bulk stage.
+ */
+ if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
next = start + 1;
} else {
next = find_next_bit(bitmap, size, start);
{
bool ret;
+ qemu_mutex_lock(&rs->bitmap_mutex);
+
+ /*
+ * Clear dirty bitmap if needed. This _must_ be called before we
+ * send any of the page in the chunk because we need to make sure
+ * we can capture further page content changes when we sync dirty
+ * log the next time. So as long as we are going to send any of
+ * the page in the chunk we clear the remote dirty bitmap for all.
+ * Clearing it earlier won't be a problem, but too late will.
+ */
+ if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
+ uint8_t shift = rb->clear_bmap_shift;
+ hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
+ hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
+
+ /*
+ * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
+ * can make things easier sometimes since then start address
+ * of the small chunk will always be 64 pages aligned so the
+ * bitmap will always be aligned to unsigned long. We should
+ * even be able to remove this restriction but I'm simply
+ * keeping it.
+ */
+ assert(shift >= 6);
+ trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
+ memory_region_clear_dirty_bitmap(rb->mr, start, size);
+ }
+
ret = test_and_clear_bit(page, rb->bmap);
if (ret) {
rs->migration_dirty_pages--;
}
+ qemu_mutex_unlock(&rs->bitmap_mutex);
+
return ret;
}
-static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
- ram_addr_t start, ram_addr_t length)
+/* Called with RCU critical section */
+static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
{
rs->migration_dirty_pages +=
- cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
+ cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
&rs->num_dirty_pages_period);
}
RAMBlock *block;
uint64_t summary = 0;
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
summary |= block->page_size;
}
return summary;
}
+uint64_t ram_get_total_transferred_pages(void)
+{
+ return ram_counters.normal + ram_counters.duplicate +
+ compression_counters.pages + xbzrle_counters.pages;
+}
+
static void migration_update_rates(RAMState *rs, int64_t end_time)
{
uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
qemu_mutex_lock(&rs->bitmap_mutex);
rcu_read_lock();
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
- migration_bitmap_sync_range(rs, block, 0, block->used_length);
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
+ ramblock_sync_dirty_bitmap(rs, block);
}
ram_counters.remaining = ram_bytes_remaining();
rcu_read_unlock();
}
}
+static void migration_bitmap_sync_precopy(RAMState *rs)
+{
+ Error *local_err = NULL;
+
+ /*
+ * The current notifier usage is just an optimization to migration, so we
+ * don't stop the normal migration process in the error case.
+ */
+ if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
+ error_report_err(local_err);
+ }
+
+ migration_bitmap_sync(rs);
+
+ if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
+ error_report_err(local_err);
+ }
+}
+
/**
* save_zero_page_to_file: send the zero page to the file
*
static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
ram_addr_t offset)
{
- multifd_queue_page(block, offset);
+ if (multifd_queue_page(rs, block, offset) < 0) {
+ return -1;
+ }
ram_counters.normal++;
return 1;
* find_dirty_block: find the next dirty page and update any state
* associated with the search process.
*
- * Returns if a page is found
+ * Returns true if a page is found
*
* @rs: current RAM state
* @pss: data about the state of the current dirty page scan
}
/**
- * get_queued_page: unqueue a page from the postocpy requests
+ * get_queued_page: unqueue a page from the postcopy requests
*
* Skips pages that are already sent (!dirty)
*
- * Returns if a queued page is found
+ * Returns true if a queued page is found
*
* @rs: current RAM state
* @pss: data about the state of the current dirty page scan
*/
pss->block = block;
pss->page = offset >> TARGET_PAGE_BITS;
+
+ /*
+ * This unqueued page would break the "one round" check, even is
+ * really rare.
+ */
+ pss->complete_round = false;
}
return !!block;
size_t pagesize_bits =
qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
- if (!qemu_ram_is_migratable(pss->block)) {
+ if (ramblock_is_ignored(pss->block)) {
error_report("block %s should not be migrated !", pss->block->idstr);
return 0;
}
}
}
-uint64_t ram_bytes_total(void)
+static uint64_t ram_bytes_total_common(bool count_ignored)
{
RAMBlock *block;
uint64_t total = 0;
rcu_read_lock();
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
- total += block->used_length;
+ if (count_ignored) {
+ RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ total += block->used_length;
+ }
+ } else {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
+ total += block->used_length;
+ }
}
rcu_read_unlock();
return total;
}
+uint64_t ram_bytes_total(void)
+{
+ return ram_bytes_total_common(false);
+}
+
static void xbzrle_load_setup(void)
{
XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
RAMBlock *block;
/* caller have hold iothread lock or is in a bh, so there is
- * no writing race against this migration_bitmap
+ * no writing race against the migration bitmap
*/
memory_global_dirty_log_stop();
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
+ g_free(block->clear_bmap);
+ block->clear_bmap = NULL;
g_free(block->bmap);
block->bmap = NULL;
g_free(block->unsentmap);
rs->last_page = 0;
rs->last_version = ram_list.version;
rs->ram_bulk_stage = true;
+ rs->fpo_enabled = false;
}
#define MAX_WAIT 50 /* ms, half buffered_file limit */
{
struct RAMBlock *block;
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
unsigned long *bitmap = block->bmap;
unsigned long range = block->used_length >> TARGET_PAGE_BITS;
unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
* with the dirtymap; so a '1' means it's either dirty or unsent.
*
* @ms: current migration state
- * @pds: state for postcopy
- * @start: RAMBlock starting page
- * @length: RAMBlock size
+ * @block: RAMBlock to discard
*/
-static int postcopy_send_discard_bm_ram(MigrationState *ms,
- PostcopyDiscardState *pds,
- RAMBlock *block)
+static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
{
unsigned long end = block->used_length >> TARGET_PAGE_BITS;
unsigned long current;
for (current = 0; current < end; ) {
unsigned long one = find_next_bit(unsentmap, end, current);
+ unsigned long zero, discard_length;
+
+ if (one >= end) {
+ break;
+ }
- if (one <= end) {
- unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
- unsigned long discard_length;
+ zero = find_next_zero_bit(unsentmap, end, one + 1);
- if (zero >= end) {
- discard_length = end - one;
- } else {
- discard_length = zero - one;
- }
- if (discard_length) {
- postcopy_discard_send_range(ms, pds, one, discard_length);
- }
- current = one + discard_length;
+ if (zero >= end) {
+ discard_length = end - one;
} else {
- current = one;
+ discard_length = zero - one;
}
+ postcopy_discard_send_range(ms, one, discard_length);
+ current = one + discard_length;
}
return 0;
struct RAMBlock *block;
int ret;
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
- PostcopyDiscardState *pds =
- postcopy_discard_send_init(ms, block->idstr);
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
+ postcopy_discard_send_init(ms, block->idstr);
/*
* Postcopy sends chunks of bitmap over the wire, but it
* just needs indexes at this point, avoids it having
* target page specific code.
*/
- ret = postcopy_send_discard_bm_ram(ms, pds, block);
- postcopy_discard_send_finish(ms, pds);
+ ret = postcopy_send_discard_bm_ram(ms, block);
+ postcopy_discard_send_finish(ms);
if (ret) {
return ret;
}
* @unsent_pass: if true we need to canonicalize partially unsent host pages
* otherwise we need to canonicalize partially dirty host pages
* @block: block that contains the page we want to canonicalize
- * @pds: state for postcopy
*/
static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
- RAMBlock *block,
- PostcopyDiscardState *pds)
+ RAMBlock *block)
{
RAMState *rs = ram_state;
unsigned long *bitmap = block->bmap;
}
while (run_start < pages) {
- bool do_fixup = false;
- unsigned long fixup_start_addr;
- unsigned long host_offset;
/*
* If the start of this run of pages is in the middle of a host
* page, then we need to fixup this host page.
*/
- host_offset = run_start % host_ratio;
- if (host_offset) {
- do_fixup = true;
- run_start -= host_offset;
- fixup_start_addr = run_start;
- /* For the next pass */
- run_start = run_start + host_ratio;
- } else {
+ if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
/* Find the end of this run */
- unsigned long run_end;
if (unsent_pass) {
- run_end = find_next_bit(unsentmap, pages, run_start + 1);
+ run_start = find_next_bit(unsentmap, pages, run_start + 1);
} else {
- run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
+ run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
}
/*
* If the end isn't at the start of a host page, then the
* run doesn't finish at the end of a host page
* and we need to discard.
*/
- host_offset = run_end % host_ratio;
- if (host_offset) {
- do_fixup = true;
- fixup_start_addr = run_end - host_offset;
- /*
- * This host page has gone, the next loop iteration starts
- * from after the fixup
- */
- run_start = fixup_start_addr + host_ratio;
- } else {
- /*
- * No discards on this iteration, next loop starts from
- * next sent/dirty page
- */
- run_start = run_end + 1;
- }
}
- if (do_fixup) {
+ if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
unsigned long page;
+ unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
+ host_ratio);
+ run_start = QEMU_ALIGN_UP(run_start, host_ratio);
/* Tell the destination to discard this page */
if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
* (any partially sent pages were already discarded
* by the previous unsent_pass)
*/
- postcopy_discard_send_range(ms, pds, fixup_start_addr,
- host_ratio);
+ postcopy_discard_send_range(ms, fixup_start_addr, host_ratio);
}
/* Clean up the bitmap */
}
/**
- * postcopy_chuck_hostpages: discrad any partially sent host page
+ * postcopy_chunk_hostpages: discard any partially sent host page
*
* Utility for the outgoing postcopy code.
*
*/
static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
{
- PostcopyDiscardState *pds =
- postcopy_discard_send_init(ms, block->idstr);
+ postcopy_discard_send_init(ms, block->idstr);
/* First pass: Discard all partially sent host pages */
- postcopy_chunk_hostpages_pass(ms, true, block, pds);
+ postcopy_chunk_hostpages_pass(ms, true, block);
/*
* Second pass: Ensure that all partially dirty host pages are made
* fully dirty.
*/
- postcopy_chunk_hostpages_pass(ms, false, block, pds);
+ postcopy_chunk_hostpages_pass(ms, false, block);
- postcopy_discard_send_finish(ms, pds);
+ postcopy_discard_send_finish(ms);
return 0;
}
rs->last_sent_block = NULL;
rs->last_page = 0;
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
unsigned long *bitmap = block->bmap;
unsigned long *unsentmap = block->unsentmap;
/*
* Count the total number of pages used by ram blocks not including any
* gaps due to alignment or unplugs.
+ * This must match with the initial values of dirty bitmap.
*/
(*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
-
ram_state_reset(*rsp);
return 0;
static void ram_list_init_bitmaps(void)
{
+ MigrationState *ms = migrate_get_current();
RAMBlock *block;
unsigned long pages;
+ uint8_t shift;
/* Skip setting bitmap if there is no RAM */
if (ram_bytes_total()) {
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ shift = ms->clear_bitmap_shift;
+ if (shift > CLEAR_BITMAP_SHIFT_MAX) {
+ error_report("clear_bitmap_shift (%u) too big, using "
+ "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
+ shift = CLEAR_BITMAP_SHIFT_MAX;
+ } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
+ error_report("clear_bitmap_shift (%u) too small, using "
+ "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
+ shift = CLEAR_BITMAP_SHIFT_MIN;
+ }
+
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
pages = block->max_length >> TARGET_PAGE_BITS;
+ /*
+ * The initial dirty bitmap for migration must be set with all
+ * ones to make sure we'll migrate every guest RAM page to
+ * destination.
+ * Here we set RAMBlock.bmap all to 1 because when rebegin a
+ * new migration after a failed migration, ram_list.
+ * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
+ * guest memory.
+ */
block->bmap = bitmap_new(pages);
bitmap_set(block->bmap, 0, pages);
+ block->clear_bmap_shift = shift;
+ block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
if (migrate_postcopy_ram()) {
block->unsentmap = bitmap_new(pages);
bitmap_set(block->unsentmap, 0, pages);
ram_list_init_bitmaps();
memory_global_dirty_log_start();
- migration_bitmap_sync(rs);
+ migration_bitmap_sync_precopy(rs);
rcu_read_unlock();
qemu_mutex_unlock_ramlist();
* about dirty page logging as well.
*/
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
pages += bitmap_count_one(block->bmap,
block->used_length >> TARGET_PAGE_BITS);
}
trace_ram_state_resume_prepare(pages);
}
+/*
+ * This function clears bits of the free pages reported by the caller from the
+ * migration dirty bitmap. @addr is the host address corresponding to the
+ * start of the continuous guest free pages, and @len is the total bytes of
+ * those pages.
+ */
+void qemu_guest_free_page_hint(void *addr, size_t len)
+{
+ RAMBlock *block;
+ ram_addr_t offset;
+ size_t used_len, start, npages;
+ MigrationState *s = migrate_get_current();
+
+ /* This function is currently expected to be used during live migration */
+ if (!migration_is_setup_or_active(s->state)) {
+ return;
+ }
+
+ for (; len > 0; len -= used_len, addr += used_len) {
+ block = qemu_ram_block_from_host(addr, false, &offset);
+ if (unlikely(!block || offset >= block->used_length)) {
+ /*
+ * The implementation might not support RAMBlock resize during
+ * live migration, but it could happen in theory with future
+ * updates. So we add a check here to capture that case.
+ */
+ error_report_once("%s unexpected error", __func__);
+ return;
+ }
+
+ if (len <= block->used_length - offset) {
+ used_len = len;
+ } else {
+ used_len = block->used_length - offset;
+ }
+
+ start = offset >> TARGET_PAGE_BITS;
+ npages = used_len >> TARGET_PAGE_BITS;
+
+ qemu_mutex_lock(&ram_state->bitmap_mutex);
+ ram_state->migration_dirty_pages -=
+ bitmap_count_one_with_offset(block->bmap, start, npages);
+ bitmap_clear(block->bmap, start, npages);
+ qemu_mutex_unlock(&ram_state->bitmap_mutex);
+ }
+}
+
/*
* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
* long-running RCU critical section. When rcu-reclaims in the code
rcu_read_lock();
- qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
+ qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
RAMBLOCK_FOREACH_MIGRATABLE(block) {
qemu_put_byte(f, strlen(block->idstr));
if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
qemu_put_be64(f, block->page_size);
}
+ if (migrate_ignore_shared()) {
+ qemu_put_be64(f, block->mr->addr);
+ }
}
rcu_read_unlock();
ram_control_before_iterate(f, RAM_CONTROL_SETUP);
ram_control_after_iterate(f, RAM_CONTROL_SETUP);
- multifd_send_sync_main();
+ multifd_send_sync_main(*rsp);
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
qemu_fflush(f);
/* we want to check in the 1st loop, just in case it was the 1st time
and we had to sync the dirty bitmap.
- qemu_get_clock_ns() is a bit expensive, so we only check each some
+ qemu_clock_get_ns() is a bit expensive, so we only check each some
iterations
*/
if ((i & 63) == 0) {
*/
ram_control_after_iterate(f, RAM_CONTROL_ROUND);
- multifd_send_sync_main();
out:
+ multifd_send_sync_main(rs);
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
qemu_fflush(f);
ram_counters.transferred += 8;
rcu_read_lock();
if (!migration_in_postcopy()) {
- migration_bitmap_sync(rs);
+ migration_bitmap_sync_precopy(rs);
}
ram_control_before_iterate(f, RAM_CONTROL_FINISH);
rcu_read_unlock();
- multifd_send_sync_main();
+ multifd_send_sync_main(rs);
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
qemu_fflush(f);
remaining_size < max_size) {
qemu_mutex_lock_iothread();
rcu_read_lock();
- migration_bitmap_sync(rs);
+ migration_bitmap_sync_precopy(rs);
rcu_read_unlock();
qemu_mutex_unlock_iothread();
remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
return NULL;
}
- if (!qemu_ram_is_migratable(block)) {
+ if (ramblock_is_ignored(block)) {
error_report("block %s should not be migrated !", id);
return NULL;
}
RAMBlock *block;
rcu_read_lock();
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
block->colo_cache = qemu_anon_ram_alloc(block->used_length,
NULL,
false);
if (ram_bytes_total()) {
RAMBlock *block;
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
block->bmap = bitmap_new(pages);
}
ram_state = g_new0(RAMState, 1);
ram_state->migration_dirty_pages = 0;
+ qemu_mutex_init(&ram_state->bitmap_mutex);
+ memory_global_dirty_log_start();
return 0;
out_locked:
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
if (block->colo_cache) {
qemu_anon_ram_free(block->colo_cache, block->used_length);
block->colo_cache = NULL;
{
RAMBlock *block;
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ memory_global_dirty_log_stop();
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
g_free(block->bmap);
block->bmap = NULL;
}
rcu_read_lock();
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
if (block->colo_cache) {
qemu_anon_ram_free(block->colo_cache, block->used_length);
block->colo_cache = NULL;
}
rcu_read_unlock();
+ qemu_mutex_destroy(&ram_state->bitmap_mutex);
g_free(ram_state);
ram_state = NULL;
}
{
RAMBlock *rb;
- RAMBLOCK_FOREACH_MIGRATABLE(rb) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
if (ramblock_is_pmem(rb)) {
pmem_persist(rb->host, rb->used_length);
}
xbzrle_load_cleanup();
compress_threads_load_cleanup();
- RAMBLOCK_FOREACH_MIGRATABLE(rb) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
g_free(rb->receivedmap);
rb->receivedmap = NULL;
}
void *src_host;
unsigned long offset = 0;
+ memory_global_dirty_log_sync();
+ rcu_read_lock();
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
+ ramblock_sync_dirty_bitmap(ram_state, block);
+ }
+ rcu_read_unlock();
+
trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
rcu_read_lock();
block = QLIST_FIRST_RCU(&ram_list.blocks);
trace_colo_flush_ram_cache_end();
}
-static int ram_load(QEMUFile *f, void *opaque, int version_id)
+/**
+ * ram_load_precopy: load pages in precopy case
+ *
+ * Returns 0 for success or -errno in case of error
+ *
+ * Called in precopy mode by ram_load().
+ * rcu_read_lock is taken prior to this being called.
+ *
+ * @f: QEMUFile where to send the data
+ */
+static int ram_load_precopy(QEMUFile *f)
{
- int flags = 0, ret = 0, invalid_flags = 0;
- static uint64_t seq_iter;
- int len = 0;
- /*
- * If system is running in postcopy mode, page inserts to host memory must
- * be atomic
- */
- bool postcopy_running = postcopy_is_running();
+ int flags = 0, ret = 0, invalid_flags = 0, len = 0;
/* ADVISE is earlier, it shows the source has the postcopy capability on */
bool postcopy_advised = postcopy_is_advised();
-
- seq_iter++;
-
- if (version_id != 4) {
- ret = -EINVAL;
- }
-
if (!migrate_use_compression()) {
invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
}
- /* This RCU critical section can be very long running.
- * When RCU reclaims in the code start to become numerous,
- * it will be necessary to reduce the granularity of this
- * critical section.
- */
- rcu_read_lock();
- if (postcopy_running) {
- ret = ram_load_postcopy(f);
- }
-
- while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
+ while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
ram_addr_t addr, total_ram_bytes;
void *host = NULL;
uint8_t ch;
ret = -EINVAL;
}
}
+ if (migrate_ignore_shared()) {
+ hwaddr addr = qemu_get_be64(f);
+ if (ramblock_is_ignored(block) &&
+ block->mr->addr != addr) {
+ error_report("Mismatched GPAs for block %s "
+ "%" PRId64 "!= %" PRId64,
+ id, (uint64_t)addr,
+ (uint64_t)block->mr->addr);
+ ret = -EINVAL;
+ }
+ }
ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
block->idstr);
} else {
}
}
+ return ret;
+}
+
+static int ram_load(QEMUFile *f, void *opaque, int version_id)
+{
+ int ret = 0;
+ static uint64_t seq_iter;
+ /*
+ * If system is running in postcopy mode, page inserts to host memory must
+ * be atomic
+ */
+ bool postcopy_running = postcopy_is_running();
+
+ seq_iter++;
+
+ if (version_id != 4) {
+ return -EINVAL;
+ }
+
+ /*
+ * This RCU critical section can be very long running.
+ * When RCU reclaims in the code start to become numerous,
+ * it will be necessary to reduce the granularity of this
+ * critical section.
+ */
+ rcu_read_lock();
+
+ if (postcopy_running) {
+ ret = ram_load_postcopy(f);
+ } else {
+ ret = ram_load_precopy(f);
+ }
+
ret |= wait_for_decompress_done();
rcu_read_unlock();
trace_ram_load_complete(ret, seq_iter);
static bool ram_has_postcopy(void *opaque)
{
RAMBlock *rb;
- RAMBLOCK_FOREACH_MIGRATABLE(rb) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
if (ramblock_is_pmem(rb)) {
info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
"is not supported now!", rb->idstr, rb->host);
trace_ram_dirty_bitmap_sync_start();
- RAMBLOCK_FOREACH_MIGRATABLE(block) {
+ RAMBLOCK_FOREACH_NOT_IGNORED(block) {
qemu_savevm_send_recv_bitmap(file, block->idstr);
trace_ram_dirty_bitmap_request(block->idstr);
ramblock_count++;