//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI
+//#define DEBUG_PCALL
#ifdef DEBUG_MMU
-#define DPRINTF_MMU(fmt, args...) \
-do { printf("MMU: " fmt , ##args); } while (0)
+#define DPRINTF_MMU(fmt, ...) \
+ do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
-#define DPRINTF_MMU(fmt, args...) do {} while (0)
+#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_MXCC
-#define DPRINTF_MXCC(fmt, args...) \
-do { printf("MXCC: " fmt , ##args); } while (0)
+#define DPRINTF_MXCC(fmt, ...) \
+ do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
#else
-#define DPRINTF_MXCC(fmt, args...) do {} while (0)
+#define DPRINTF_MXCC(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_ASI
-#define DPRINTF_ASI(fmt, args...) \
-do { printf("ASI: " fmt , ##args); } while (0)
-#else
-#define DPRINTF_ASI(fmt, args...) do {} while (0)
+#define DPRINTF_ASI(fmt, ...) \
+ do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
#endif
#ifdef TARGET_SPARC64
#endif
#endif
+#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
+// Calculates TSB pointer value for fault page size 8k or 64k
+static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
+ uint64_t tag_access_register,
+ int page_size)
+{
+ uint64_t tsb_base = tsb_register & ~0x1fffULL;
+ int tsb_split = (env->dmmuregs[5] & 0x1000ULL) ? 1 : 0;
+ int tsb_size = env->dmmuregs[5] & 0xf;
+
+ // discard lower 13 bits which hold tag access context
+ uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
+
+ // now reorder bits
+ uint64_t tsb_base_mask = ~0x1fffULL;
+ uint64_t va = tag_access_va;
+
+ // move va bits to correct position
+ if (page_size == 8*1024) {
+ va >>= 9;
+ } else if (page_size == 64*1024) {
+ va >>= 12;
+ }
+
+ if (tsb_size) {
+ tsb_base_mask <<= tsb_size;
+ }
+
+ // calculate tsb_base mask and adjust va if split is in use
+ if (tsb_split) {
+ if (page_size == 8*1024) {
+ va &= ~(1ULL << (13 + tsb_size));
+ } else if (page_size == 64*1024) {
+ va |= (1ULL << (13 + tsb_size));
+ }
+ tsb_base_mask <<= 1;
+ }
+
+ return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
+}
+
+// Calculates tag target register value by reordering bits
+// in tag access register
+static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
+{
+ return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
+}
+
+#endif
+
static inline void address_mask(CPUState *env1, target_ulong *addr)
{
#ifdef TARGET_SPARC64
#endif
}
-void raise_exception(int tt)
+static void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
-void helper_trap(target_ulong nb_trap)
+void HELPER(raise_exception)(int tt)
{
- env->exception_index = TT_TRAP + (nb_trap & 0x7f);
- cpu_loop_exit();
-}
-
-void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
-{
- if (do_trap) {
- env->exception_index = TT_TRAP + (nb_trap & 0x7f);
- cpu_loop_exit();
- }
+ raise_exception(tt);
}
static inline void set_cwp(int new_cwp)
F_BINOP(div);
#undef F_BINOP
-void helper_fsmuld(void)
+void helper_fsmuld(float32 src1, float32 src2)
{
- DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status),
- float32_to_float64(FT1, &env->fp_status),
+ DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
+ float32_to_float64(src2, &env->fp_status),
&env->fp_status);
}
return int32_to_float32(src, &env->fp_status);
}
-F_HELPER(ito, d)
+void helper_fitod(int32_t src)
{
- DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
+ DT0 = int32_to_float64(src, &env->fp_status);
}
-F_HELPER(ito, q)
+void helper_fitoq(int32_t src)
{
- QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
+ QT0 = int32_to_float128(src, &env->fp_status);
}
#ifdef TARGET_SPARC64
-F_HELPER(xto, s)
+float32 helper_fxtos(void)
{
- FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
+ return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
}
F_HELPER(xto, d)
#undef F_HELPER
/* floating point conversion */
-void helper_fdtos(void)
+float32 helper_fdtos(void)
{
- FT0 = float64_to_float32(DT1, &env->fp_status);
+ return float64_to_float32(DT1, &env->fp_status);
}
-void helper_fstod(void)
+void helper_fstod(float32 src)
{
- DT0 = float32_to_float64(FT1, &env->fp_status);
+ DT0 = float32_to_float64(src, &env->fp_status);
}
-void helper_fqtos(void)
+float32 helper_fqtos(void)
{
- FT0 = float128_to_float32(QT1, &env->fp_status);
+ return float128_to_float32(QT1, &env->fp_status);
}
-void helper_fstoq(void)
+void helper_fstoq(float32 src)
{
- QT0 = float32_to_float128(FT1, &env->fp_status);
+ QT0 = float32_to_float128(src, &env->fp_status);
}
void helper_fqtod(void)
return float32_to_int32_round_to_zero(src, &env->fp_status);
}
-void helper_fdtoi(void)
+int32_t helper_fdtoi(void)
{
- *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status);
+ return float64_to_int32_round_to_zero(DT1, &env->fp_status);
}
-void helper_fqtoi(void)
+int32_t helper_fqtoi(void)
{
- *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status);
+ return float128_to_int32_round_to_zero(QT1, &env->fp_status);
}
#ifdef TARGET_SPARC64
-void helper_fstox(void)
+void helper_fstox(float32 src)
{
- *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status);
+ *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
}
void helper_fdtox(void)
s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
d.d = DT1;
- d.VIS_L64(0) = s.VIS_W32(0) << 4;
- d.VIS_L64(1) = s.VIS_W32(1) << 4;
- d.VIS_L64(2) = s.VIS_W32(2) << 4;
- d.VIS_L64(3) = s.VIS_W32(3) << 4;
+ d.VIS_W64(0) = s.VIS_B32(0) << 4;
+ d.VIS_W64(1) = s.VIS_B32(1) << 4;
+ d.VIS_W64(2) = s.VIS_B32(2) << 4;
+ d.VIS_W64(3) = s.VIS_B32(3) << 4;
DT0 = d.d;
}
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
+static uint32_t compute_all_flags(void)
+{
+ return env->psr & PSR_ICC;
+}
+
+static uint32_t compute_C_flags(void)
+{
+ return env->psr & PSR_CARRY;
+}
+
+static inline uint32_t get_NZ_icc(target_ulong dst)
+{
+ uint32_t ret = 0;
+
+ if (!(dst & 0xffffffffULL))
+ ret |= PSR_ZERO;
+ if ((int32_t) (dst & 0xffffffffULL) < 0)
+ ret |= PSR_NEG;
+ return ret;
+}
+
+#ifdef TARGET_SPARC64
+static uint32_t compute_all_flags_xcc(void)
+{
+ return env->xcc & PSR_ICC;
+}
+
+static uint32_t compute_C_flags_xcc(void)
+{
+ return env->xcc & PSR_CARRY;
+}
+
+static inline uint32_t get_NZ_xcc(target_ulong dst)
+{
+ uint32_t ret = 0;
+
+ if (!dst)
+ ret |= PSR_ZERO;
+ if ((int64_t)dst < 0)
+ ret |= PSR_NEG;
+ return ret;
+}
+#endif
+
+static inline uint32_t get_V_div_icc(target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if (src2 != 0)
+ ret |= PSR_OVF;
+ return ret;
+}
+
+static uint32_t compute_all_div(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_V_div_icc(CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_div(void)
+{
+ return 0;
+}
+
+static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
+{
+ uint32_t ret = 0;
+
+ if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
+ ret |= PSR_CARRY;
+ return ret;
+}
+
+static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
+ target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
+ ret |= PSR_OVF;
+ return ret;
+}
+
+static uint32_t compute_all_add(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_add_icc(CC_DST, CC_SRC);
+ ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_add(void)
+{
+ return get_C_add_icc(CC_DST, CC_SRC);
+}
+
+#ifdef TARGET_SPARC64
+static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
+{
+ uint32_t ret = 0;
+
+ if (dst < src1)
+ ret |= PSR_CARRY;
+ return ret;
+}
+
+static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
+ target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
+ ret |= PSR_OVF;
+ return ret;
+}
+
+static uint32_t compute_all_add_xcc(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_xcc(CC_DST);
+ ret |= get_C_add_xcc(CC_DST, CC_SRC);
+ ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_add_xcc(void)
+{
+ return get_C_add_xcc(CC_DST, CC_SRC);
+}
+#endif
+
+static uint32_t compute_all_addx(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_add_icc(CC_DST, CC_SRC);
+ ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_addx(void)
+{
+ uint32_t ret;
+
+ ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_add_icc(CC_DST, CC_SRC);
+ return ret;
+}
+
+#ifdef TARGET_SPARC64
+static uint32_t compute_all_addx_xcc(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_xcc(CC_DST);
+ ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_add_xcc(CC_DST, CC_SRC);
+ ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_addx_xcc(void)
+{
+ uint32_t ret;
+
+ ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_add_xcc(CC_DST, CC_SRC);
+ return ret;
+}
+#endif
+
+static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if ((src1 | src2) & 0x3)
+ ret |= PSR_OVF;
+ return ret;
+}
+
+static uint32_t compute_all_tadd(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_add_icc(CC_DST, CC_SRC);
+ ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
+ ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_tadd(void)
+{
+ return get_C_add_icc(CC_DST, CC_SRC);
+}
+
+static uint32_t compute_all_taddtv(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_add_icc(CC_DST, CC_SRC);
+ return ret;
+}
+
+static uint32_t compute_C_taddtv(void)
+{
+ return get_C_add_icc(CC_DST, CC_SRC);
+}
+
+static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
+ ret |= PSR_CARRY;
+ return ret;
+}
+
+static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
+ target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
+ ret |= PSR_OVF;
+ return ret;
+}
+
+static uint32_t compute_all_sub(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
+ ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_sub(void)
+{
+ return get_C_sub_icc(CC_SRC, CC_SRC2);
+}
+
+#ifdef TARGET_SPARC64
+static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if (src1 < src2)
+ ret |= PSR_CARRY;
+ return ret;
+}
+
+static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
+ target_ulong src2)
+{
+ uint32_t ret = 0;
+
+ if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
+ ret |= PSR_OVF;
+ return ret;
+}
+
+static uint32_t compute_all_sub_xcc(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_xcc(CC_DST);
+ ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
+ ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_sub_xcc(void)
+{
+ return get_C_sub_xcc(CC_SRC, CC_SRC2);
+}
+#endif
+
+static uint32_t compute_all_subx(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_sub_icc(CC_DST, CC_SRC2);
+ ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_subx(void)
+{
+ uint32_t ret;
+
+ ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_sub_icc(CC_DST, CC_SRC2);
+ return ret;
+}
+
+#ifdef TARGET_SPARC64
+static uint32_t compute_all_subx_xcc(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_xcc(CC_DST);
+ ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
+ ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_subx_xcc(void)
+{
+ uint32_t ret;
+
+ ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
+ ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
+ return ret;
+}
+#endif
+
+static uint32_t compute_all_tsub(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_sub_icc(CC_DST, CC_SRC);
+ ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
+ ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
+ return ret;
+}
+
+static uint32_t compute_C_tsub(void)
+{
+ return get_C_sub_icc(CC_DST, CC_SRC);
+}
+
+static uint32_t compute_all_tsubtv(void)
+{
+ uint32_t ret;
+
+ ret = get_NZ_icc(CC_DST);
+ ret |= get_C_sub_icc(CC_DST, CC_SRC);
+ return ret;
+}
+
+static uint32_t compute_C_tsubtv(void)
+{
+ return get_C_sub_icc(CC_DST, CC_SRC);
+}
+
+static uint32_t compute_all_logic(void)
+{
+ return get_NZ_icc(CC_DST);
+}
+
+static uint32_t compute_C_logic(void)
+{
+ return 0;
+}
+
+#ifdef TARGET_SPARC64
+static uint32_t compute_all_logic_xcc(void)
+{
+ return get_NZ_xcc(CC_DST);
+}
+#endif
+
+typedef struct CCTable {
+ uint32_t (*compute_all)(void); /* return all the flags */
+ uint32_t (*compute_c)(void); /* return the C flag */
+} CCTable;
+
+static const CCTable icc_table[CC_OP_NB] = {
+ /* CC_OP_DYNAMIC should never happen */
+ [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
+ [CC_OP_DIV] = { compute_all_div, compute_C_div },
+ [CC_OP_ADD] = { compute_all_add, compute_C_add },
+ [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
+ [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
+ [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
+ [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
+ [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
+ [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
+ [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
+ [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
+};
+
+#ifdef TARGET_SPARC64
+static const CCTable xcc_table[CC_OP_NB] = {
+ /* CC_OP_DYNAMIC should never happen */
+ [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
+ [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
+ [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
+ [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
+ [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
+ [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
+ [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
+ [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
+ [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
+ [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
+ [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
+};
+#endif
+
+void helper_compute_psr(void)
+{
+ uint32_t new_psr;
+
+ new_psr = icc_table[CC_OP].compute_all();
+ env->psr = new_psr;
+#ifdef TARGET_SPARC64
+ new_psr = xcc_table[CC_OP].compute_all();
+ env->xcc = new_psr;
+#endif
+ CC_OP = CC_OP_FLAGS;
+}
+
+uint32_t helper_compute_C_icc(void)
+{
+ uint32_t ret;
+
+ ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
+ return ret;
+}
+
#ifdef TARGET_SPARC64
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
- "addr = %08x -> ret = %08x,"
+ "addr = %08x -> ret = %" PRIx64 ","
"addr = %08x\n", asi, size, sign, last_addr, ret, addr);
#ifdef DEBUG_MXCC
dump_mxcc(env);
case 0x39: /* data cache diagnostic register */
ret = 0;
break;
+ case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
+ {
+ int reg = (addr >> 8) & 3;
+
+ switch(reg) {
+ case 0: /* Breakpoint Value (Addr) */
+ ret = env->mmubpregs[reg];
+ break;
+ case 1: /* Breakpoint Mask */
+ ret = env->mmubpregs[reg];
+ break;
+ case 2: /* Breakpoint Control */
+ ret = env->mmubpregs[reg];
+ break;
+ case 3: /* Breakpoint Status */
+ ret = env->mmubpregs[reg];
+ env->mmubpregs[reg] = 0ULL;
+ break;
+ }
+ DPRINTF_MMU("read breakpoint reg[%d] 0x%016llx\n", reg, ret);
+ }
+ break;
case 8: /* User code access, XXX */
default:
- do_unassigned_access(addr, 0, 0, asi);
+ do_unassigned_access(addr, 0, 0, asi, size);
ret = 0;
break;
}
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
- env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL)
+ env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
| val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
}
- DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi,
- size, addr, val);
+ DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
+ asi, size, addr, val);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
// descriptor diagnostic
case 0x36: /* I-cache flash clear */
case 0x37: /* D-cache flash clear */
- case 0x38: /* breakpoint diagnostics */
case 0x4c: /* breakpoint action */
break;
+ case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
+ {
+ int reg = (addr >> 8) & 3;
+
+ switch(reg) {
+ case 0: /* Breakpoint Value (Addr) */
+ env->mmubpregs[reg] = (val & 0xfffffffffULL);
+ break;
+ case 1: /* Breakpoint Mask */
+ env->mmubpregs[reg] = (val & 0xfffffffffULL);
+ break;
+ case 2: /* Breakpoint Control */
+ env->mmubpregs[reg] = (val & 0x7fULL);
+ break;
+ case 3: /* Breakpoint Status */
+ env->mmubpregs[reg] = (val & 0xfULL);
+ break;
+ }
+ DPRINTF_MMU("write breakpoint reg[%d] 0x%016llx\n", reg,
+ env->mmuregs[reg]);
+ }
+ break;
case 8: /* User code access, XXX */
case 9: /* Supervisor code access, XXX */
default:
- do_unassigned_access(addr, 1, 0, asi);
+ do_unassigned_access(addr, 1, 0, asi, size);
break;
}
#ifdef DEBUG_ASI
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
- do_unassigned_access(addr, 1, 0, 1);
+ do_unassigned_access(addr, 1, 0, 1, size);
return;
}
}
case 0x18: // As if user primary LE
case 0x80: // Primary
case 0x88: // Primary LE
+ case 0xe2: // UA2007 Primary block init
+ case 0xe3: // UA2007 Secondary block init
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if ((env->def->features & CPU_FEATURE_HYPV)
&& env->hpstate & HS_PRIV) {
{
int reg = (addr >> 3) & 0xf;
- ret = env->immuregs[reg];
+ if (reg == 0) {
+ // I-TSB Tag Target register
+ ret = ultrasparc_tag_target(env->immuregs[6]);
+ } else {
+ ret = env->immuregs[reg];
+ }
+
break;
}
case 0x51: // I-MMU 8k TSB pointer
+ {
+ // env->immuregs[5] holds I-MMU TSB register value
+ // env->immuregs[6] holds I-MMU Tag Access register value
+ ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
+ 8*1024);
+ break;
+ }
case 0x52: // I-MMU 64k TSB pointer
- // XXX
- break;
+ {
+ // env->immuregs[5] holds I-MMU TSB register value
+ // env->immuregs[6] holds I-MMU Tag Access register value
+ ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
+ 64*1024);
+ break;
+ }
case 0x55: // I-MMU data access
{
int reg = (addr >> 3) & 0x3f;
{
int reg = (addr >> 3) & 0xf;
- ret = env->dmmuregs[reg];
+ if (reg == 0) {
+ // D-TSB Tag Target register
+ ret = ultrasparc_tag_target(env->dmmuregs[6]);
+ } else {
+ ret = env->dmmuregs[reg];
+ }
+ break;
+ }
+ case 0x59: // D-MMU 8k TSB pointer
+ {
+ // env->dmmuregs[5] holds D-MMU TSB register value
+ // env->dmmuregs[6] holds D-MMU Tag Access register value
+ ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
+ 8*1024);
+ break;
+ }
+ case 0x5a: // D-MMU 64k TSB pointer
+ {
+ // env->dmmuregs[5] holds D-MMU TSB register value
+ // env->dmmuregs[6] holds D-MMU Tag Access register value
+ ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
+ 64*1024);
break;
}
case 0x5d: // D-MMU data access
case 0x76: // E-cache tag
case 0x7e: // E-cache tag
break;
- case 0x59: // D-MMU 8k TSB pointer
- case 0x5a: // D-MMU 64k TSB pointer
case 0x5b: // D-MMU data pointer
case 0x48: // Interrupt dispatch, RO
case 0x49: // Interrupt data receive
case 0x5f: // D-MMU demap, WO
case 0x77: // Interrupt vector, WO
default:
- do_unassigned_access(addr, 0, 0, 1);
+ do_unassigned_access(addr, 0, 0, 1, size);
ret = 0;
break;
}
case 0x18: // As if user primary LE
case 0x80: // Primary
case 0x88: // Primary LE
+ case 0xe2: // UA2007 Primary block init
+ case 0xe3: // UA2007 Secondary block init
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if ((env->def->features & CPU_FEATURE_HYPV)
&& env->hpstate & HS_PRIV) {
}
case 0x55: // I-MMU data access
{
+ // TODO: auto demap
+
unsigned int i = (addr >> 3) & 0x3f;
env->itlb_tag[i] = env->immuregs[6];
return;
}
case 0x57: // I-MMU demap
- // XXX
+ {
+ unsigned int i;
+
+ for (i = 0; i < 64; i++) {
+ if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
+ target_ulong mask = 0xffffffffffffe000ULL;
+
+ mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
+ if ((val & mask) == (env->itlb_tag[i] & mask)) {
+ env->itlb_tag[i] = 0;
+ env->itlb_tte[i] = 0;
+ }
+ return;
+ }
+ }
+ }
return;
case 0x58: // D-MMU regs
{
return;
}
case 0x5f: // D-MMU demap
+ {
+ unsigned int i;
+
+ for (i = 0; i < 64; i++) {
+ if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
+ target_ulong mask = 0xffffffffffffe000ULL;
+
+ mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
+ if ((val & mask) == (env->dtlb_tag[i] & mask)) {
+ env->dtlb_tag[i] = 0;
+ env->dtlb_tte[i] = 0;
+ }
+ return;
+ }
+ }
+ }
+ return;
case 0x49: // Interrupt data receive
// XXX
return;
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
- do_unassigned_access(addr, 1, 0, 1);
+ do_unassigned_access(addr, 1, 0, 1, size);
return;
}
}
helper_check_align(addr, 3);
switch (asi) {
+ case 0xe0: // UA2007 Block commit store primary (cache flush)
+ case 0xe1: // UA2007 Block commit store secondary (cache flush)
case 0xf0: // Block store primary
case 0xf1: // Block store secondary
case 0xf8: // Block store primary LE
{
target_ulong ret;
- val1 &= 0xffffffffUL;
+ val2 &= 0xffffffffUL;
ret = helper_ld_asi(addr, asi, 4, 0);
ret &= 0xffffffffUL;
- if (val1 == ret)
- helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
+ if (val2 == ret)
+ helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
return ret;
}
target_ulong ret;
ret = helper_ld_asi(addr, asi, 8, 0);
- if (val1 == ret)
- helper_st_asi(addr, val2, asi, 8);
+ if (val2 == ret)
+ helper_st_asi(addr, val1, asi, 8);
return ret;
}
#endif /* TARGET_SPARC64 */
}
}
-uint64_t helper_pack64(target_ulong high, target_ulong low)
-{
- return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
-}
-
void helper_stdf(target_ulong addr, int mem_idx)
{
helper_check_align(addr, 7);
env->tl--;
env->tsptr = &env->ts[env->tl & MAXTL_MASK];
}
+
+void helper_set_softint(uint64_t value)
+{
+ env->softint |= (uint32_t)value;
+}
+
+void helper_clear_softint(uint64_t value)
+{
+ env->softint &= (uint32_t)~value;
+}
+
+void helper_write_softint(uint64_t value)
+{
+ env->softint = (uint32_t)value;
+}
#endif
void helper_flush(target_ulong addr)
int intno = env->exception_index;
#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_INT) {
+ if (qemu_loglevel_mask(CPU_LOG_INT)) {
static int count;
const char *name;
name = "Unknown";
}
- fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
+ qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
" SP=%016" PRIx64 "\n",
count, name, intno,
env->pc,
env->npc, env->regwptr[6]);
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#if 0
{
int i;
uint8_t *ptr;
- fprintf(logfile, " code=");
+ qemu_log(" code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
- fprintf(logfile, " %02x", ldub(ptr + i));
+ qemu_log(" %02x", ldub(ptr + i));
}
- fprintf(logfile, "\n");
+ qemu_log("\n");
}
#endif
count++;
int cwp, intno = env->exception_index;
#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_INT) {
+ if (qemu_loglevel_mask(CPU_LOG_INT)) {
static int count;
const char *name;
name = "Unknown";
}
- fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
+ qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
count, name, intno,
env->pc,
env->npc, env->regwptr[6]);
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#if 0
{
int i;
uint8_t *ptr;
- fprintf(logfile, " code=");
+ qemu_log(" code=");
ptr = (uint8_t *)env->pc;
for(i = 0; i < 16; i++) {
- fprintf(logfile, " %02x", ldub(ptr + i));
+ qemu_log(" %02x", ldub(ptr + i));
}
- fprintf(logfile, "\n");
+ qemu_log("\n");
}
#endif
count++;
#ifndef TARGET_SPARC64
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
- int is_asi)
+ int is_asi, int size)
{
CPUState *saved_env;
env = cpu_single_env;
#ifdef DEBUG_UNASSIGNED
if (is_asi)
- printf("Unassigned mem %s access to " TARGET_FMT_plx
+ printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" asi 0x%02x from " TARGET_FMT_lx "\n",
- is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
- env->pc);
+ is_exec ? "exec" : is_write ? "write" : "read", size,
+ size == 1 ? "" : "s", addr, is_asi, env->pc);
else
- printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
- TARGET_FMT_lx "\n",
- is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
+ printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+ " from " TARGET_FMT_lx "\n",
+ is_exec ? "exec" : is_write ? "write" : "read", size,
+ size == 1 ? "" : "s", addr, env->pc);
#endif
if (env->mmuregs[3]) /* Fault status register */
env->mmuregs[3] = 1; /* overflow (not read before another fault) */
}
#else
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
- int is_asi)
+ int is_asi, int size)
{
#ifdef DEBUG_UNASSIGNED
CPUState *saved_env;
}
#endif
+#ifdef TARGET_SPARC64
+void helper_tick_set_count(void *opaque, uint64_t count)
+{
+#if !defined(CONFIG_USER_ONLY)
+ cpu_tick_set_count(opaque, count);
+#endif
+}
+
+uint64_t helper_tick_get_count(void *opaque)
+{
+#if !defined(CONFIG_USER_ONLY)
+ return cpu_tick_get_count(opaque);
+#else
+ return 0;
+#endif
+}
+
+void helper_tick_set_limit(void *opaque, uint64_t limit)
+{
+#if !defined(CONFIG_USER_ONLY)
+ cpu_tick_set_limit(opaque, limit);
+#endif
+}
+#endif