#include "hw/qdev.h"
#include "qemu/osdep.h"
#include "sysemu/kvm.h"
+#include "sysemu/sysemu.h"
#include "hw/xen/xen.h"
#include "qemu/timer.h"
#include "qemu/config-file.h"
//#define DEBUG_SUBPAGE
#if !defined(CONFIG_USER_ONLY)
-int phys_ram_fd;
static int in_migration;
RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
#endif
-CPUArchState *first_cpu;
+CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
-DEFINE_TLS(CPUArchState *,cpu_single_env);
+DEFINE_TLS(CPUState *, current_cpu);
/* 0 = Do not count executed instructions.
1 = Precise instruction counting.
2 = Adaptive rate instruction counting. */
uint16_t ptr : 15;
};
+typedef PhysPageEntry Node[L2_SIZE];
+
struct AddressSpaceDispatch {
/* This is a multi-level map on the physical address space.
* The bottom level has pointers to MemoryRegionSections.
*/
PhysPageEntry phys_map;
- MemoryListener listener;
+ Node *nodes;
+ MemoryRegionSection *sections;
AddressSpace *as;
};
uint16_t sub_section[TARGET_PAGE_SIZE];
} subpage_t;
-static MemoryRegionSection *phys_sections;
-static unsigned phys_sections_nb, phys_sections_nb_alloc;
-static uint16_t phys_section_unassigned;
-static uint16_t phys_section_notdirty;
-static uint16_t phys_section_rom;
-static uint16_t phys_section_watch;
+#define PHYS_SECTION_UNASSIGNED 0
+#define PHYS_SECTION_NOTDIRTY 1
+#define PHYS_SECTION_ROM 2
+#define PHYS_SECTION_WATCH 3
+
+typedef struct PhysPageMap {
+ unsigned sections_nb;
+ unsigned sections_nb_alloc;
+ unsigned nodes_nb;
+ unsigned nodes_nb_alloc;
+ Node *nodes;
+ MemoryRegionSection *sections;
+} PhysPageMap;
-/* Simple allocator for PhysPageEntry nodes */
-static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
-static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
+static PhysPageMap *prev_map;
+static PhysPageMap next_map;
#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
static void phys_map_node_reserve(unsigned nodes)
{
- if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
- typedef PhysPageEntry Node[L2_SIZE];
- phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
- phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
- phys_map_nodes_nb + nodes);
- phys_map_nodes = g_renew(Node, phys_map_nodes,
- phys_map_nodes_nb_alloc);
+ if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
+ next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
+ 16);
+ next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
+ next_map.nodes_nb + nodes);
+ next_map.nodes = g_renew(Node, next_map.nodes,
+ next_map.nodes_nb_alloc);
}
}
unsigned i;
uint16_t ret;
- ret = phys_map_nodes_nb++;
+ ret = next_map.nodes_nb++;
assert(ret != PHYS_MAP_NODE_NIL);
- assert(ret != phys_map_nodes_nb_alloc);
+ assert(ret != next_map.nodes_nb_alloc);
for (i = 0; i < L2_SIZE; ++i) {
- phys_map_nodes[ret][i].is_leaf = 0;
- phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
+ next_map.nodes[ret][i].is_leaf = 0;
+ next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
}
return ret;
}
if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
lp->ptr = phys_map_node_alloc();
- p = phys_map_nodes[lp->ptr];
+ p = next_map.nodes[lp->ptr];
if (level == 0) {
for (i = 0; i < L2_SIZE; i++) {
p[i].is_leaf = 1;
- p[i].ptr = phys_section_unassigned;
+ p[i].ptr = PHYS_SECTION_UNASSIGNED;
}
}
} else {
- p = phys_map_nodes[lp->ptr];
+ p = next_map.nodes[lp->ptr];
}
lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
}
-static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
+static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
+ Node *nodes, MemoryRegionSection *sections)
{
- PhysPageEntry lp = d->phys_map;
PhysPageEntry *p;
int i;
for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
if (lp.ptr == PHYS_MAP_NODE_NIL) {
- return &phys_sections[phys_section_unassigned];
+ return §ions[PHYS_SECTION_UNASSIGNED];
}
- p = phys_map_nodes[lp.ptr];
+ p = nodes[lp.ptr];
lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
}
- return &phys_sections[lp.ptr];
+ return §ions[lp.ptr];
}
bool memory_region_is_unassigned(MemoryRegion *mr)
&& mr != &io_mem_watch;
}
-static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
+static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
hwaddr addr,
bool resolve_subpage)
{
MemoryRegionSection *section;
subpage_t *subpage;
- section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
+ d->nodes, d->sections);
if (resolve_subpage && section->mr->subpage) {
subpage = container_of(section->mr, subpage_t, iomem);
- section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
+ section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
}
return section;
}
static MemoryRegionSection *
-address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
+address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
hwaddr *plen, bool resolve_subpage)
{
MemoryRegionSection *section;
Int128 diff;
- section = address_space_lookup_region(as, addr, resolve_subpage);
+ section = address_space_lookup_region(d, addr, resolve_subpage);
/* Compute offset within MemoryRegionSection */
addr -= section->offset_within_address_space;
hwaddr len = *plen;
for (;;) {
- section = address_space_translate_internal(as, addr, &addr, plen, true);
+ section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
mr = section->mr;
if (!mr->iommu_ops) {
hwaddr *plen)
{
MemoryRegionSection *section;
- section = address_space_translate_internal(as, addr, xlat, plen, false);
+ section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
assert(!section->mr->iommu_ops);
return section;
CPUState *qemu_get_cpu(int index)
{
- CPUArchState *env = first_cpu;
- CPUState *cpu = NULL;
+ CPUState *cpu = first_cpu;
- while (env) {
- cpu = ENV_GET_CPU(env);
+ while (cpu) {
if (cpu->cpu_index == index) {
break;
}
- env = env->next_cpu;
+ cpu = cpu->next_cpu;
}
- return env ? cpu : NULL;
+ return cpu;
}
void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
{
- CPUArchState *env = first_cpu;
+ CPUState *cpu;
- while (env) {
- func(ENV_GET_CPU(env), data);
- env = env->next_cpu;
+ cpu = first_cpu;
+ while (cpu) {
+ func(cpu, data);
+ cpu = cpu->next_cpu;
}
}
{
CPUState *cpu = ENV_GET_CPU(env);
CPUClass *cc = CPU_GET_CLASS(cpu);
- CPUArchState **penv;
+ CPUState **pcpu;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
cpu_list_lock();
#endif
- env->next_cpu = NULL;
- penv = &first_cpu;
+ cpu->next_cpu = NULL;
+ pcpu = &first_cpu;
cpu_index = 0;
- while (*penv != NULL) {
- penv = &(*penv)->next_cpu;
+ while (*pcpu != NULL) {
+ pcpu = &(*pcpu)->next_cpu;
cpu_index++;
}
cpu->cpu_index = cpu_index;
#ifndef CONFIG_USER_ONLY
cpu->thread_id = qemu_get_thread_id();
#endif
- *penv = env;
+ *pcpu = cpu;
#if defined(CONFIG_USER_ONLY)
cpu_list_unlock();
#endif
#if defined(TARGET_HAS_ICE)
#if defined(CONFIG_USER_ONLY)
-static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
+static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
tb_invalidate_phys_page_range(pc, pc + 1, 0);
}
#else
-static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
+static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
- tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
+ tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
(pc & ~TARGET_PAGE_MASK));
}
#endif
bp->flags = flags;
/* keep all GDB-injected breakpoints in front */
- if (flags & BP_GDB)
+ if (flags & BP_GDB) {
QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
- else
+ } else {
QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
+ }
- breakpoint_invalidate(env, pc);
+ breakpoint_invalidate(ENV_GET_CPU(env), pc);
- if (breakpoint)
+ if (breakpoint) {
*breakpoint = bp;
+ }
return 0;
#else
return -ENOSYS;
#if defined(TARGET_HAS_ICE)
QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
- breakpoint_invalidate(env, breakpoint->pc);
+ breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
g_free(breakpoint);
#endif
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
-void cpu_single_step(CPUArchState *env, int enabled)
+void cpu_single_step(CPUState *cpu, int enabled)
{
#if defined(TARGET_HAS_ICE)
- if (env->singlestep_enabled != enabled) {
- env->singlestep_enabled = enabled;
- if (kvm_enabled())
- kvm_update_guest_debug(env, 0);
- else {
+ if (cpu->singlestep_enabled != enabled) {
+ cpu->singlestep_enabled = enabled;
+ if (kvm_enabled()) {
+ kvm_update_guest_debug(cpu, 0);
+ } else {
/* must flush all the translated code to avoid inconsistencies */
/* XXX: only flush what is necessary */
+ CPUArchState *env = cpu->env_ptr;
tb_flush(env);
}
}
qemu_log("qemu: fatal: ");
qemu_log_vprintf(fmt, ap2);
qemu_log("\n");
- log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
+ log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
qemu_log_flush();
qemu_log_close();
}
CPUArchState *cpu_copy(CPUArchState *env)
{
CPUArchState *new_env = cpu_init(env->cpu_model_str);
- CPUArchState *next_cpu = new_env->next_cpu;
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
CPUWatchpoint *wp;
#endif
- memcpy(new_env, env, sizeof(CPUArchState));
+ /* Reset non arch specific state */
+ cpu_reset(ENV_GET_CPU(new_env));
- /* Preserve chaining. */
- new_env->next_cpu = next_cpu;
+ /* Copy arch specific state into the new CPU */
+ memcpy(new_env, env, sizeof(CPUArchState));
/* Clone all break/watchpoints.
Note: Once we support ptrace with hw-debug register access, make sure
iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ xlat;
if (!section->readonly) {
- iotlb |= phys_section_notdirty;
+ iotlb |= PHYS_SECTION_NOTDIRTY;
} else {
- iotlb |= phys_section_rom;
+ iotlb |= PHYS_SECTION_ROM;
}
} else {
- iotlb = section - phys_sections;
+ iotlb = section - address_space_memory.dispatch->sections;
iotlb += xlat;
}
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
/* Avoid trapping reads of pages with a write breakpoint. */
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
- iotlb = phys_section_watch + paddr;
+ iotlb = PHYS_SECTION_WATCH + paddr;
*address |= TLB_MMIO;
break;
}
* pointer to produce the iotlb entries. Thus it should
* never overflow into the page-aligned value.
*/
- assert(phys_sections_nb < TARGET_PAGE_SIZE);
+ assert(next_map.sections_nb < TARGET_PAGE_SIZE);
- if (phys_sections_nb == phys_sections_nb_alloc) {
- phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
- phys_sections = g_renew(MemoryRegionSection, phys_sections,
- phys_sections_nb_alloc);
+ if (next_map.sections_nb == next_map.sections_nb_alloc) {
+ next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
+ 16);
+ next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
+ next_map.sections_nb_alloc);
}
- phys_sections[phys_sections_nb] = *section;
+ next_map.sections[next_map.sections_nb] = *section;
memory_region_ref(section->mr);
- return phys_sections_nb++;
+ return next_map.sections_nb++;
}
static void phys_section_destroy(MemoryRegion *mr)
}
}
-static void phys_sections_clear(void)
+static void phys_sections_free(PhysPageMap *map)
{
- while (phys_sections_nb > 0) {
- MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
+ while (map->sections_nb > 0) {
+ MemoryRegionSection *section = &map->sections[--map->sections_nb];
phys_section_destroy(section->mr);
}
- phys_map_nodes_nb = 0;
+ g_free(map->sections);
+ g_free(map->nodes);
+ g_free(map);
}
static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
subpage_t *subpage;
hwaddr base = section->offset_within_address_space
& TARGET_PAGE_MASK;
- MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
+ MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
+ next_map.nodes, next_map.sections);
MemoryRegionSection subsection = {
.offset_within_address_space = base,
.size = int128_make64(TARGET_PAGE_SIZE),
static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
{
- AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
+ AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
+ AddressSpaceDispatch *d = as->next_dispatch;
MemoryRegionSection now = *section, remain = *section;
Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
{
int ret;
- QemuOpts *machine_opts;
/* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
- machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
- if (machine_opts &&
- !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
+ if (!qemu_opt_get_bool(qemu_get_machine_opts(),
+ "dump-guest-core", true)) {
ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
if (ret) {
perror("qemu_madvise");
static int memory_try_enable_merging(void *addr, size_t len)
{
- QemuOpts *opts;
-
- opts = qemu_opts_find(qemu_find_opts("machine"), 0);
- if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
+ if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
/* disabled by the user */
return 0;
}
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
* but takes a size argument */
-static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
+static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
{
if (*size == 0) {
return NULL;
cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
/* we remove the notdirty callback only if the code has been
flushed */
- if (dirty_flags == 0xff)
- tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
+ if (dirty_flags == 0xff) {
+ CPUArchState *env = current_cpu->env_ptr;
+ tlb_set_dirty(env, env->mem_io_vaddr);
+ }
}
static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
/* Generate a debug exception if a watchpoint has been hit. */
static void check_watchpoint(int offset, int len_mask, int flags)
{
- CPUArchState *env = cpu_single_env;
+ CPUArchState *env = current_cpu->env_ptr;
target_ulong pc, cs_base;
target_ulong vaddr;
CPUWatchpoint *wp;
printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
mmio, base, TARGET_PAGE_SIZE, subpage_memory);
#endif
- subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
+ subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
return mmio;
}
MemoryRegion *iotlb_to_region(hwaddr index)
{
- return phys_sections[index & ~TARGET_PAGE_MASK].mr;
+ return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
}
static void io_mem_init(void)
static void mem_begin(MemoryListener *listener)
{
- AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
+ AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
+ AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
- d->phys_map.ptr = PHYS_MAP_NODE_NIL;
+ d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
+ d->as = as;
+ as->next_dispatch = d;
+}
+
+static void mem_commit(MemoryListener *listener)
+{
+ AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
+ AddressSpaceDispatch *cur = as->dispatch;
+ AddressSpaceDispatch *next = as->next_dispatch;
+
+ next->nodes = next_map.nodes;
+ next->sections = next_map.sections;
+
+ as->dispatch = next;
+ g_free(cur);
}
static void core_begin(MemoryListener *listener)
{
- phys_sections_clear();
- phys_section_unassigned = dummy_section(&io_mem_unassigned);
- phys_section_notdirty = dummy_section(&io_mem_notdirty);
- phys_section_rom = dummy_section(&io_mem_rom);
- phys_section_watch = dummy_section(&io_mem_watch);
+ uint16_t n;
+
+ prev_map = g_new(PhysPageMap, 1);
+ *prev_map = next_map;
+
+ memset(&next_map, 0, sizeof(next_map));
+ n = dummy_section(&io_mem_unassigned);
+ assert(n == PHYS_SECTION_UNASSIGNED);
+ n = dummy_section(&io_mem_notdirty);
+ assert(n == PHYS_SECTION_NOTDIRTY);
+ n = dummy_section(&io_mem_rom);
+ assert(n == PHYS_SECTION_ROM);
+ n = dummy_section(&io_mem_watch);
+ assert(n == PHYS_SECTION_WATCH);
+}
+
+/* This listener's commit run after the other AddressSpaceDispatch listeners'.
+ * All AddressSpaceDispatch instances have switched to the next map.
+ */
+static void core_commit(MemoryListener *listener)
+{
+ phys_sections_free(prev_map);
}
static void tcg_commit(MemoryListener *listener)
{
- CPUArchState *env;
+ CPUState *cpu;
/* since each CPU stores ram addresses in its TLB cache, we must
reset the modified entries */
/* XXX: slow ! */
- for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
+ CPUArchState *env = cpu->env_ptr;
+
tlb_flush(env, 1);
}
}
static MemoryListener core_memory_listener = {
.begin = core_begin,
+ .commit = core_commit,
.log_global_start = core_log_global_start,
.log_global_stop = core_log_global_stop,
.priority = 1,
void address_space_init_dispatch(AddressSpace *as)
{
- AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
-
- d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
- d->listener = (MemoryListener) {
+ as->dispatch = NULL;
+ as->dispatch_listener = (MemoryListener) {
.begin = mem_begin,
+ .commit = mem_commit,
.region_add = mem_add,
.region_nop = mem_add,
.priority = 0,
};
- d->as = as;
- as->dispatch = d;
- memory_listener_register(&d->listener, as);
+ memory_listener_register(&as->dispatch_listener, as);
}
void address_space_destroy_dispatch(AddressSpace *as)
{
AddressSpaceDispatch *d = as->dispatch;
- memory_listener_unregister(&d->listener);
+ memory_listener_unregister(&as->dispatch_listener);
g_free(d);
as->dispatch = NULL;
}
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
-int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l, flags;
return false;
}
-static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
+static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
{
- if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
- return 4;
+ unsigned access_size_max = mr->ops->valid.max_access_size;
+
+ /* Regions are assumed to support 1-4 byte accesses unless
+ otherwise specified. */
+ if (access_size_max == 0) {
+ access_size_max = 4;
+ }
+
+ /* Bound the maximum access by the alignment of the address. */
+ if (!mr->ops->impl.unaligned) {
+ unsigned align_size_max = addr & -addr;
+ if (align_size_max != 0 && align_size_max < access_size_max) {
+ access_size_max = align_size_max;
+ }
}
- if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
- return 2;
+
+ /* Don't attempt accesses larger than the maximum. */
+ if (l > access_size_max) {
+ l = access_size_max;
}
- return 1;
+
+ return l;
}
bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
if (is_write) {
if (!memory_access_is_direct(mr, is_write)) {
l = memory_access_size(mr, l, addr1);
- /* XXX: could force cpu_single_env to NULL to avoid
+ /* XXX: could force current_cpu to NULL to avoid
potential bugs */
- if (l == 4) {
+ switch (l) {
+ case 8:
+ /* 64 bit write access */
+ val = ldq_p(buf);
+ error |= io_mem_write(mr, addr1, val, 8);
+ break;
+ case 4:
/* 32 bit write access */
val = ldl_p(buf);
error |= io_mem_write(mr, addr1, val, 4);
- } else if (l == 2) {
+ break;
+ case 2:
/* 16 bit write access */
val = lduw_p(buf);
error |= io_mem_write(mr, addr1, val, 2);
- } else {
+ break;
+ case 1:
/* 8 bit write access */
val = ldub_p(buf);
error |= io_mem_write(mr, addr1, val, 1);
+ break;
+ default:
+ abort();
}
} else {
addr1 += memory_region_get_ram_addr(mr);
if (!memory_access_is_direct(mr, is_write)) {
/* I/O case */
l = memory_access_size(mr, l, addr1);
- if (l == 4) {
+ switch (l) {
+ case 8:
+ /* 64 bit read access */
+ error |= io_mem_read(mr, addr1, &val, 8);
+ stq_p(buf, val);
+ break;
+ case 4:
/* 32 bit read access */
error |= io_mem_read(mr, addr1, &val, 4);
stl_p(buf, val);
- } else if (l == 2) {
+ break;
+ case 2:
/* 16 bit read access */
error |= io_mem_read(mr, addr1, &val, 2);
stw_p(buf, val);
- } else {
+ break;
+ case 1:
/* 8 bit read access */
error |= io_mem_read(mr, addr1, &val, 1);
stb_p(buf, val);
+ break;
+ default:
+ abort();
}
} else {
/* RAM case */
}
typedef struct {
+ MemoryRegion *mr;
void *buffer;
hwaddr addr;
hwaddr len;
bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
bounce.addr = addr;
bounce.len = l;
+
+ memory_region_ref(mr);
+ bounce.mr = mr;
if (!is_write) {
address_space_read(as, addr, bounce.buffer, l);
}
}
}
+ memory_region_ref(mr);
*plen = done;
return qemu_ram_ptr_length(raddr + base, plen);
}
int is_write, hwaddr access_len)
{
if (buffer != bounce.buffer) {
+ MemoryRegion *mr;
+ ram_addr_t addr1;
+
+ mr = qemu_ram_addr_from_host(buffer, &addr1);
+ assert(mr != NULL);
if (is_write) {
- ram_addr_t addr1;
- MemoryRegion *mr = qemu_ram_addr_from_host(buffer, &addr1);
- assert(mr != NULL);
while (access_len) {
unsigned l;
l = TARGET_PAGE_SIZE;
if (xen_enabled()) {
xen_invalidate_map_cache_entry(buffer);
}
+ memory_region_unref(mr);
return;
}
if (is_write) {
}
qemu_vfree(bounce.buffer);
bounce.buffer = NULL;
+ memory_region_unref(bounce.mr);
cpu_notify_map_clients();
}
}
/* virtual memory access for debug (includes writing to ROM) */
-int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
- phys_addr = cpu_get_phys_page_debug(env, page);
+ phys_addr = cpu_get_phys_page_debug(cpu, page);
/* if no physical page mapped, return an error */
if (phys_addr == -1)
return -1;