* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
-#define CPU_NO_GLOBAL_REGS
-#include "exec.h"
+
+#include <math.h>
+#include "cpu.h"
+#include "dyngen-exec.h"
#include "host-utils.h"
+#include "ioport.h"
+#include "qemu-common.h"
+#include "qemu-log.h"
+#include "cpu-defs.h"
+#include "helper.h"
+
+#if !defined(CONFIG_USER_ONLY)
+#include "softmmu_exec.h"
+#endif /* !defined(CONFIG_USER_ONLY) */
//#define DEBUG_PCALL
+#ifdef DEBUG_PCALL
+# define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
+# define LOG_PCALL_STATE(env) \
+ log_cpu_state_mask(CPU_LOG_PCALL, (env), X86_DUMP_CCOP)
+#else
+# define LOG_PCALL(...) do { } while (0)
+# define LOG_PCALL_STATE(env) do { } while (0)
+#endif
+
+/* n must be a constant to be efficient */
+static inline target_long lshift(target_long x, int n)
+{
+ if (n >= 0) {
+ return x << n;
+ } else {
+ return x >> (-n);
+ }
+}
+
+#define RC_MASK 0xc00
+#define RC_NEAR 0x000
+#define RC_DOWN 0x400
+#define RC_UP 0x800
+#define RC_CHOP 0xc00
+
+#define MAXTAN 9223372036854775808.0
+
+/* the following deal with x86 long double-precision numbers */
+#define MAXEXPD 0x7fff
+#define EXPBIAS 16383
+#define EXPD(fp) (fp.l.upper & 0x7fff)
+#define SIGND(fp) ((fp.l.upper) & 0x8000)
+#define MANTD(fp) (fp.l.lower)
+#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
+
+static inline void fpush(void)
+{
+ env->fpstt = (env->fpstt - 1) & 7;
+ env->fptags[env->fpstt] = 0; /* validate stack entry */
+}
+
+static inline void fpop(void)
+{
+ env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
+ env->fpstt = (env->fpstt + 1) & 7;
+}
+
+static inline floatx80 helper_fldt(target_ulong ptr)
+{
+ CPU_LDoubleU temp;
+
+ temp.l.lower = ldq(ptr);
+ temp.l.upper = lduw(ptr + 8);
+ return temp.d;
+}
+
+static inline void helper_fstt(floatx80 f, target_ulong ptr)
+{
+ CPU_LDoubleU temp;
+
+ temp.d = f;
+ stq(ptr, temp.l.lower);
+ stw(ptr + 8, temp.l.upper);
+}
+
+#define FPUS_IE (1 << 0)
+#define FPUS_DE (1 << 1)
+#define FPUS_ZE (1 << 2)
+#define FPUS_OE (1 << 3)
+#define FPUS_UE (1 << 4)
+#define FPUS_PE (1 << 5)
+#define FPUS_SF (1 << 6)
+#define FPUS_SE (1 << 7)
+#define FPUS_B (1 << 15)
+
+#define FPUC_EM 0x3f
+
+static inline uint32_t compute_eflags(void)
+{
+ return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
+}
+
+/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
+static inline void load_eflags(int eflags, int update_mask)
+{
+ CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ DF = 1 - (2 * ((eflags >> 10) & 1));
+ env->eflags = (env->eflags & ~update_mask) |
+ (eflags & update_mask) | 0x2;
+}
+
+/* load efer and update the corresponding hflags. XXX: do consistency
+ checks with cpuid bits ? */
+static inline void cpu_load_efer(CPUState *env, uint64_t val)
+{
+ env->efer = val;
+ env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
+ if (env->efer & MSR_EFER_LMA) {
+ env->hflags |= HF_LMA_MASK;
+ }
+ if (env->efer & MSR_EFER_SVME) {
+ env->hflags |= HF_SVME_MASK;
+ }
+}
+
#if 0
#define raise_exception_err(a, b)\
do {\
- if (logfile)\
- fprintf(logfile, "raise_exception line=%d\n", __LINE__);\
+ qemu_log("raise_exception line=%d\n", __LINE__);\
(raise_exception_err)(a, b);\
} while (0)
#endif
-const uint8_t parity_table[256] = {
+static void QEMU_NORETURN raise_exception_err(int exception_index,
+ int error_code);
+
+static const uint8_t parity_table[256] = {
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
};
/* modulo 17 table */
-const uint8_t rclw_table[32] = {
+static const uint8_t rclw_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9,10,11,12,13,14,15,
16, 0, 1, 2, 3, 4, 5, 6,
};
/* modulo 9 table */
-const uint8_t rclb_table[32] = {
+static const uint8_t rclb_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 0, 1, 2, 3, 4, 5, 6,
7, 8, 0, 1, 2, 3, 4, 5,
6, 7, 8, 0, 1, 2, 3, 4,
};
-const CPU86_LDouble f15rk[7] =
-{
- 0.00000000000000000000L,
- 1.00000000000000000000L,
- 3.14159265358979323851L, /*pi*/
- 0.30102999566398119523L, /*lg2*/
- 0.69314718055994530943L, /*ln2*/
- 1.44269504088896340739L, /*l2e*/
- 3.32192809488736234781L, /*l2t*/
-};
+#define floatx80_lg2 make_floatx80( 0x3ffd, 0x9a209a84fbcff799LL )
+#define floatx80_l2e make_floatx80( 0x3fff, 0xb8aa3b295c17f0bcLL )
+#define floatx80_l2t make_floatx80( 0x4000, 0xd49a784bcd1b8afeLL )
/* broken thread support */
target_ulong ptr;
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
-#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_PCALL)
- fprintf(logfile, "switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source);
-#endif
+ LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source);
/* if task gate, we read the TSS segment and we load it */
if (type == 5) {
new_segs[R_GS] = 0;
new_trap = 0;
}
+ /* XXX: avoid a compiler warning, see
+ http://support.amd.com/us/Processor_TechDocs/24593.pdf
+ chapters 12.2.5 and 13.2.4 on how to implement TSS Trap bit */
+ (void)new_trap;
/* NOTE: we must avoid memory exceptions during the task switch,
so we make dummy accesses before */
void helper_outb(uint32_t port, uint32_t data)
{
- cpu_outb(env, port, data & 0xff);
+ cpu_outb(port, data & 0xff);
}
target_ulong helper_inb(uint32_t port)
{
- return cpu_inb(env, port);
+ return cpu_inb(port);
}
void helper_outw(uint32_t port, uint32_t data)
{
- cpu_outw(env, port, data & 0xffff);
+ cpu_outw(port, data & 0xffff);
}
target_ulong helper_inw(uint32_t port)
{
- return cpu_inw(env, port);
+ return cpu_inw(port);
}
void helper_outl(uint32_t port, uint32_t data)
{
- cpu_outl(env, port, data);
+ cpu_outl(port, data);
}
target_ulong helper_inl(uint32_t port)
{
- return cpu_inl(env, port);
+ return cpu_inl(port);
}
static inline unsigned int get_sp_mask(unsigned int e2)
return 0xffff;
}
+static int exeption_has_error_code(int intno)
+{
+ switch(intno) {
+ case 8:
+ case 10:
+ case 11:
+ case 12:
+ case 13:
+ case 14:
+ case 17:
+ return 1;
+ }
+ return 0;
+}
+
#ifdef TARGET_X86_64
#define SET_ESP(val, sp_mask)\
do {\
target_ulong ptr, ssp;
int type, dpl, selector, ss_dpl, cpl;
int has_error_code, new_stack, shift;
- uint32_t e1, e2, offset, ss, esp, ss_e1, ss_e2;
+ uint32_t e1, e2, offset, ss = 0, esp, ss_e1 = 0, ss_e2 = 0;
uint32_t old_eip, sp_mask;
has_error_code = 0;
- if (!is_int && !is_hw) {
- switch(intno) {
- case 8:
- case 10:
- case 11:
- case 12:
- case 13:
- case 14:
- case 17:
- has_error_code = 1;
- break;
- }
- }
+ if (!is_int && !is_hw)
+ has_error_code = exeption_has_error_code(intno);
if (is_int)
old_eip = next_eip;
else
target_ulong old_eip, esp, offset;
has_error_code = 0;
- if (!is_int && !is_hw) {
- switch(intno) {
- case 8:
- case 10:
- case 11:
- case 12:
- case 13:
- case 14:
- case 17:
- has_error_code = 1;
- break;
- }
- }
+ if (!is_int && !is_hw)
+ has_error_code = exeption_has_error_code(intno);
if (is_int)
old_eip = next_eip;
else
}
#endif
+#ifdef TARGET_X86_64
#if defined(CONFIG_USER_ONLY)
void helper_syscall(int next_eip_addend)
{
env->exception_index = EXCP_SYSCALL;
env->exception_next_eip = env->eip + next_eip_addend;
- cpu_loop_exit();
+ cpu_loop_exit(env);
}
#else
void helper_syscall(int next_eip_addend)
raise_exception_err(EXCP06_ILLOP, 0);
}
selector = (env->star >> 32) & 0xffff;
-#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
int code64;
env->eip = env->lstar;
else
env->eip = env->cstar;
- } else
-#endif
- {
+ } else {
ECX = (uint32_t)(env->eip + next_eip_addend);
cpu_x86_set_cpl(env, 0);
}
}
#endif
+#endif
+#ifdef TARGET_X86_64
void helper_sysret(int dflag)
{
int cpl, selector;
raise_exception_err(EXCP0D_GPF, 0);
}
selector = (env->star >> 48) & 0xffff;
-#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
if (dflag == 2) {
cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3,
load_eflags((uint32_t)(env->regs[11]), TF_MASK | AC_MASK | ID_MASK |
IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK);
cpu_x86_set_cpl(env, 3);
- } else
-#endif
- {
+ } else {
cpu_x86_load_seg_cache(env, R_CS, selector | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
env->eflags |= IF_MASK;
cpu_x86_set_cpl(env, 3);
}
-#ifdef USE_KQEMU
- if (kqemu_is_ok(env)) {
- if (env->hflags & HF_LMA_MASK)
- CC_OP = CC_OP_EFLAGS;
- env->exception_index = -1;
- cpu_loop_exit();
- }
-#endif
}
+#endif
/* real mode interrupt */
static void do_interrupt_real(int intno, int is_int, int error_code,
env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
}
+#if defined(CONFIG_USER_ONLY)
/* fake user mode interrupt */
-void do_interrupt_user(int intno, int is_int, int error_code,
- target_ulong next_eip)
+static void do_interrupt_user(int intno, int is_int, int error_code,
+ target_ulong next_eip)
{
SegmentCache *dt;
target_ulong ptr;
EIP = next_eip;
}
+#else
+
+static void handle_even_inj(int intno, int is_int, int error_code,
+ int is_hw, int rm)
+{
+ uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
+ if (!(event_inj & SVM_EVTINJ_VALID)) {
+ int type;
+ if (is_int)
+ type = SVM_EVTINJ_TYPE_SOFT;
+ else
+ type = SVM_EVTINJ_TYPE_EXEPT;
+ event_inj = intno | type | SVM_EVTINJ_VALID;
+ if (!rm && exeption_has_error_code(intno)) {
+ event_inj |= SVM_EVTINJ_VALID_ERR;
+ stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err), error_code);
+ }
+ stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj);
+ }
+}
+#endif
+
/*
* Begin execution of an interruption. is_int is TRUE if coming from
* the int instruction. next_eip is the EIP value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE.
*/
-void do_interrupt(int intno, int is_int, int error_code,
- target_ulong next_eip, int is_hw)
+static void do_interrupt_all(int intno, int is_int, int error_code,
+ target_ulong next_eip, int is_hw)
{
- if (loglevel & CPU_LOG_INT) {
+ if (qemu_loglevel_mask(CPU_LOG_INT)) {
if ((env->cr[0] & CR0_PE_MASK)) {
static int count;
- fprintf(logfile, "%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx,
+ qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx,
count, intno, error_code, is_int,
env->hflags & HF_CPL_MASK,
env->segs[R_CS].selector, EIP,
(int)env->segs[R_CS].base + EIP,
env->segs[R_SS].selector, ESP);
if (intno == 0x0e) {
- fprintf(logfile, " CR2=" TARGET_FMT_lx, env->cr[2]);
+ qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]);
} else {
- fprintf(logfile, " EAX=" TARGET_FMT_lx, EAX);
+ qemu_log(" EAX=" TARGET_FMT_lx, EAX);
}
- fprintf(logfile, "\n");
- cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
+ qemu_log("\n");
+ log_cpu_state(env, X86_DUMP_CCOP);
#if 0
{
int i;
- uint8_t *ptr;
- fprintf(logfile, " code=");
+ target_ulong ptr;
+ qemu_log(" code=");
ptr = env->segs[R_CS].base + env->eip;
for(i = 0; i < 16; i++) {
- fprintf(logfile, " %02x", ldub(ptr + i));
+ qemu_log(" %02x", ldub(ptr + i));
}
- fprintf(logfile, "\n");
+ qemu_log("\n");
}
#endif
count++;
}
}
if (env->cr[0] & CR0_PE_MASK) {
+#if !defined(CONFIG_USER_ONLY)
+ if (env->hflags & HF_SVMI_MASK)
+ handle_even_inj(intno, is_int, error_code, is_hw, 0);
+#endif
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
do_interrupt64(intno, is_int, error_code, next_eip, is_hw);
do_interrupt_protected(intno, is_int, error_code, next_eip, is_hw);
}
} else {
+#if !defined(CONFIG_USER_ONLY)
+ if (env->hflags & HF_SVMI_MASK)
+ handle_even_inj(intno, is_int, error_code, is_hw, 1);
+#endif
do_interrupt_real(intno, is_int, error_code, next_eip);
}
+
+#if !defined(CONFIG_USER_ONLY)
+ if (env->hflags & HF_SVMI_MASK) {
+ uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
+ stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID);
+ }
+#endif
+}
+
+void do_interrupt(CPUState *env1)
+{
+ CPUState *saved_env;
+
+ saved_env = env;
+ env = env1;
+#if defined(CONFIG_USER_ONLY)
+ /* if user mode only, we simulate a fake exception
+ which will be handled outside the cpu execution
+ loop */
+ do_interrupt_user(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
+ env->exception_next_eip);
+ /* successfully delivered */
+ env->old_exception = -1;
+#else
+ /* simulate a real cpu exception. On i386, it can
+ trigger new exceptions, but we do not handle
+ double or triple faults yet. */
+ do_interrupt_all(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
+ env->exception_next_eip, 0);
+ /* successfully delivered */
+ env->old_exception = -1;
+#endif
+ env = saved_env;
+}
+
+void do_interrupt_x86_hardirq(CPUState *env1, int intno, int is_hw)
+{
+ CPUState *saved_env;
+
+ saved_env = env;
+ env = env1;
+ do_interrupt_all(intno, 0, 0, 0, is_hw);
+ env = saved_env;
}
+/* This should come from sysemu.h - if we could include it here... */
+void qemu_system_reset_request(void);
+
/*
* Check nested exceptions and change to double or triple fault if
* needed. It should only be called, if this is not an interrupt.
int second_contributory = intno == 0 ||
(intno >= 10 && intno <= 13);
- if (loglevel & CPU_LOG_INT)
- fprintf(logfile, "check_exception old: 0x%x new 0x%x\n",
+ qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
env->old_exception, intno);
- if (env->old_exception == EXCP08_DBLE)
- cpu_abort(env, "triple fault");
+#if !defined(CONFIG_USER_ONLY)
+ if (env->old_exception == EXCP08_DBLE) {
+ if (env->hflags & HF_SVMI_MASK)
+ helper_vmexit(SVM_EXIT_SHUTDOWN, 0); /* does not return */
+
+ qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
+
+ qemu_system_reset_request();
+ return EXCP_HLT;
+ }
+#endif
if ((first_contributory && second_contributory)
|| (env->old_exception == EXCP0E_PAGE &&
* EIP value AFTER the interrupt instruction. It is only relevant if
* is_int is TRUE.
*/
-void raise_interrupt(int intno, int is_int, int error_code,
- int next_eip_addend)
+static void QEMU_NORETURN raise_interrupt(int intno, int is_int, int error_code,
+ int next_eip_addend)
{
if (!is_int) {
helper_svm_check_intercept_param(SVM_EXIT_EXCP_BASE + intno, error_code);
env->error_code = error_code;
env->exception_is_int = is_int;
env->exception_next_eip = env->eip + next_eip_addend;
- cpu_loop_exit();
+ cpu_loop_exit(env);
}
/* shortcuts to generate exceptions */
-void (raise_exception_err)(int exception_index, int error_code)
+static void QEMU_NORETURN raise_exception_err(int exception_index,
+ int error_code)
+{
+ raise_interrupt(exception_index, 0, error_code, 0);
+}
+
+void raise_exception_err_env(CPUState *nenv, int exception_index,
+ int error_code)
{
+ env = nenv;
raise_interrupt(exception_index, 0, error_code, 0);
}
-void raise_exception(int exception_index)
+static void QEMU_NORETURN raise_exception(int exception_index)
{
raise_interrupt(exception_index, 0, 0, 0);
}
+void raise_exception_env(int exception_index, CPUState *nenv)
+{
+ env = nenv;
+ raise_exception(exception_index);
+}
/* SMM support */
#if defined(CONFIG_USER_ONLY)
-void do_smm_enter(void)
+void do_smm_enter(CPUState *env1)
{
}
#define SMM_REVISION_ID 0x00020000
#endif
-void do_smm_enter(void)
+void do_smm_enter(CPUState *env1)
{
target_ulong sm_state;
SegmentCache *dt;
int i, offset;
+ CPUState *saved_env;
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "SMM: enter\n");
- cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
- }
+ saved_env = env;
+ env = env1;
+
+ qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
+ log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
env->hflags |= HF_SMM_MASK;
cpu_smm_update(env);
cpu_x86_update_cr4(env, 0);
env->dr[7] = 0x00000400;
CC_OP = CC_OP_EFLAGS;
+ env = saved_env;
}
void helper_rsm(void)
env->hflags &= ~HF_SMM_MASK;
cpu_smm_update(env);
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "SMM: after RSM\n");
- cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
- }
+ qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
+ log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
}
#endif /* !CONFIG_USER_ONLY */
void helper_daa(void)
{
- int al, af, cf;
+ int old_al, al, af, cf;
int eflags;
eflags = helper_cc_compute_all(CC_OP);
cf = eflags & CC_C;
af = eflags & CC_A;
- al = EAX & 0xff;
+ old_al = al = EAX & 0xff;
eflags = 0;
if (((al & 0x0f) > 9 ) || af) {
al = (al + 6) & 0xff;
eflags |= CC_A;
}
- if ((al > 0x9f) || cf) {
+ if ((old_al > 0x99) || cf) {
al = (al + 0x60) & 0xff;
eflags |= CC_C;
}
helper_svm_check_intercept_param(SVM_EXIT_CPUID, 0);
- cpu_x86_cpuid(env, (uint32_t)EAX, &eax, &ebx, &ecx, &edx);
+ cpu_x86_cpuid(env, (uint32_t)EAX, (uint32_t)ECX, &eax, &ebx, &ecx, &edx);
EAX = eax;
EBX = ebx;
ECX = ecx;
get_seg_limit(e1, e2),
e2);
#if 0
- fprintf(logfile, "load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
+ qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
selector, (unsigned long)sc->base, sc->limit, sc->flags);
#endif
}
{
int new_stack, i;
uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
- uint32_t ss, ss_e1, ss_e2, sp, type, ss_dpl, sp_mask;
+ uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, sp, type, ss_dpl, sp_mask;
uint32_t val, limit, old_sp_mask;
target_ulong ssp, old_ssp, next_eip;
next_eip = env->eip + next_eip_addend;
-#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_PCALL) {
- fprintf(logfile, "lcall %04x:%08x s=%d\n",
- new_cs, (uint32_t)new_eip, shift);
- cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
- }
-#endif
+ LOG_PCALL("lcall %04x:%08x s=%d\n", new_cs, (uint32_t)new_eip, shift);
+ LOG_PCALL_STATE(env);
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
-#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_PCALL) {
- fprintf(logfile, "desc=%08x:%08x\n", e1, e2);
- }
-#endif
+ LOG_PCALL("desc=%08x:%08x\n", e1, e2);
if (e2 & DESC_S_MASK) {
if (!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (!(e2 & DESC_C_MASK) && dpl < cpl) {
/* to inner privilege */
get_ss_esp_from_tss(&ss, &sp, dpl);
-#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_PCALL)
- fprintf(logfile, "new ss:esp=%04x:%08x param_count=%d ESP=" TARGET_FMT_lx "\n",
+ LOG_PCALL("new ss:esp=%04x:%08x param_count=%d ESP=" TARGET_FMT_lx "\n",
ss, sp, param_count, ESP);
-#endif
if ((ss & 0xfffc) == 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if ((ss & 3) != dpl)
SET_ESP(sp, sp_mask);
EIP = offset;
}
-#ifdef USE_KQEMU
- if (kqemu_is_ok(env)) {
- env->exception_index = -1;
- cpu_loop_exit();
- }
-#endif
}
/* real and vm86 mode iret */
if (is_iret)
POPW(ssp, sp, sp_mask, new_eflags);
}
-#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_PCALL) {
- fprintf(logfile, "lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n",
- new_cs, new_eip, shift, addend);
- cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
- }
-#endif
+ LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n",
+ new_cs, new_eip, shift, addend);
+ LOG_PCALL_STATE(env);
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (load_segment(&e1, &e2, new_cs) != 0)
POPW(ssp, sp, sp_mask, new_esp);
POPW(ssp, sp, sp_mask, new_ss);
}
-#ifdef DEBUG_PCALL
- if (loglevel & CPU_LOG_PCALL) {
- fprintf(logfile, "new ss:esp=%04x:" TARGET_FMT_lx "\n",
+ LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n",
new_ss, new_esp);
- }
-#endif
if ((new_ss & 0xfffc) == 0) {
#ifdef TARGET_X86_64
/* NULL ss is allowed in long mode if cpl != 3*/
helper_ret_protected(shift, 1, 0);
}
env->hflags2 &= ~HF2_NMI_MASK;
-#ifdef USE_KQEMU
- if (kqemu_is_ok(env)) {
- CC_OP = CC_OP_EFLAGS;
- env->exception_index = -1;
- cpu_loop_exit();
- }
-#endif
}
void helper_lret_protected(int shift, int addend)
{
helper_ret_protected(shift, 0, addend);
-#ifdef USE_KQEMU
- if (kqemu_is_ok(env)) {
- env->exception_index = -1;
- cpu_loop_exit();
- }
-#endif
}
void helper_sysenter(void)
}
ESP = ECX;
EIP = EDX;
-#ifdef USE_KQEMU
- if (kqemu_is_ok(env)) {
- env->exception_index = -1;
- cpu_loop_exit();
- }
-#endif
}
#if defined(CONFIG_USER_ONLY)
break;
case 8:
if (!(env->hflags2 & HF2_VINTR_MASK)) {
- val = cpu_get_apic_tpr(env);
+ val = cpu_get_apic_tpr(env->apic_state);
} else {
val = env->v_tpr;
}
break;
case 8:
if (!(env->hflags2 & HF2_VINTR_MASK)) {
- cpu_set_apic_tpr(env, t0);
+ cpu_set_apic_tpr(env->apic_state, t0);
}
env->v_tpr = t0 & 0x0f;
break;
EDX = (uint32_t)(val >> 32);
}
+void helper_rdtscp(void)
+{
+ helper_rdtsc();
+ ECX = (uint32_t)(env->tsc_aux);
+}
+
void helper_rdpmc(void)
{
if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
env->sysenter_eip = val;
break;
case MSR_IA32_APICBASE:
- cpu_set_apic_base(env, val);
+ cpu_set_apic_base(env->apic_state, val);
break;
case MSR_EFER:
{
update_mask |= MSR_EFER_NXE;
if (env->cpuid_ext3_features & CPUID_EXT3_SVM)
update_mask |= MSR_EFER_SVME;
+ if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
+ update_mask |= MSR_EFER_FFXSR;
cpu_load_efer(env, (env->efer & ~update_mask) |
(val & update_mask));
}
env->kernelgsbase = val;
break;
#endif
+ case MSR_MTRRphysBase(0):
+ case MSR_MTRRphysBase(1):
+ case MSR_MTRRphysBase(2):
+ case MSR_MTRRphysBase(3):
+ case MSR_MTRRphysBase(4):
+ case MSR_MTRRphysBase(5):
+ case MSR_MTRRphysBase(6):
+ case MSR_MTRRphysBase(7):
+ env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base = val;
+ break;
+ case MSR_MTRRphysMask(0):
+ case MSR_MTRRphysMask(1):
+ case MSR_MTRRphysMask(2):
+ case MSR_MTRRphysMask(3):
+ case MSR_MTRRphysMask(4):
+ case MSR_MTRRphysMask(5):
+ case MSR_MTRRphysMask(6):
+ case MSR_MTRRphysMask(7):
+ env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask = val;
+ break;
+ case MSR_MTRRfix64K_00000:
+ env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix64K_00000] = val;
+ break;
+ case MSR_MTRRfix16K_80000:
+ case MSR_MTRRfix16K_A0000:
+ env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1] = val;
+ break;
+ case MSR_MTRRfix4K_C0000:
+ case MSR_MTRRfix4K_C8000:
+ case MSR_MTRRfix4K_D0000:
+ case MSR_MTRRfix4K_D8000:
+ case MSR_MTRRfix4K_E0000:
+ case MSR_MTRRfix4K_E8000:
+ case MSR_MTRRfix4K_F0000:
+ case MSR_MTRRfix4K_F8000:
+ env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3] = val;
+ break;
+ case MSR_MTRRdefType:
+ env->mtrr_deftype = val;
+ break;
+ case MSR_MCG_STATUS:
+ env->mcg_status = val;
+ break;
+ case MSR_MCG_CTL:
+ if ((env->mcg_cap & MCG_CTL_P)
+ && (val == 0 || val == ~(uint64_t)0))
+ env->mcg_ctl = val;
+ break;
+ case MSR_TSC_AUX:
+ env->tsc_aux = val;
+ break;
+ case MSR_IA32_MISC_ENABLE:
+ env->msr_ia32_misc_enable = val;
+ break;
default:
+ if ((uint32_t)ECX >= MSR_MC0_CTL
+ && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
+ uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
+ if ((offset & 0x3) != 0
+ || (val == 0 || val == ~(uint64_t)0))
+ env->mce_banks[offset] = val;
+ break;
+ }
/* XXX: exception ? */
break;
}
val = env->sysenter_eip;
break;
case MSR_IA32_APICBASE:
- val = cpu_get_apic_base(env);
+ val = cpu_get_apic_base(env->apic_state);
break;
case MSR_EFER:
val = env->efer;
case MSR_KERNELGSBASE:
val = env->kernelgsbase;
break;
+ case MSR_TSC_AUX:
+ val = env->tsc_aux;
+ break;
#endif
-#ifdef USE_KQEMU
- case MSR_QPI_COMMBASE:
- if (env->kqemu_enabled) {
- val = kqemu_comm_base;
- } else {
+ case MSR_MTRRphysBase(0):
+ case MSR_MTRRphysBase(1):
+ case MSR_MTRRphysBase(2):
+ case MSR_MTRRphysBase(3):
+ case MSR_MTRRphysBase(4):
+ case MSR_MTRRphysBase(5):
+ case MSR_MTRRphysBase(6):
+ case MSR_MTRRphysBase(7):
+ val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base;
+ break;
+ case MSR_MTRRphysMask(0):
+ case MSR_MTRRphysMask(1):
+ case MSR_MTRRphysMask(2):
+ case MSR_MTRRphysMask(3):
+ case MSR_MTRRphysMask(4):
+ case MSR_MTRRphysMask(5):
+ case MSR_MTRRphysMask(6):
+ case MSR_MTRRphysMask(7):
+ val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask;
+ break;
+ case MSR_MTRRfix64K_00000:
+ val = env->mtrr_fixed[0];
+ break;
+ case MSR_MTRRfix16K_80000:
+ case MSR_MTRRfix16K_A0000:
+ val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1];
+ break;
+ case MSR_MTRRfix4K_C0000:
+ case MSR_MTRRfix4K_C8000:
+ case MSR_MTRRfix4K_D0000:
+ case MSR_MTRRfix4K_D8000:
+ case MSR_MTRRfix4K_E0000:
+ case MSR_MTRRfix4K_E8000:
+ case MSR_MTRRfix4K_F0000:
+ case MSR_MTRRfix4K_F8000:
+ val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3];
+ break;
+ case MSR_MTRRdefType:
+ val = env->mtrr_deftype;
+ break;
+ case MSR_MTRRcap:
+ if (env->cpuid_features & CPUID_MTRR)
+ val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT | MSR_MTRRcap_WC_SUPPORTED;
+ else
+ /* XXX: exception ? */
val = 0;
- }
break;
-#endif
+ case MSR_MCG_CAP:
+ val = env->mcg_cap;
+ break;
+ case MSR_MCG_CTL:
+ if (env->mcg_cap & MCG_CTL_P)
+ val = env->mcg_ctl;
+ else
+ val = 0;
+ break;
+ case MSR_MCG_STATUS:
+ val = env->mcg_status;
+ break;
+ case MSR_IA32_MISC_ENABLE:
+ val = env->msr_ia32_misc_enable;
+ break;
default:
+ if ((uint32_t)ECX >= MSR_MC0_CTL
+ && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
+ uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
+ val = env->mce_banks[offset];
+ break;
+ }
/* XXX: exception ? */
val = 0;
break;
selector = selector1 & 0xffff;
eflags = helper_cc_compute_all(CC_OP);
+ if ((selector & 0xfffc) == 0)
+ goto fail;
if (load_segment(&e1, &e2, selector) != 0)
goto fail;
rpl = selector & 3;
/* x87 FPU helpers */
+static inline double floatx80_to_double(floatx80 a)
+{
+ union {
+ float64 f64;
+ double d;
+ } u;
+
+ u.f64 = floatx80_to_float64(a, &env->fp_status);
+ return u.d;
+}
+
+static inline floatx80 double_to_floatx80(double a)
+{
+ union {
+ float64 f64;
+ double d;
+ } u;
+
+ u.d = a;
+ return float64_to_floatx80(u.f64, &env->fp_status);
+}
+
static void fpu_set_exception(int mask)
{
env->fpus |= mask;
env->fpus |= FPUS_SE | FPUS_B;
}
-static inline CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b)
+static inline floatx80 helper_fdiv(floatx80 a, floatx80 b)
{
- if (b == 0.0)
+ if (floatx80_is_zero(b)) {
fpu_set_exception(FPUS_ZE);
- return a / b;
+ }
+ return floatx80_div(a, b, &env->fp_status);
}
-void fpu_raise_exception(void)
+static void fpu_raise_exception(void)
{
if (env->cr[0] & CR0_NE_MASK) {
raise_exception(EXCP10_COPR);
uint32_t i;
} u;
u.i = val;
- FT0 = float32_to_floatx(u.f, &env->fp_status);
+ FT0 = float32_to_floatx80(u.f, &env->fp_status);
}
void helper_fldl_FT0(uint64_t val)
uint64_t i;
} u;
u.i = val;
- FT0 = float64_to_floatx(u.f, &env->fp_status);
+ FT0 = float64_to_floatx80(u.f, &env->fp_status);
}
void helper_fildl_FT0(int32_t val)
{
- FT0 = int32_to_floatx(val, &env->fp_status);
+ FT0 = int32_to_floatx80(val, &env->fp_status);
}
void helper_flds_ST0(uint32_t val)
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
- env->fpregs[new_fpstt].d = float32_to_floatx(u.f, &env->fp_status);
+ env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
- env->fpregs[new_fpstt].d = float64_to_floatx(u.f, &env->fp_status);
+ env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
- env->fpregs[new_fpstt].d = int32_to_floatx(val, &env->fp_status);
+ env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
- env->fpregs[new_fpstt].d = int64_to_floatx(val, &env->fp_status);
+ env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
float32 f;
uint32_t i;
} u;
- u.f = floatx_to_float32(ST0, &env->fp_status);
+ u.f = floatx80_to_float32(ST0, &env->fp_status);
return u.i;
}
float64 f;
uint64_t i;
} u;
- u.f = floatx_to_float64(ST0, &env->fp_status);
+ u.f = floatx80_to_float64(ST0, &env->fp_status);
return u.i;
}
int32_t helper_fist_ST0(void)
{
int32_t val;
- val = floatx_to_int32(ST0, &env->fp_status);
+ val = floatx80_to_int32(ST0, &env->fp_status);
if (val != (int16_t)val)
val = -32768;
return val;
int32_t helper_fistl_ST0(void)
{
int32_t val;
- val = floatx_to_int32(ST0, &env->fp_status);
+ val = floatx80_to_int32(ST0, &env->fp_status);
return val;
}
int64_t helper_fistll_ST0(void)
{
int64_t val;
- val = floatx_to_int64(ST0, &env->fp_status);
+ val = floatx80_to_int64(ST0, &env->fp_status);
return val;
}
int32_t helper_fistt_ST0(void)
{
int32_t val;
- val = floatx_to_int32_round_to_zero(ST0, &env->fp_status);
+ val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
if (val != (int16_t)val)
val = -32768;
return val;
int32_t helper_fisttl_ST0(void)
{
int32_t val;
- val = floatx_to_int32_round_to_zero(ST0, &env->fp_status);
+ val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
return val;
}
int64_t helper_fisttll_ST0(void)
{
int64_t val;
- val = floatx_to_int64_round_to_zero(ST0, &env->fp_status);
+ val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
return val;
}
void helper_fxchg_ST0_STN(int st_index)
{
- CPU86_LDouble tmp;
+ floatx80 tmp;
tmp = ST(st_index);
ST(st_index) = ST0;
ST0 = tmp;
{
int ret;
- ret = floatx_compare(ST0, FT0, &env->fp_status);
+ ret = floatx80_compare(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
}
{
int ret;
- ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
+ ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret+ 1];
}
int eflags;
int ret;
- ret = floatx_compare(ST0, FT0, &env->fp_status);
+ ret = floatx80_compare(ST0, FT0, &env->fp_status);
eflags = helper_cc_compute_all(CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
int eflags;
int ret;
- ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
+ ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
eflags = helper_cc_compute_all(CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
void helper_fadd_ST0_FT0(void)
{
- ST0 += FT0;
+ ST0 = floatx80_add(ST0, FT0, &env->fp_status);
}
void helper_fmul_ST0_FT0(void)
{
- ST0 *= FT0;
+ ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
}
void helper_fsub_ST0_FT0(void)
{
- ST0 -= FT0;
+ ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
}
void helper_fsubr_ST0_FT0(void)
{
- ST0 = FT0 - ST0;
+ ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
}
void helper_fdiv_ST0_FT0(void)
void helper_fadd_STN_ST0(int st_index)
{
- ST(st_index) += ST0;
+ ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
}
void helper_fmul_STN_ST0(int st_index)
{
- ST(st_index) *= ST0;
+ ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
}
void helper_fsub_STN_ST0(int st_index)
{
- ST(st_index) -= ST0;
+ ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
}
void helper_fsubr_STN_ST0(int st_index)
{
- CPU86_LDouble *p;
- p = &ST(st_index);
- *p = ST0 - *p;
+ ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
}
void helper_fdiv_STN_ST0(int st_index)
{
- CPU86_LDouble *p;
+ floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(*p, ST0);
}
void helper_fdivr_STN_ST0(int st_index)
{
- CPU86_LDouble *p;
+ floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(ST0, *p);
}
/* misc FPU operations */
void helper_fchs_ST0(void)
{
- ST0 = floatx_chs(ST0);
+ ST0 = floatx80_chs(ST0);
}
void helper_fabs_ST0(void)
{
- ST0 = floatx_abs(ST0);
+ ST0 = floatx80_abs(ST0);
}
void helper_fld1_ST0(void)
{
- ST0 = f15rk[1];
+ ST0 = floatx80_one;
}
void helper_fldl2t_ST0(void)
{
- ST0 = f15rk[6];
+ ST0 = floatx80_l2t;
}
void helper_fldl2e_ST0(void)
{
- ST0 = f15rk[5];
+ ST0 = floatx80_l2e;
}
void helper_fldpi_ST0(void)
{
- ST0 = f15rk[2];
+ ST0 = floatx80_pi;
}
void helper_fldlg2_ST0(void)
{
- ST0 = f15rk[3];
+ ST0 = floatx80_lg2;
}
void helper_fldln2_ST0(void)
{
- ST0 = f15rk[4];
+ ST0 = floatx80_ln2;
}
void helper_fldz_ST0(void)
{
- ST0 = f15rk[0];
+ ST0 = floatx80_zero;
}
void helper_fldz_FT0(void)
{
- FT0 = f15rk[0];
+ FT0 = floatx80_zero;
}
uint32_t helper_fnstsw(void)
break;
}
set_float_rounding_mode(rnd_type, &env->fp_status);
-#ifdef FLOATX80
switch((env->fpuc >> 8) & 3) {
case 0:
rnd_type = 32;
break;
}
set_floatx80_rounding_precision(rnd_type, &env->fp_status);
-#endif
}
void helper_fldcw(uint32_t val)
void helper_fbld_ST0(target_ulong ptr)
{
- CPU86_LDouble tmp;
+ floatx80 tmp;
uint64_t val;
unsigned int v;
int i;
v = ldub(ptr + i);
val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
}
- tmp = val;
- if (ldub(ptr + 9) & 0x80)
- tmp = -tmp;
+ tmp = int64_to_floatx80(val, &env->fp_status);
+ if (ldub(ptr + 9) & 0x80) {
+ floatx80_chs(tmp);
+ }
fpush();
ST0 = tmp;
}
target_ulong mem_ref, mem_end;
int64_t val;
- val = floatx_to_int64(ST0, &env->fp_status);
+ val = floatx80_to_int64(ST0, &env->fp_status);
mem_ref = ptr;
mem_end = mem_ref + 9;
if (val < 0) {
void helper_f2xm1(void)
{
- ST0 = pow(2.0,ST0) - 1.0;
+ double val = floatx80_to_double(ST0);
+ val = pow(2.0, val) - 1.0;
+ ST0 = double_to_floatx80(val);
}
void helper_fyl2x(void)
{
- CPU86_LDouble fptemp;
+ double fptemp = floatx80_to_double(ST0);
- fptemp = ST0;
if (fptemp>0.0){
- fptemp = log(fptemp)/log(2.0); /* log2(ST) */
- ST1 *= fptemp;
+ fptemp = log(fptemp)/log(2.0); /* log2(ST) */
+ fptemp *= floatx80_to_double(ST1);
+ ST1 = double_to_floatx80(fptemp);
fpop();
} else {
env->fpus &= (~0x4700);
void helper_fptan(void)
{
- CPU86_LDouble fptemp;
+ double fptemp = floatx80_to_double(ST0);
- fptemp = ST0;
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
- ST0 = tan(fptemp);
+ fptemp = tan(fptemp);
+ ST0 = double_to_floatx80(fptemp);
fpush();
- ST0 = 1.0;
+ ST0 = floatx80_one;
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**52 only */
}
void helper_fpatan(void)
{
- CPU86_LDouble fptemp, fpsrcop;
+ double fptemp, fpsrcop;
- fpsrcop = ST1;
- fptemp = ST0;
- ST1 = atan2(fpsrcop,fptemp);
+ fpsrcop = floatx80_to_double(ST1);
+ fptemp = floatx80_to_double(ST0);
+ ST1 = double_to_floatx80(atan2(fpsrcop, fptemp));
fpop();
}
void helper_fxtract(void)
{
- CPU86_LDoubleU temp;
- unsigned int expdif;
+ CPU_LDoubleU temp;
temp.d = ST0;
- expdif = EXPD(temp) - EXPBIAS;
- /*DP exponent bias*/
- ST0 = expdif;
- fpush();
- BIASEXPONENT(temp);
- ST0 = temp.d;
+
+ if (floatx80_is_zero(ST0)) {
+ /* Easy way to generate -inf and raising division by 0 exception */
+ ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero, &env->fp_status);
+ fpush();
+ ST0 = temp.d;
+ } else {
+ int expdif;
+
+ expdif = EXPD(temp) - EXPBIAS;
+ /*DP exponent bias*/
+ ST0 = int32_to_floatx80(expdif, &env->fp_status);
+ fpush();
+ BIASEXPONENT(temp);
+ ST0 = temp.d;
+ }
}
void helper_fprem1(void)
{
- CPU86_LDouble dblq, fpsrcop, fptemp;
- CPU86_LDoubleU fpsrcop1, fptemp1;
+ double st0, st1, dblq, fpsrcop, fptemp;
+ CPU_LDoubleU fpsrcop1, fptemp1;
int expdif;
signed long long int q;
- if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) {
- ST0 = 0.0 / 0.0; /* NaN */
+ st0 = floatx80_to_double(ST0);
+ st1 = floatx80_to_double(ST1);
+
+ if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
+ ST0 = double_to_floatx80(0.0 / 0.0); /* NaN */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
return;
}
- fpsrcop = ST0;
- fptemp = ST1;
- fpsrcop1.d = fpsrcop;
- fptemp1.d = fptemp;
+ fpsrcop = st0;
+ fptemp = st1;
+ fpsrcop1.d = ST0;
+ fptemp1.d = ST1;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 0) {
dblq = fpsrcop / fptemp;
/* round dblq towards nearest integer */
dblq = rint(dblq);
- ST0 = fpsrcop - fptemp * dblq;
+ st0 = fpsrcop - fptemp * dblq;
/* convert dblq to q by truncating towards zero */
if (dblq < 0.0)
} else {
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, expdif - 50);
- fpsrcop = (ST0 / ST1) / fptemp;
+ fpsrcop = (st0 / st1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0) ?
-(floor(fabs(fpsrcop))) : floor(fpsrcop);
- ST0 -= (ST1 * fpsrcop * fptemp);
+ st0 -= (st1 * fpsrcop * fptemp);
}
+ ST0 = double_to_floatx80(st0);
}
void helper_fprem(void)
{
- CPU86_LDouble dblq, fpsrcop, fptemp;
- CPU86_LDoubleU fpsrcop1, fptemp1;
+ double st0, st1, dblq, fpsrcop, fptemp;
+ CPU_LDoubleU fpsrcop1, fptemp1;
int expdif;
signed long long int q;
- if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) {
- ST0 = 0.0 / 0.0; /* NaN */
+ st0 = floatx80_to_double(ST0);
+ st1 = floatx80_to_double(ST1);
+
+ if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
+ ST0 = double_to_floatx80(0.0 / 0.0); /* NaN */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
return;
}
- fpsrcop = (CPU86_LDouble)ST0;
- fptemp = (CPU86_LDouble)ST1;
- fpsrcop1.d = fpsrcop;
- fptemp1.d = fptemp;
+ fpsrcop = st0;
+ fptemp = st1;
+ fpsrcop1.d = ST0;
+ fptemp1.d = ST1;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 0) {
dblq = fpsrcop/*ST0*/ / fptemp/*ST1*/;
/* round dblq towards zero */
dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
- ST0 = fpsrcop/*ST0*/ - fptemp * dblq;
+ st0 = fpsrcop/*ST0*/ - fptemp * dblq;
/* convert dblq to q by truncating towards zero */
if (dblq < 0.0)
int N = 32 + (expdif % 32); /* as per AMD docs */
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, (double)(expdif - N));
- fpsrcop = (ST0 / ST1) / fptemp;
+ fpsrcop = (st0 / st1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0) ?
-(floor(fabs(fpsrcop))) : floor(fpsrcop);
- ST0 -= (ST1 * fpsrcop * fptemp);
+ st0 -= (st1 * fpsrcop * fptemp);
}
+ ST0 = double_to_floatx80(st0);
}
void helper_fyl2xp1(void)
{
- CPU86_LDouble fptemp;
+ double fptemp = floatx80_to_double(ST0);
- fptemp = ST0;
if ((fptemp+1.0)>0.0) {
fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
- ST1 *= fptemp;
+ fptemp *= floatx80_to_double(ST1);
+ ST1 = double_to_floatx80(fptemp);
fpop();
} else {
env->fpus &= (~0x4700);
void helper_fsqrt(void)
{
- CPU86_LDouble fptemp;
-
- fptemp = ST0;
- if (fptemp<0.0) {
+ if (floatx80_is_neg(ST0)) {
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
env->fpus |= 0x400;
}
- ST0 = sqrt(fptemp);
+ ST0 = floatx80_sqrt(ST0, &env->fp_status);
}
void helper_fsincos(void)
{
- CPU86_LDouble fptemp;
+ double fptemp = floatx80_to_double(ST0);
- fptemp = ST0;
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
- ST0 = sin(fptemp);
+ ST0 = double_to_floatx80(sin(fptemp));
fpush();
- ST0 = cos(fptemp);
+ ST0 = double_to_floatx80(cos(fptemp));
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
void helper_frndint(void)
{
- ST0 = floatx_round_to_int(ST0, &env->fp_status);
+ ST0 = floatx80_round_to_int(ST0, &env->fp_status);
}
void helper_fscale(void)
{
- ST0 = ldexp (ST0, (int)(ST1));
+ if (floatx80_is_any_nan(ST1)) {
+ ST0 = ST1;
+ } else {
+ int n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
+ ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
+ }
}
void helper_fsin(void)
{
- CPU86_LDouble fptemp;
+ double fptemp = floatx80_to_double(ST0);
- fptemp = ST0;
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
- ST0 = sin(fptemp);
+ ST0 = double_to_floatx80(sin(fptemp));
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**53 only */
}
void helper_fcos(void)
{
- CPU86_LDouble fptemp;
+ double fptemp = floatx80_to_double(ST0);
- fptemp = ST0;
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
- ST0 = cos(fptemp);
+ ST0 = double_to_floatx80(cos(fptemp));
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg5 < 2**63 only */
}
void helper_fxam_ST0(void)
{
- CPU86_LDoubleU temp;
+ CPU_LDoubleU temp;
int expdif;
temp.d = ST0;
/* XXX: test fptags too */
expdif = EXPD(temp);
if (expdif == MAXEXPD) {
-#ifdef USE_X86LDOUBLE
if (MANTD(temp) == 0x8000000000000000ULL)
-#else
- if (MANTD(temp) == 0)
-#endif
env->fpus |= 0x500 /*Infinity*/;
else
env->fpus |= 0x100 /*NaN*/;
{
int fpus, fptag, exp, i;
uint64_t mant;
- CPU86_LDoubleU tmp;
+ CPU_LDoubleU tmp;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
/* zero */
fptag |= 1;
} else if (exp == 0 || exp == MAXEXPD
-#ifdef USE_X86LDOUBLE
|| (mant & (1LL << 63)) == 0
-#endif
) {
/* NaNs, infinity, denormal */
fptag |= 2;
void helper_fsave(target_ulong ptr, int data32)
{
- CPU86_LDouble tmp;
+ floatx80 tmp;
int i;
helper_fstenv(ptr, data32);
void helper_frstor(target_ulong ptr, int data32)
{
- CPU86_LDouble tmp;
+ floatx80 tmp;
int i;
helper_fldenv(ptr, data32);
}
}
+
+#if defined(CONFIG_USER_ONLY)
+void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+ if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
+ selector &= 0xffff;
+ cpu_x86_load_seg_cache(env, seg_reg, selector,
+ (selector << 4), 0xffff, 0);
+ } else {
+ helper_load_seg(seg_reg, selector);
+ }
+ env = saved_env;
+}
+
+void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+
+ helper_fsave(ptr, data32);
+
+ env = saved_env;
+}
+
+void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
+{
+ CPUX86State *saved_env;
+
+ saved_env = env;
+ env = s;
+
+ helper_frstor(ptr, data32);
+
+ env = saved_env;
+}
+#endif
+
void helper_fxsave(target_ulong ptr, int data64)
{
int fpus, fptag, i, nb_xmm_regs;
- CPU86_LDouble tmp;
+ floatx80 tmp;
target_ulong addr;
+ /* The operand must be 16 byte aligned */
+ if (ptr & 0xf) {
+ raise_exception(EXCP0D_GPF);
+ }
+
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for(i = 0; i < 8; i++) {
else
nb_xmm_regs = 8;
addr = ptr + 0xa0;
- for(i = 0; i < nb_xmm_regs; i++) {
- stq(addr, env->xmm_regs[i].XMM_Q(0));
- stq(addr + 8, env->xmm_regs[i].XMM_Q(1));
- addr += 16;
+ /* Fast FXSAVE leaves out the XMM registers */
+ if (!(env->efer & MSR_EFER_FFXSR)
+ || (env->hflags & HF_CPL_MASK)
+ || !(env->hflags & HF_LMA_MASK)) {
+ for(i = 0; i < nb_xmm_regs; i++) {
+ stq(addr, env->xmm_regs[i].XMM_Q(0));
+ stq(addr + 8, env->xmm_regs[i].XMM_Q(1));
+ addr += 16;
+ }
}
}
}
void helper_fxrstor(target_ulong ptr, int data64)
{
int i, fpus, fptag, nb_xmm_regs;
- CPU86_LDouble tmp;
+ floatx80 tmp;
target_ulong addr;
+ /* The operand must be 16 byte aligned */
+ if (ptr & 0xf) {
+ raise_exception(EXCP0D_GPF);
+ }
+
env->fpuc = lduw(ptr);
fpus = lduw(ptr + 2);
fptag = lduw(ptr + 4);
else
nb_xmm_regs = 8;
addr = ptr + 0xa0;
- for(i = 0; i < nb_xmm_regs; i++) {
- env->xmm_regs[i].XMM_Q(0) = ldq(addr);
- env->xmm_regs[i].XMM_Q(1) = ldq(addr + 8);
- addr += 16;
+ /* Fast FXRESTORE leaves out the XMM registers */
+ if (!(env->efer & MSR_EFER_FFXSR)
+ || (env->hflags & HF_CPL_MASK)
+ || !(env->hflags & HF_LMA_MASK)) {
+ for(i = 0; i < nb_xmm_regs; i++) {
+ env->xmm_regs[i].XMM_Q(0) = ldq(addr);
+ env->xmm_regs[i].XMM_Q(1) = ldq(addr + 8);
+ addr += 16;
+ }
}
}
}
-#ifndef USE_X86LDOUBLE
-
-void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f)
+void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f)
{
- CPU86_LDoubleU temp;
- int e;
-
- temp.d = f;
- /* mantissa */
- *pmant = (MANTD(temp) << 11) | (1LL << 63);
- /* exponent + sign */
- e = EXPD(temp) - EXPBIAS + 16383;
- e |= SIGND(temp) >> 16;
- *pexp = e;
-}
-
-CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper)
-{
- CPU86_LDoubleU temp;
- int e;
- uint64_t ll;
-
- /* XXX: handle overflow ? */
- e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
- e |= (upper >> 4) & 0x800; /* sign */
- ll = (mant >> 11) & ((1LL << 52) - 1);
-#ifdef __arm__
- temp.l.upper = (e << 20) | (ll >> 32);
- temp.l.lower = ll;
-#else
- temp.ll = ll | ((uint64_t)e << 52);
-#endif
- return temp.d;
-}
-
-#else
-
-void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f)
-{
- CPU86_LDoubleU temp;
+ CPU_LDoubleU temp;
temp.d = f;
*pmant = temp.l.lower;
*pexp = temp.l.upper;
}
-CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper)
+floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper)
{
- CPU86_LDoubleU temp;
+ CPU_LDoubleU temp;
temp.l.upper = upper;
temp.l.lower = mant;
return temp.d;
}
-#endif
#ifdef TARGET_X86_64
env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */
env->halted = 1;
env->exception_index = EXCP_HLT;
- cpu_loop_exit();
+ cpu_loop_exit(env);
}
void helper_hlt(int next_eip_addend)
void helper_debug(void)
{
env->exception_index = EXCP_DEBUG;
- cpu_loop_exit();
+ cpu_loop_exit(env);
+}
+
+void helper_reset_rf(void)
+{
+ env->eflags &= ~RF_MASK;
}
void helper_raise_interrupt(int intno, int next_eip_addend)
}
}
-static float approx_rsqrt(float a)
-{
- return 1.0 / sqrt(a);
-}
-
-static float approx_rcp(float a)
-{
- return 1.0 / a;
-}
-
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#endif
+#if !defined(CONFIG_USER_ONLY)
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
-void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
+void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
+ void *retaddr)
{
TranslationBlock *tb;
int ret;
unsigned long pc;
CPUX86State *saved_env;
- /* XXX: hack to restore env in all cases, even if not called from
- generated code */
saved_env = env;
- env = cpu_single_env;
+ env = env1;
- ret = cpu_x86_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
+ ret = cpu_x86_handle_mmu_fault(env, addr, is_write, mmu_idx);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
- cpu_restore_state(tb, env, pc, NULL);
+ cpu_restore_state(tb, env, pc);
}
}
raise_exception_err(env->exception_index, env->error_code);
}
env = saved_env;
}
-
+#endif
/* Secure Virtual Machine helpers */
{
}
+void svm_check_intercept(CPUState *env1, uint32_t type)
+{
+}
+
void helper_svm_check_io(uint32_t port, uint32_t param,
uint32_t next_eip_addend)
{
else
addr = (uint32_t)EAX;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile,"vmrun! " TARGET_FMT_lx "\n", addr);
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
env->vm_vmcb = addr;
uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
uint32_t event_inj_err = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err));
- stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID);
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile, "Injecting(%#hx): ", valid_err);
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
/* FIXME: need to implement valid_err */
switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
case SVM_EVTINJ_TYPE_INTR:
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile, "INTR");
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
/* XXX: is it always correct ? */
- do_interrupt(vector, 0, 0, 0, 1);
+ do_interrupt_all(vector, 0, 0, 0, 1);
break;
case SVM_EVTINJ_TYPE_NMI:
env->exception_index = EXCP02_NMI;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = EIP;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile, "NMI");
- cpu_loop_exit();
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
+ cpu_loop_exit(env);
break;
case SVM_EVTINJ_TYPE_EXEPT:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile, "EXEPT");
- cpu_loop_exit();
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
+ cpu_loop_exit(env);
break;
case SVM_EVTINJ_TYPE_SOFT:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 1;
env->exception_next_eip = EIP;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile, "SOFT");
- cpu_loop_exit();
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
+ cpu_loop_exit(env);
break;
}
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile, " %#x %#x\n", env->exception_index, env->error_code);
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", env->exception_index, env->error_code);
}
}
else
addr = (uint32_t)EAX;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile,"vmload! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
env->segs[R_FS].base);
else
addr = (uint32_t)EAX;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile,"vmsave! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
env->segs[R_FS].base);
switch((uint32_t)ECX) {
case 0 ... 0x1fff:
t0 = (ECX * 2) % 8;
- t1 = ECX / 8;
+ t1 = (ECX * 2) / 8;
break;
case 0xc0000000 ... 0xc0001fff:
t0 = (8192 + ECX - 0xc0000000) * 2;
}
}
+void svm_check_intercept(CPUState *env1, uint32_t type)
+{
+ CPUState *saved_env;
+
+ saved_env = env;
+ env = env1;
+ helper_svm_check_intercept_param(type, 0);
+ env = saved_env;
+}
+
void helper_svm_check_io(uint32_t port, uint32_t param,
uint32_t next_eip_addend)
{
{
uint32_t int_ctl;
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile,"vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n",
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n",
exit_code, exit_info_1,
ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2)),
EIP);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_code), exit_code);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), exit_info_1);
+ stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
+ ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj)));
+ stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
+ ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)));
+ stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
+
env->hflags2 &= ~HF2_GIF_MASK;
/* FIXME: Resets the current ASID register to zero (host ASID). */
env->error_code = 0;
env->old_exception = -1;
- cpu_loop_exit();
+ cpu_loop_exit(env);
}
#endif
return count;
}
-target_ulong helper_bsr(target_ulong t0)
+target_ulong helper_lzcnt(target_ulong t0, int wordsize)
{
int count;
target_ulong res, mask;
-
+
+ if (wordsize > 0 && t0 == 0) {
+ return wordsize;
+ }
res = t0;
count = TARGET_LONG_BITS - 1;
mask = (target_ulong)1 << (TARGET_LONG_BITS - 1);
count--;
res <<= 1;
}
+ if (wordsize > 0) {
+ return wordsize - 1 - count;
+ }
return count;
}
+target_ulong helper_bsr(target_ulong t0)
+{
+ return helper_lzcnt(t0, 0);
+}
static int compute_all_eflags(void)
{
}
}
+uint32_t cpu_cc_compute_all(CPUState *env1, int op)
+{
+ CPUState *saved_env;
+ uint32_t ret;
+
+ saved_env = env;
+ env = env1;
+ ret = helper_cc_compute_all(op);
+ env = saved_env;
+ return ret;
+}
+
uint32_t helper_cc_compute_c(int op)
{
switch (op) {