*/
#include "qemu/osdep.h"
-
-#include "qemu-common.h"
#include "exec/target_page.h"
-#include "migration/migration.h"
-#include "migration/qemu-file.h"
+#include "migration.h"
+#include "qemu-file.h"
#include "savevm.h"
#include "postcopy-ram.h"
+#include "ram.h"
+#include "qapi/error.h"
+#include "qemu/notify.h"
#include "sysemu/sysemu.h"
#include "sysemu/balloon.h"
#include "qemu/error-report.h"
unsigned int nsentcmds;
};
+static NotifierWithReturnList postcopy_notifier_list;
+
+void postcopy_infrastructure_init(void)
+{
+ notifier_with_return_list_init(&postcopy_notifier_list);
+}
+
+void postcopy_add_notifier(NotifierWithReturn *nn)
+{
+ notifier_with_return_list_add(&postcopy_notifier_list, nn);
+}
+
+void postcopy_remove_notifier(NotifierWithReturn *n)
+{
+ notifier_with_return_remove(n);
+}
+
+int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
+{
+ struct PostcopyNotifyData pnd;
+ pnd.reason = reason;
+ pnd.errp = errp;
+
+ return notifier_with_return_list_notify(&postcopy_notifier_list,
+ &pnd);
+}
+
/* Postcopy needs to detect accesses to pages that haven't yet been copied
* across, and efficiently map new pages in, the techniques for doing this
* are target OS specific.
#include <sys/eventfd.h>
#include <linux/userfaultfd.h>
-static bool ufd_version_check(int ufd)
+typedef struct PostcopyBlocktimeContext {
+ /* time when page fault initiated per vCPU */
+ uint32_t *page_fault_vcpu_time;
+ /* page address per vCPU */
+ uintptr_t *vcpu_addr;
+ uint32_t total_blocktime;
+ /* blocktime per vCPU */
+ uint32_t *vcpu_blocktime;
+ /* point in time when last page fault was initiated */
+ uint32_t last_begin;
+ /* number of vCPU are suspended */
+ int smp_cpus_down;
+ uint64_t start_time;
+
+ /*
+ * Handler for exit event, necessary for
+ * releasing whole blocktime_ctx
+ */
+ Notifier exit_notifier;
+} PostcopyBlocktimeContext;
+
+static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
{
- struct uffdio_api api_struct;
- uint64_t ioctl_mask;
+ g_free(ctx->page_fault_vcpu_time);
+ g_free(ctx->vcpu_addr);
+ g_free(ctx->vcpu_blocktime);
+ g_free(ctx);
+}
+
+static void migration_exit_cb(Notifier *n, void *data)
+{
+ PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
+ exit_notifier);
+ destroy_blocktime_context(ctx);
+}
+
+static struct PostcopyBlocktimeContext *blocktime_context_new(void)
+{
+ PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
+ ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
+ ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
+ ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
+
+ ctx->exit_notifier.notify = migration_exit_cb;
+ ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
+ qemu_add_exit_notifier(&ctx->exit_notifier);
+ return ctx;
+}
+static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
+{
+ uint32List *list = NULL, *entry = NULL;
+ int i;
+
+ for (i = smp_cpus - 1; i >= 0; i--) {
+ entry = g_new0(uint32List, 1);
+ entry->value = ctx->vcpu_blocktime[i];
+ entry->next = list;
+ list = entry;
+ }
+
+ return list;
+}
+
+/*
+ * This function just populates MigrationInfo from postcopy's
+ * blocktime context. It will not populate MigrationInfo,
+ * unless postcopy-blocktime capability was set.
+ *
+ * @info: pointer to MigrationInfo to populate
+ */
+void fill_destination_postcopy_migration_info(MigrationInfo *info)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
+
+ if (!bc) {
+ return;
+ }
+
+ info->has_postcopy_blocktime = true;
+ info->postcopy_blocktime = bc->total_blocktime;
+ info->has_postcopy_vcpu_blocktime = true;
+ info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
+}
+
+static uint32_t get_postcopy_total_blocktime(void)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
+
+ if (!bc) {
+ return 0;
+ }
+
+ return bc->total_blocktime;
+}
+
+/**
+ * receive_ufd_features: check userfault fd features, to request only supported
+ * features in the future.
+ *
+ * Returns: true on success
+ *
+ * __NR_userfaultfd - should be checked before
+ * @features: out parameter will contain uffdio_api.features provided by kernel
+ * in case of success
+ */
+static bool receive_ufd_features(uint64_t *features)
+{
+ struct uffdio_api api_struct = {0};
+ int ufd;
+ bool ret = true;
+
+ /* if we are here __NR_userfaultfd should exists */
+ ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
+ if (ufd == -1) {
+ error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
+ strerror(errno));
+ return false;
+ }
+
+ /* ask features */
api_struct.api = UFFD_API;
api_struct.features = 0;
if (ioctl(ufd, UFFDIO_API, &api_struct)) {
- error_report("postcopy_ram_supported_by_host: UFFDIO_API failed: %s",
+ error_report("%s: UFFDIO_API failed: %s", __func__,
+ strerror(errno));
+ ret = false;
+ goto release_ufd;
+ }
+
+ *features = api_struct.features;
+
+release_ufd:
+ close(ufd);
+ return ret;
+}
+
+/**
+ * request_ufd_features: this function should be called only once on a newly
+ * opened ufd, subsequent calls will lead to error.
+ *
+ * Returns: true on succes
+ *
+ * @ufd: fd obtained from userfaultfd syscall
+ * @features: bit mask see UFFD_API_FEATURES
+ */
+static bool request_ufd_features(int ufd, uint64_t features)
+{
+ struct uffdio_api api_struct = {0};
+ uint64_t ioctl_mask;
+
+ api_struct.api = UFFD_API;
+ api_struct.features = features;
+ if (ioctl(ufd, UFFDIO_API, &api_struct)) {
+ error_report("%s failed: UFFDIO_API failed: %s", __func__,
strerror(errno));
return false;
}
return false;
}
+ return true;
+}
+
+static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
+{
+ uint64_t asked_features = 0;
+ static uint64_t supported_features;
+
+ /*
+ * it's not possible to
+ * request UFFD_API twice per one fd
+ * userfault fd features is persistent
+ */
+ if (!supported_features) {
+ if (!receive_ufd_features(&supported_features)) {
+ error_report("%s failed", __func__);
+ return false;
+ }
+ }
+
+#ifdef UFFD_FEATURE_THREAD_ID
+ if (migrate_postcopy_blocktime() && mis &&
+ UFFD_FEATURE_THREAD_ID & supported_features) {
+ /* kernel supports that feature */
+ /* don't create blocktime_context if it exists */
+ if (!mis->blocktime_ctx) {
+ mis->blocktime_ctx = blocktime_context_new();
+ }
+
+ asked_features |= UFFD_FEATURE_THREAD_ID;
+ }
+#endif
+
+ /*
+ * request features, even if asked_features is 0, due to
+ * kernel expects UFFD_API before UFFDIO_REGISTER, per
+ * userfault file descriptor
+ */
+ if (!request_ufd_features(ufd, asked_features)) {
+ error_report("%s failed: features %" PRIu64, __func__,
+ asked_features);
+ return false;
+ }
+
if (getpagesize() != ram_pagesize_summary()) {
bool have_hp = false;
/* We've got a huge page */
#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
- have_hp = api_struct.features & UFFD_FEATURE_MISSING_HUGETLBFS;
+ have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
#endif
if (!have_hp) {
error_report("Userfault on this host does not support huge pages");
RAMBlock *rb = qemu_ram_block_by_name(block_name);
size_t pagesize = qemu_ram_pagesize(rb);
- if (qemu_ram_is_shared(rb)) {
- error_report("Postcopy on shared RAM (%s) is not yet supported",
- block_name);
- return 1;
- }
-
if (length % pagesize) {
error_report("Postcopy requires RAM blocks to be a page size multiple,"
" block %s is 0x" RAM_ADDR_FMT " bytes with a "
* normally fine since if the postcopy succeeds it gets turned back on at the
* end.
*/
-bool postcopy_ram_supported_by_host(void)
+bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
long pagesize = getpagesize();
int ufd = -1;
struct uffdio_register reg_struct;
struct uffdio_range range_struct;
uint64_t feature_mask;
+ Error *local_err = NULL;
if (qemu_target_page_size() > pagesize) {
error_report("Target page size bigger than host page size");
goto out;
}
+ /* Give devices a chance to object */
+ if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
+ error_report_err(local_err);
+ goto out;
+ }
+
/* Version and features check */
- if (!ufd_version_check(ufd)) {
+ if (!ufd_check_and_apply(ufd, mis)) {
goto out;
}
/* We don't support postcopy with shared RAM yet */
- if (qemu_ram_foreach_block(test_ramblock_postcopiable, NULL)) {
+ if (qemu_ram_foreach_migratable_block(test_ramblock_postcopiable, NULL)) {
goto out;
}
* postcopy later; must be called prior to any precopy.
* called from arch_init's similarly named ram_postcopy_incoming_init
*/
-int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
+int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
- if (qemu_ram_foreach_block(init_range, NULL)) {
+ if (qemu_ram_foreach_migratable_block(init_range, NULL)) {
return -1;
}
return 0;
}
+/*
+ * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
+ * last caller wins.
+ */
+static void postcopy_balloon_inhibit(bool state)
+{
+ static bool cur_state = false;
+
+ if (state != cur_state) {
+ qemu_balloon_inhibit(state);
+ cur_state = state;
+ }
+}
+
/*
* At the end of a migration where postcopy_ram_incoming_init was called.
*/
trace_postcopy_ram_incoming_cleanup_entry();
if (mis->have_fault_thread) {
- uint64_t tmp64;
+ Error *local_err = NULL;
- if (qemu_ram_foreach_block(cleanup_range, mis)) {
+ if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
+ error_report_err(local_err);
return -1;
}
- /*
- * Tell the fault_thread to exit, it's an eventfd that should
- * currently be at 0, we're going to increment it to 1
- */
- tmp64 = 1;
- if (write(mis->userfault_quit_fd, &tmp64, 8) == 8) {
- trace_postcopy_ram_incoming_cleanup_join();
- qemu_thread_join(&mis->fault_thread);
- } else {
- /* Not much we can do here, but may as well report it */
- error_report("%s: incrementing userfault_quit_fd: %s", __func__,
- strerror(errno));
+
+ if (qemu_ram_foreach_migratable_block(cleanup_range, mis)) {
+ return -1;
}
+ /* Let the fault thread quit */
+ atomic_set(&mis->fault_thread_quit, 1);
+ postcopy_fault_thread_notify(mis);
+ trace_postcopy_ram_incoming_cleanup_join();
+ qemu_thread_join(&mis->fault_thread);
+
trace_postcopy_ram_incoming_cleanup_closeuf();
close(mis->userfault_fd);
- close(mis->userfault_quit_fd);
+ close(mis->userfault_event_fd);
mis->have_fault_thread = false;
}
- qemu_balloon_inhibit(false);
+ postcopy_balloon_inhibit(false);
if (enable_mlock) {
if (os_mlock() < 0) {
}
postcopy_state_set(POSTCOPY_INCOMING_END);
- migrate_send_rp_shut(mis, qemu_file_get_error(mis->from_src_file) != 0);
if (mis->postcopy_tmp_page) {
munmap(mis->postcopy_tmp_page, mis->largest_page_size);
munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
mis->postcopy_tmp_zero_page = NULL;
}
+ trace_postcopy_ram_incoming_cleanup_blocktime(
+ get_postcopy_total_blocktime());
+
trace_postcopy_ram_incoming_cleanup_exit();
return 0;
}
*/
int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
{
- if (qemu_ram_foreach_block(nhp_range, mis)) {
+ if (qemu_ram_foreach_migratable_block(nhp_range, mis)) {
return -1;
}
/*
* Mark the given area of RAM as requiring notification to unwritten areas
- * Used as a callback on qemu_ram_foreach_block.
+ * Used as a callback on qemu_ram_foreach_migratable_block.
* host_addr: Base of area to mark
* offset: Offset in the whole ram arena
* length: Length of the section
error_report("%s userfault: Region doesn't support COPY", __func__);
return -1;
}
+ if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
+ RAMBlock *rb = qemu_ram_block_by_name(block_name);
+ qemu_ram_set_uf_zeroable(rb);
+ }
return 0;
}
+int postcopy_wake_shared(struct PostCopyFD *pcfd,
+ uint64_t client_addr,
+ RAMBlock *rb)
+{
+ size_t pagesize = qemu_ram_pagesize(rb);
+ struct uffdio_range range;
+ int ret;
+ trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
+ range.start = client_addr & ~(pagesize - 1);
+ range.len = pagesize;
+ ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
+ if (ret) {
+ error_report("%s: Failed to wake: %zx in %s (%s)",
+ __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
+ strerror(errno));
+ }
+ return ret;
+}
+
+/*
+ * Callback from shared fault handlers to ask for a page,
+ * the page must be specified by a RAMBlock and an offset in that rb
+ * Note: Only for use by shared fault handlers (in fault thread)
+ */
+int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
+ uint64_t client_addr, uint64_t rb_offset)
+{
+ size_t pagesize = qemu_ram_pagesize(rb);
+ uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
+ MigrationIncomingState *mis = migration_incoming_get_current();
+
+ trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
+ rb_offset);
+ if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
+ trace_postcopy_request_shared_page_present(pcfd->idstr,
+ qemu_ram_get_idstr(rb), rb_offset);
+ return postcopy_wake_shared(pcfd, client_addr, rb);
+ }
+ if (rb != mis->last_rb) {
+ mis->last_rb = rb;
+ migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
+ aligned_rbo, pagesize);
+ } else {
+ /* Save some space */
+ migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
+ }
+ return 0;
+}
+
+static int get_mem_fault_cpu_index(uint32_t pid)
+{
+ CPUState *cpu_iter;
+
+ CPU_FOREACH(cpu_iter) {
+ if (cpu_iter->thread_id == pid) {
+ trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
+ return cpu_iter->cpu_index;
+ }
+ }
+ trace_get_mem_fault_cpu_index(-1, pid);
+ return -1;
+}
+
+static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
+{
+ int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
+ dc->start_time;
+ return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
+}
+
+/*
+ * This function is being called when pagefault occurs. It
+ * tracks down vCPU blocking time.
+ *
+ * @addr: faulted host virtual address
+ * @ptid: faulted process thread id
+ * @rb: ramblock appropriate to addr
+ */
+static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
+ RAMBlock *rb)
+{
+ int cpu, already_received;
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
+ uint32_t low_time_offset;
+
+ if (!dc || ptid == 0) {
+ return;
+ }
+ cpu = get_mem_fault_cpu_index(ptid);
+ if (cpu < 0) {
+ return;
+ }
+
+ low_time_offset = get_low_time_offset(dc);
+ if (dc->vcpu_addr[cpu] == 0) {
+ atomic_inc(&dc->smp_cpus_down);
+ }
+
+ atomic_xchg(&dc->last_begin, low_time_offset);
+ atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
+ atomic_xchg(&dc->vcpu_addr[cpu], addr);
+
+ /* check it here, not at the begining of the function,
+ * due to, check could accur early than bitmap_set in
+ * qemu_ufd_copy_ioctl */
+ already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
+ if (already_received) {
+ atomic_xchg(&dc->vcpu_addr[cpu], 0);
+ atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
+ atomic_dec(&dc->smp_cpus_down);
+ }
+ trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
+ cpu, already_received);
+}
+
+/*
+ * This function just provide calculated blocktime per cpu and trace it.
+ * Total blocktime is calculated in mark_postcopy_blocktime_end.
+ *
+ *
+ * Assume we have 3 CPU
+ *
+ * S1 E1 S1 E1
+ * -----***********------------xxx***************------------------------> CPU1
+ *
+ * S2 E2
+ * ------------****************xxx---------------------------------------> CPU2
+ *
+ * S3 E3
+ * ------------------------****xxx********-------------------------------> CPU3
+ *
+ * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
+ * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
+ * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
+ * it's a part of total blocktime.
+ * S1 - here is last_begin
+ * Legend of the picture is following:
+ * * - means blocktime per vCPU
+ * x - means overlapped blocktime (total blocktime)
+ *
+ * @addr: host virtual address
+ */
+static void mark_postcopy_blocktime_end(uintptr_t addr)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
+ int i, affected_cpu = 0;
+ bool vcpu_total_blocktime = false;
+ uint32_t read_vcpu_time, low_time_offset;
+
+ if (!dc) {
+ return;
+ }
+
+ low_time_offset = get_low_time_offset(dc);
+ /* lookup cpu, to clear it,
+ * that algorithm looks straighforward, but it's not
+ * optimal, more optimal algorithm is keeping tree or hash
+ * where key is address value is a list of */
+ for (i = 0; i < smp_cpus; i++) {
+ uint32_t vcpu_blocktime = 0;
+
+ read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
+ if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
+ read_vcpu_time == 0) {
+ continue;
+ }
+ atomic_xchg(&dc->vcpu_addr[i], 0);
+ vcpu_blocktime = low_time_offset - read_vcpu_time;
+ affected_cpu += 1;
+ /* we need to know is that mark_postcopy_end was due to
+ * faulted page, another possible case it's prefetched
+ * page and in that case we shouldn't be here */
+ if (!vcpu_total_blocktime &&
+ atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
+ vcpu_total_blocktime = true;
+ }
+ /* continue cycle, due to one page could affect several vCPUs */
+ dc->vcpu_blocktime[i] += vcpu_blocktime;
+ }
+
+ atomic_sub(&dc->smp_cpus_down, affected_cpu);
+ if (vcpu_total_blocktime) {
+ dc->total_blocktime += low_time_offset - atomic_fetch_add(
+ &dc->last_begin, 0);
+ }
+ trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
+ affected_cpu);
+}
+
+static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
+{
+ trace_postcopy_pause_fault_thread();
+
+ qemu_sem_wait(&mis->postcopy_pause_sem_fault);
+
+ trace_postcopy_pause_fault_thread_continued();
+
+ return true;
+}
+
/*
* Handle faults detected by the USERFAULT markings
*/
MigrationIncomingState *mis = opaque;
struct uffd_msg msg;
int ret;
+ size_t index;
RAMBlock *rb = NULL;
- RAMBlock *last_rb = NULL; /* last RAMBlock we sent part of */
trace_postcopy_ram_fault_thread_entry();
+ rcu_register_thread();
+ mis->last_rb = NULL; /* last RAMBlock we sent part of */
qemu_sem_post(&mis->fault_thread_sem);
+ struct pollfd *pfd;
+ size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
+
+ pfd = g_new0(struct pollfd, pfd_len);
+
+ pfd[0].fd = mis->userfault_fd;
+ pfd[0].events = POLLIN;
+ pfd[1].fd = mis->userfault_event_fd;
+ pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
+ trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
+ for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
+ struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
+ struct PostCopyFD, index);
+ pfd[2 + index].fd = pcfd->fd;
+ pfd[2 + index].events = POLLIN;
+ trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
+ pcfd->fd);
+ }
+
while (true) {
ram_addr_t rb_offset;
- struct pollfd pfd[2];
+ int poll_result;
/*
* We're mainly waiting for the kernel to give us a faulting HVA,
* however we can be told to quit via userfault_quit_fd which is
* an eventfd
*/
- pfd[0].fd = mis->userfault_fd;
- pfd[0].events = POLLIN;
- pfd[0].revents = 0;
- pfd[1].fd = mis->userfault_quit_fd;
- pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
- pfd[1].revents = 0;
-
- if (poll(pfd, 2, -1 /* Wait forever */) == -1) {
+
+ poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
+ if (poll_result == -1) {
error_report("%s: userfault poll: %s", __func__, strerror(errno));
break;
}
- if (pfd[1].revents) {
- trace_postcopy_ram_fault_thread_quit();
- break;
+ if (!mis->to_src_file) {
+ /*
+ * Possibly someone tells us that the return path is
+ * broken already using the event. We should hold until
+ * the channel is rebuilt.
+ */
+ if (postcopy_pause_fault_thread(mis)) {
+ mis->last_rb = NULL;
+ /* Continue to read the userfaultfd */
+ } else {
+ error_report("%s: paused but don't allow to continue",
+ __func__);
+ break;
+ }
}
- ret = read(mis->userfault_fd, &msg, sizeof(msg));
- if (ret != sizeof(msg)) {
- if (errno == EAGAIN) {
- /*
- * if a wake up happens on the other thread just after
- * the poll, there is nothing to read.
- */
- continue;
+ if (pfd[1].revents) {
+ uint64_t tmp64 = 0;
+
+ /* Consume the signal */
+ if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
+ /* Nothing obviously nicer than posting this error. */
+ error_report("%s: read() failed", __func__);
}
- if (ret < 0) {
- error_report("%s: Failed to read full userfault message: %s",
- __func__, strerror(errno));
+
+ if (atomic_read(&mis->fault_thread_quit)) {
+ trace_postcopy_ram_fault_thread_quit();
break;
- } else {
- error_report("%s: Read %d bytes from userfaultfd expected %zd",
- __func__, ret, sizeof(msg));
- break; /* Lost alignment, don't know what we'd read next */
}
}
- if (msg.event != UFFD_EVENT_PAGEFAULT) {
- error_report("%s: Read unexpected event %ud from userfaultfd",
- __func__, msg.event);
- continue; /* It's not a page fault, shouldn't happen */
- }
- rb = qemu_ram_block_from_host(
- (void *)(uintptr_t)msg.arg.pagefault.address,
- true, &rb_offset);
- if (!rb) {
- error_report("postcopy_ram_fault_thread: Fault outside guest: %"
- PRIx64, (uint64_t)msg.arg.pagefault.address);
- break;
- }
+ if (pfd[0].revents) {
+ poll_result--;
+ ret = read(mis->userfault_fd, &msg, sizeof(msg));
+ if (ret != sizeof(msg)) {
+ if (errno == EAGAIN) {
+ /*
+ * if a wake up happens on the other thread just after
+ * the poll, there is nothing to read.
+ */
+ continue;
+ }
+ if (ret < 0) {
+ error_report("%s: Failed to read full userfault "
+ "message: %s",
+ __func__, strerror(errno));
+ break;
+ } else {
+ error_report("%s: Read %d bytes from userfaultfd "
+ "expected %zd",
+ __func__, ret, sizeof(msg));
+ break; /* Lost alignment, don't know what we'd read next */
+ }
+ }
+ if (msg.event != UFFD_EVENT_PAGEFAULT) {
+ error_report("%s: Read unexpected event %ud from userfaultfd",
+ __func__, msg.event);
+ continue; /* It's not a page fault, shouldn't happen */
+ }
+
+ rb = qemu_ram_block_from_host(
+ (void *)(uintptr_t)msg.arg.pagefault.address,
+ true, &rb_offset);
+ if (!rb) {
+ error_report("postcopy_ram_fault_thread: Fault outside guest: %"
+ PRIx64, (uint64_t)msg.arg.pagefault.address);
+ break;
+ }
- rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
- trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
+ rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
+ trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
qemu_ram_get_idstr(rb),
- rb_offset);
+ rb_offset,
+ msg.arg.pagefault.feat.ptid);
+ mark_postcopy_blocktime_begin(
+ (uintptr_t)(msg.arg.pagefault.address),
+ msg.arg.pagefault.feat.ptid, rb);
- /*
- * Send the request to the source - we want to request one
- * of our host page sizes (which is >= TPS)
- */
- if (rb != last_rb) {
- last_rb = rb;
- migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
- rb_offset, qemu_ram_pagesize(rb));
- } else {
- /* Save some space */
- migrate_send_rp_req_pages(mis, NULL,
- rb_offset, qemu_ram_pagesize(rb));
+retry:
+ /*
+ * Send the request to the source - we want to request one
+ * of our host page sizes (which is >= TPS)
+ */
+ if (rb != mis->last_rb) {
+ mis->last_rb = rb;
+ ret = migrate_send_rp_req_pages(mis,
+ qemu_ram_get_idstr(rb),
+ rb_offset,
+ qemu_ram_pagesize(rb));
+ } else {
+ /* Save some space */
+ ret = migrate_send_rp_req_pages(mis,
+ NULL,
+ rb_offset,
+ qemu_ram_pagesize(rb));
+ }
+
+ if (ret) {
+ /* May be network failure, try to wait for recovery */
+ if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
+ /* We got reconnected somehow, try to continue */
+ mis->last_rb = NULL;
+ goto retry;
+ } else {
+ /* This is a unavoidable fault */
+ error_report("%s: migrate_send_rp_req_pages() get %d",
+ __func__, ret);
+ break;
+ }
+ }
+ }
+
+ /* Now handle any requests from external processes on shared memory */
+ /* TODO: May need to handle devices deregistering during postcopy */
+ for (index = 2; index < pfd_len && poll_result; index++) {
+ if (pfd[index].revents) {
+ struct PostCopyFD *pcfd =
+ &g_array_index(mis->postcopy_remote_fds,
+ struct PostCopyFD, index - 2);
+
+ poll_result--;
+ if (pfd[index].revents & POLLERR) {
+ error_report("%s: POLLERR on poll %zd fd=%d",
+ __func__, index, pcfd->fd);
+ pfd[index].events = 0;
+ continue;
+ }
+
+ ret = read(pcfd->fd, &msg, sizeof(msg));
+ if (ret != sizeof(msg)) {
+ if (errno == EAGAIN) {
+ /*
+ * if a wake up happens on the other thread just after
+ * the poll, there is nothing to read.
+ */
+ continue;
+ }
+ if (ret < 0) {
+ error_report("%s: Failed to read full userfault "
+ "message: %s (shared) revents=%d",
+ __func__, strerror(errno),
+ pfd[index].revents);
+ /*TODO: Could just disable this sharer */
+ break;
+ } else {
+ error_report("%s: Read %d bytes from userfaultfd "
+ "expected %zd (shared)",
+ __func__, ret, sizeof(msg));
+ /*TODO: Could just disable this sharer */
+ break; /*Lost alignment,don't know what we'd read next*/
+ }
+ }
+ if (msg.event != UFFD_EVENT_PAGEFAULT) {
+ error_report("%s: Read unexpected event %ud "
+ "from userfaultfd (shared)",
+ __func__, msg.event);
+ continue; /* It's not a page fault, shouldn't happen */
+ }
+ /* Call the device handler registered with us */
+ ret = pcfd->handler(pcfd, &msg);
+ if (ret) {
+ error_report("%s: Failed to resolve shared fault on %zd/%s",
+ __func__, index, pcfd->idstr);
+ /* TODO: Fail? Disable this sharer? */
+ }
+ }
}
}
+ rcu_unregister_thread();
trace_postcopy_ram_fault_thread_exit();
+ g_free(pfd);
return NULL;
}
* Although the host check already tested the API, we need to
* do the check again as an ABI handshake on the new fd.
*/
- if (!ufd_version_check(mis->userfault_fd)) {
+ if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
return -1;
}
/* Now an eventfd we use to tell the fault-thread to quit */
- mis->userfault_quit_fd = eventfd(0, EFD_CLOEXEC);
- if (mis->userfault_quit_fd == -1) {
- error_report("%s: Opening userfault_quit_fd: %s", __func__,
+ mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
+ if (mis->userfault_event_fd == -1) {
+ error_report("%s: Opening userfault_event_fd: %s", __func__,
strerror(errno));
close(mis->userfault_fd);
return -1;
mis->have_fault_thread = true;
/* Mark so that we get notified of accesses to unwritten areas */
- if (qemu_ram_foreach_block(ram_block_enable_notify, mis)) {
+ if (qemu_ram_foreach_migratable_block(ram_block_enable_notify, mis)) {
return -1;
}
* Ballooning can mark pages as absent while we're postcopying
* that would cause false userfaults.
*/
- qemu_balloon_inhibit(true);
+ postcopy_balloon_inhibit(true);
trace_postcopy_ram_enable_notify();
return 0;
}
+static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
+ void *from_addr, uint64_t pagesize, RAMBlock *rb)
+{
+ int ret;
+ if (from_addr) {
+ struct uffdio_copy copy_struct;
+ copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
+ copy_struct.src = (uint64_t)(uintptr_t)from_addr;
+ copy_struct.len = pagesize;
+ copy_struct.mode = 0;
+ ret = ioctl(userfault_fd, UFFDIO_COPY, ©_struct);
+ } else {
+ struct uffdio_zeropage zero_struct;
+ zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
+ zero_struct.range.len = pagesize;
+ zero_struct.mode = 0;
+ ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
+ }
+ if (!ret) {
+ ramblock_recv_bitmap_set_range(rb, host_addr,
+ pagesize / qemu_target_page_size());
+ mark_postcopy_blocktime_end((uintptr_t)host_addr);
+
+ }
+ return ret;
+}
+
+int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
+{
+ int i;
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ GArray *pcrfds = mis->postcopy_remote_fds;
+
+ for (i = 0; i < pcrfds->len; i++) {
+ struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
+ int ret = cur->waker(cur, rb, offset);
+ if (ret) {
+ return ret;
+ }
+ }
+ return 0;
+}
+
/*
* Place a host page (from) at (host) atomically
* returns 0 on success
*/
int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
- size_t pagesize)
+ RAMBlock *rb)
{
- struct uffdio_copy copy_struct;
-
- copy_struct.dst = (uint64_t)(uintptr_t)host;
- copy_struct.src = (uint64_t)(uintptr_t)from;
- copy_struct.len = pagesize;
- copy_struct.mode = 0;
+ size_t pagesize = qemu_ram_pagesize(rb);
/* copy also acks to the kernel waking the stalled thread up
* TODO: We can inhibit that ack and only do it if it was requested
* which would be slightly cheaper, but we'd have to be careful
* of the order of updating our page state.
*/
- if (ioctl(mis->userfault_fd, UFFDIO_COPY, ©_struct)) {
+ if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
int e = errno;
error_report("%s: %s copy host: %p from: %p (size: %zd)",
__func__, strerror(e), host, from, pagesize);
}
trace_postcopy_place_page(host);
- return 0;
+ return postcopy_notify_shared_wake(rb,
+ qemu_ram_block_host_offset(rb, host));
}
/*
* returns 0 on success
*/
int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
- size_t pagesize)
+ RAMBlock *rb)
{
+ size_t pagesize = qemu_ram_pagesize(rb);
trace_postcopy_place_page_zero(host);
- if (pagesize == getpagesize()) {
- struct uffdio_zeropage zero_struct;
- zero_struct.range.start = (uint64_t)(uintptr_t)host;
- zero_struct.range.len = getpagesize();
- zero_struct.mode = 0;
-
- if (ioctl(mis->userfault_fd, UFFDIO_ZEROPAGE, &zero_struct)) {
+ /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
+ * but it's not available for everything (e.g. hugetlbpages)
+ */
+ if (qemu_ram_is_uf_zeroable(rb)) {
+ if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
int e = errno;
error_report("%s: %s zero host: %p",
__func__, strerror(e), host);
return -e;
}
+ return postcopy_notify_shared_wake(rb,
+ qemu_ram_block_host_offset(rb,
+ host));
} else {
/* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
if (!mis->postcopy_tmp_zero_page) {
memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
}
return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
- pagesize);
+ rb);
}
-
- return 0;
}
/*
#else
/* No target OS support, stubs just fail */
-bool postcopy_ram_supported_by_host(void)
+void fill_destination_postcopy_migration_info(MigrationInfo *info)
+{
+}
+
+bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
{
error_report("%s: No OS support", __func__);
return false;
}
-int postcopy_ram_incoming_init(MigrationIncomingState *mis, size_t ram_pages)
+int postcopy_ram_incoming_init(MigrationIncomingState *mis)
{
error_report("postcopy_ram_incoming_init: No OS support");
return -1;
return -1;
}
+int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
+ uint64_t client_addr, uint64_t rb_offset)
+{
+ assert(0);
+ return -1;
+}
+
int postcopy_ram_enable_notify(MigrationIncomingState *mis)
{
assert(0);
}
int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
- size_t pagesize)
+ RAMBlock *rb)
{
assert(0);
return -1;
}
int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
- size_t pagesize)
+ RAMBlock *rb)
{
assert(0);
return -1;
return NULL;
}
+int postcopy_wake_shared(struct PostCopyFD *pcfd,
+ uint64_t client_addr,
+ RAMBlock *rb)
+{
+ assert(0);
+ return -1;
+}
#endif
/* ------------------------------------------------------------------------- */
+void postcopy_fault_thread_notify(MigrationIncomingState *mis)
+{
+ uint64_t tmp64 = 1;
+
+ /*
+ * Wakeup the fault_thread. It's an eventfd that should currently
+ * be at 0, we're going to increment it to 1
+ */
+ if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
+ /* Not much we can do here, but may as well report it */
+ error_report("%s: incrementing failed: %s", __func__,
+ strerror(errno));
+ }
+}
+
/**
* postcopy_discard_send_init: Called at the start of each RAMBlock before
* asking to discard individual ranges.
{
return atomic_xchg(&incoming_postcopy_state, new_state);
}
+
+/* Register a handler for external shared memory postcopy
+ * called on the destination.
+ */
+void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
+{
+ MigrationIncomingState *mis = migration_incoming_get_current();
+
+ mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
+ *pcfd);
+}
+
+/* Unregister a handler for external shared memory postcopy
+ */
+void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
+{
+ guint i;
+ MigrationIncomingState *mis = migration_incoming_get_current();
+ GArray *pcrfds = mis->postcopy_remote_fds;
+
+ for (i = 0; i < pcrfds->len; i++) {
+ struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
+ if (cur->fd == pcfd->fd) {
+ mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
+ return;
+ }
+ }
+}