#include "trace.h"
#endif
+#include "cputlb.h"
+
+#define WANT_EXEC_OBSOLETE
+#include "exec-obsolete.h"
+
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
-//#define DEBUG_TLB
//#define DEBUG_UNASSIGNED
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
-//#define DEBUG_TLB_CHECK
//#define DEBUG_IOPORT
//#define DEBUG_SUBPAGE
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
-#if defined(__arm__) || defined(__sparc_v9__)
+#if defined(__arm__) || defined(__sparc__)
/* The prologue must be reachable with a direct jump. ARM and Sparc64
have limited branch ranges (possibly also PPC) so place it in a
section close to code segment. */
#define code_gen_section \
__attribute__((__section__(".gen_code"))) \
__attribute__((aligned (32)))
-#elif defined(_WIN32)
-/* Maximum alignment for Win32 is 16. */
+#elif defined(_WIN32) && !defined(_WIN64)
#define code_gen_section \
__attribute__((aligned (16)))
#else
static MemoryRegion *system_memory;
static MemoryRegion *system_io;
+MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
+static MemoryRegion io_mem_subpage_ram;
+
#endif
-CPUState *first_cpu;
+CPUArchState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
-DEFINE_TLS(CPUState *,cpu_single_env);
+DEFINE_TLS(CPUArchState *,cpu_single_env);
/* 0 = Do not count executed instructions.
1 = Precise instruction counting.
2 = Adaptive rate instruction counting. */
#define L2_BITS 10
#define L2_SIZE (1 << L2_BITS)
+#define P_L2_LEVELS \
+ (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
+
/* The bits remaining after N lower levels of page tables. */
-#define P_L1_BITS_REM \
- ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
#define V_L1_BITS_REM \
((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
-/* Size of the L1 page table. Avoid silly small sizes. */
-#if P_L1_BITS_REM < 4
-#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
-#else
-#define P_L1_BITS P_L1_BITS_REM
-#endif
-
#if V_L1_BITS_REM < 4
#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
#else
#define V_L1_BITS V_L1_BITS_REM
#endif
-#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
-#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
-unsigned long qemu_real_host_page_size;
-unsigned long qemu_host_page_size;
-unsigned long qemu_host_page_mask;
+uintptr_t qemu_real_host_page_size;
+uintptr_t qemu_host_page_size;
+uintptr_t qemu_host_page_mask;
/* This is a multi-level map on the virtual address space.
The bottom level has pointers to PageDesc. */
static void *l1_map[V_L1_SIZE];
#if !defined(CONFIG_USER_ONLY)
-typedef struct PhysPageDesc {
- /* offset in host memory of the page + io_index in the low bits */
- ram_addr_t phys_offset;
- ram_addr_t region_offset;
-} PhysPageDesc;
+typedef struct PhysPageEntry PhysPageEntry;
+
+static MemoryRegionSection *phys_sections;
+static unsigned phys_sections_nb, phys_sections_nb_alloc;
+static uint16_t phys_section_unassigned;
+static uint16_t phys_section_notdirty;
+static uint16_t phys_section_rom;
+static uint16_t phys_section_watch;
+
+struct PhysPageEntry {
+ uint16_t is_leaf : 1;
+ /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
+ uint16_t ptr : 15;
+};
+
+/* Simple allocator for PhysPageEntry nodes */
+static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
+static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
+
+#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
/* This is a multi-level map on the physical address space.
- The bottom level has pointers to PhysPageDesc. */
-static void *l1_phys_map[P_L1_SIZE];
+ The bottom level has pointers to MemoryRegionSections. */
+static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
static void io_mem_init(void);
static void memory_map_init(void);
-/* io memory support */
-CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
-CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
-void *io_mem_opaque[IO_MEM_NB_ENTRIES];
-static char io_mem_used[IO_MEM_NB_ENTRIES];
-static int io_mem_watch;
-#endif
-
-/* log support */
-#ifdef WIN32
-static const char *logfilename = "qemu.log";
-#else
-static const char *logfilename = "/tmp/qemu.log";
+static MemoryRegion io_mem_watch;
#endif
-FILE *logfile;
-int loglevel;
-static int log_append = 0;
/* statistics */
-#if !defined(CONFIG_USER_ONLY)
-static int tlb_flush_count;
-#endif
static int tb_flush_count;
static int tb_phys_invalidate_count;
}
#if !defined(CONFIG_USER_ONLY)
-static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
+
+static void phys_map_node_reserve(unsigned nodes)
{
- PhysPageDesc *pd;
- void **lp;
- int i;
+ if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
+ typedef PhysPageEntry Node[L2_SIZE];
+ phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
+ phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
+ phys_map_nodes_nb + nodes);
+ phys_map_nodes = g_renew(Node, phys_map_nodes,
+ phys_map_nodes_nb_alloc);
+ }
+}
- /* Level 1. Always allocated. */
- lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
+static uint16_t phys_map_node_alloc(void)
+{
+ unsigned i;
+ uint16_t ret;
- /* Level 2..N-1. */
- for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
- void **p = *lp;
- if (p == NULL) {
- if (!alloc) {
- return NULL;
+ ret = phys_map_nodes_nb++;
+ assert(ret != PHYS_MAP_NODE_NIL);
+ assert(ret != phys_map_nodes_nb_alloc);
+ for (i = 0; i < L2_SIZE; ++i) {
+ phys_map_nodes[ret][i].is_leaf = 0;
+ phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
+ }
+ return ret;
+}
+
+static void phys_map_nodes_reset(void)
+{
+ phys_map_nodes_nb = 0;
+}
+
+
+static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
+ target_phys_addr_t *nb, uint16_t leaf,
+ int level)
+{
+ PhysPageEntry *p;
+ int i;
+ target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
+
+ if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
+ lp->ptr = phys_map_node_alloc();
+ p = phys_map_nodes[lp->ptr];
+ if (level == 0) {
+ for (i = 0; i < L2_SIZE; i++) {
+ p[i].is_leaf = 1;
+ p[i].ptr = phys_section_unassigned;
}
- *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
}
- lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
+ } else {
+ p = phys_map_nodes[lp->ptr];
}
+ lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
- pd = *lp;
- if (pd == NULL) {
- int i;
-
- if (!alloc) {
- return NULL;
+ while (*nb && lp < &p[L2_SIZE]) {
+ if ((*index & (step - 1)) == 0 && *nb >= step) {
+ lp->is_leaf = true;
+ lp->ptr = leaf;
+ *index += step;
+ *nb -= step;
+ } else {
+ phys_page_set_level(lp, index, nb, leaf, level - 1);
}
+ ++lp;
+ }
+}
+
+static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
+ uint16_t leaf)
+{
+ /* Wildly overreserve - it doesn't matter much. */
+ phys_map_node_reserve(3 * P_L2_LEVELS);
+
+ phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
+}
- *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
+MemoryRegionSection *phys_page_find(target_phys_addr_t index)
+{
+ PhysPageEntry lp = phys_map;
+ PhysPageEntry *p;
+ int i;
+ uint16_t s_index = phys_section_unassigned;
- for (i = 0; i < L2_SIZE; i++) {
- pd[i].phys_offset = IO_MEM_UNASSIGNED;
- pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
+ for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
+ if (lp.ptr == PHYS_MAP_NODE_NIL) {
+ goto not_found;
}
+ p = phys_map_nodes[lp.ptr];
+ lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
}
- return pd + (index & (L2_SIZE - 1));
+ s_index = lp.ptr;
+not_found:
+ return &phys_sections[s_index];
}
-static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
+bool memory_region_is_unassigned(MemoryRegion *mr)
{
- return phys_page_find_alloc(index, 0);
+ return mr != &io_mem_ram && mr != &io_mem_rom
+ && mr != &io_mem_notdirty && !mr->rom_device
+ && mr != &io_mem_watch;
}
-static void tlb_protect_code(ram_addr_t ram_addr);
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
- target_ulong vaddr);
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
#endif
/* Cannot map more than that */
if (code_gen_buffer_size > (800 * 1024 * 1024))
code_gen_buffer_size = (800 * 1024 * 1024);
-#elif defined(__sparc_v9__)
+#elif defined(__sparc__) && HOST_LONG_BITS == 64
// Map the buffer below 2G, so we can use direct calls and branches
- flags |= MAP_FIXED;
- start = (void *) 0x60000000UL;
+ start = (void *) 0x40000000UL;
if (code_gen_buffer_size > (512 * 1024 * 1024))
code_gen_buffer_size = (512 * 1024 * 1024);
#elif defined(__arm__)
- /* Map the buffer below 32M, so we can use direct calls and branches */
- flags |= MAP_FIXED;
- start = (void *) 0x01000000UL;
+ /* Keep the buffer no bigger than 16MB to branch between blocks */
if (code_gen_buffer_size > 16 * 1024 * 1024)
code_gen_buffer_size = 16 * 1024 * 1024;
#elif defined(__s390x__)
/* Cannot map more than that */
if (code_gen_buffer_size > (800 * 1024 * 1024))
code_gen_buffer_size = (800 * 1024 * 1024);
-#elif defined(__sparc_v9__)
+#elif defined(__sparc__) && HOST_LONG_BITS == 64
// Map the buffer below 2G, so we can use direct calls and branches
- flags |= MAP_FIXED;
- addr = (void *) 0x60000000UL;
+ addr = (void *) 0x40000000UL;
if (code_gen_buffer_size > (512 * 1024 * 1024)) {
code_gen_buffer_size = (512 * 1024 * 1024);
}
cpu_gen_init();
code_gen_alloc(tb_size);
code_gen_ptr = code_gen_buffer;
+ tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
page_init();
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
/* There's no guest base to take into account, so go ahead and
static int cpu_common_post_load(void *opaque, int version_id)
{
- CPUState *env = opaque;
+ CPUArchState *env = opaque;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
.minimum_version_id_old = 1,
.post_load = cpu_common_post_load,
.fields = (VMStateField []) {
- VMSTATE_UINT32(halted, CPUState),
- VMSTATE_UINT32(interrupt_request, CPUState),
+ VMSTATE_UINT32(halted, CPUArchState),
+ VMSTATE_UINT32(interrupt_request, CPUArchState),
VMSTATE_END_OF_LIST()
}
};
#endif
-CPUState *qemu_get_cpu(int cpu)
+CPUArchState *qemu_get_cpu(int cpu)
{
- CPUState *env = first_cpu;
+ CPUArchState *env = first_cpu;
while (env) {
if (env->cpu_index == cpu)
return env;
}
-void cpu_exec_init(CPUState *env)
+void cpu_exec_init(CPUArchState *env)
{
- CPUState **penv;
+ CPUArchState **penv;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
-void tb_flush(CPUState *env1)
+void tb_flush(CPUArchState *env1)
{
- CPUState *env;
+ CPUArchState *env;
#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
(unsigned long)(code_gen_ptr - code_gen_buffer),
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (tb1 == tb) {
*ptb = tb1->page_next[n1];
break;
/* find tb(n) in circular list */
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
if (n1 == 2) {
another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
- tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
+ tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
- CPUState *env;
+ CPUArchState *env;
PageDesc *p;
unsigned int h, n1;
tb_page_addr_t phys_pc;
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
- n1 = (long)tb1 & 3;
+ n1 = (uintptr_t)tb1 & 3;
if (n1 == 2)
break;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
tb2 = tb1->jmp_next[n1];
tb_reset_jump(tb1, n1);
tb1->jmp_next[n1] = NULL;
tb1 = tb2;
}
- tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
tb_phys_invalidate_count++;
}
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
}
}
-TranslationBlock *tb_gen_code(CPUState *env,
+TranslationBlock *tb_gen_code(CPUArchState *env,
target_ulong pc, target_ulong cs_base,
int flags, int cflags)
{
tb->flags = flags;
tb->cflags = cflags;
cpu_gen_code(env, tb, &code_gen_size);
- code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+ code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
+ CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
return tb;
}
-/* invalidate all TBs which intersect with the target physical page
- starting in range [start;end[. NOTE: start and end must refer to
- the same physical page. 'is_cpu_write_access' should be true if called
- from a real cpu write access: the virtual CPU will exit the current
- TB if code is modified inside this TB. */
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end may refer to *different* physical pages.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
+void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access)
+{
+ while (start < end) {
+ tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
+ start &= TARGET_PAGE_MASK;
+ start += TARGET_PAGE_SIZE;
+ }
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end must refer to the *same* physical page.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access)
{
TranslationBlock *tb, *tb_next, *saved_tb;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
tb_page_addr_t tb_start, tb_end;
PageDesc *p;
int n;
/* XXX: see if in some cases it could be faster to invalidate all the code */
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
tb_next = tb->page_next[n];
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
cpu_single_env->mem_io_vaddr, len,
cpu_single_env->eip,
- cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
+ cpu_single_env->eip +
+ (intptr_t)cpu_single_env->segs[R_CS].base);
}
#endif
p = page_find(start >> TARGET_PAGE_BITS);
#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
- unsigned long pc, void *puc)
+ uintptr_t pc, void *puc)
{
TranslationBlock *tb;
PageDesc *p;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
TranslationBlock *current_tb = NULL;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
int current_tb_modified = 0;
target_ulong current_pc = 0;
target_ulong current_cs_base = 0;
}
#endif
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
(current_tb->cflags & CF_COUNT_MASK) != 1) {
#ifndef CONFIG_USER_ONLY
page_already_protected = p->first_tb != NULL;
#endif
- p->first_tb = (TranslationBlock *)((long)tb | n);
+ p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
invalidate_page_bitmap(p);
#if defined(TARGET_HAS_SMC) || 1
else
tb->page_addr[1] = -1;
- tb->jmp_first = (TranslationBlock *)((long)tb | 2);
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
tb[1].tc_ptr. Return NULL if not found */
-TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
{
int m_min, m_max, m;
- unsigned long v;
+ uintptr_t v;
TranslationBlock *tb;
if (nb_tbs <= 0)
return NULL;
- if (tc_ptr < (unsigned long)code_gen_buffer ||
- tc_ptr >= (unsigned long)code_gen_ptr)
+ if (tc_ptr < (uintptr_t)code_gen_buffer ||
+ tc_ptr >= (uintptr_t)code_gen_ptr) {
return NULL;
+ }
/* binary search (cf Knuth) */
m_min = 0;
m_max = nb_tbs - 1;
while (m_min <= m_max) {
m = (m_min + m_max) >> 1;
tb = &tbs[m];
- v = (unsigned long)tb->tc_ptr;
+ v = (uintptr_t)tb->tc_ptr;
if (v == tc_ptr)
return tb;
else if (tc_ptr < v) {
if (tb1 != NULL) {
/* find head of list */
for(;;) {
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
ptb = &tb_next->jmp_first;
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
ptb = &tb1->jmp_next[n1];
#if defined(TARGET_HAS_ICE)
#if defined(CONFIG_USER_ONLY)
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
{
tb_invalidate_phys_page_range(pc, pc + 1, 0);
}
#else
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+void tb_invalidate_phys_addr(target_phys_addr_t addr)
{
- target_phys_addr_t addr;
- target_ulong pd;
ram_addr_t ram_addr;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- addr = cpu_get_phys_page_debug(env, pc);
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!(memory_region_is_ram(section->mr)
+ || (section->mr->rom_device && section->mr->readable))) {
+ return;
}
- ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
+ ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
}
+
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
+{
+ tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
+ (pc & ~TARGET_PAGE_MASK));
+}
#endif
#endif /* TARGET_HAS_ICE */
#if defined(CONFIG_USER_ONLY)
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
}
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
return -ENOSYS;
}
#else
/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
target_ulong len_mask = ~(len - 1);
CPUWatchpoint *wp;
/* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
- if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
+ if ((len & (len - 1)) || (addr & ~len_mask) ||
+ len == 0 || len > TARGET_PAGE_SIZE) {
fprintf(stderr, "qemu: tried to set invalid watchpoint at "
TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
return -EINVAL;
}
/* Remove a specific watchpoint. */
-int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
int flags)
{
target_ulong len_mask = ~(len - 1);
}
/* Remove a specific watchpoint by reference. */
-void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
+void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
{
QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
}
/* Remove all matching watchpoints. */
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
CPUWatchpoint *wp, *next;
#endif
/* Add a breakpoint. */
-int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint)
{
#if defined(TARGET_HAS_ICE)
}
/* Remove a specific breakpoint. */
-int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
+int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
}
/* Remove a specific breakpoint by reference. */
-void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
+void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
{
#if defined(TARGET_HAS_ICE)
QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
}
/* Remove all matching breakpoints. */
-void cpu_breakpoint_remove_all(CPUState *env, int mask)
+void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp, *next;
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
-void cpu_single_step(CPUState *env, int enabled)
+void cpu_single_step(CPUArchState *env, int enabled)
{
#if defined(TARGET_HAS_ICE)
if (env->singlestep_enabled != enabled) {
#endif
}
-/* enable or disable low levels log */
-void cpu_set_log(int log_flags)
-{
- loglevel = log_flags;
- if (loglevel && !logfile) {
- logfile = fopen(logfilename, log_append ? "a" : "w");
- if (!logfile) {
- perror(logfilename);
- _exit(1);
- }
-#if !defined(CONFIG_SOFTMMU)
- /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
- {
- static char logfile_buf[4096];
- setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
- }
-#elif defined(_WIN32)
- /* Win32 doesn't support line-buffering, so use unbuffered output. */
- setvbuf(logfile, NULL, _IONBF, 0);
-#else
- setvbuf(logfile, NULL, _IOLBF, 0);
-#endif
- log_append = 1;
- }
- if (!loglevel && logfile) {
- fclose(logfile);
- logfile = NULL;
- }
-}
-
-void cpu_set_log_filename(const char *filename)
-{
- logfilename = strdup(filename);
- if (logfile) {
- fclose(logfile);
- logfile = NULL;
- }
- cpu_set_log(loglevel);
-}
-
-static void cpu_unlink_tb(CPUState *env)
+static void cpu_unlink_tb(CPUArchState *env)
{
/* FIXME: TB unchaining isn't SMP safe. For now just ignore the
problem and hope the cpu will stop of its own accord. For userspace
#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
-static void tcg_handle_interrupt(CPUState *env, int mask)
+static void tcg_handle_interrupt(CPUArchState *env, int mask)
{
int old_mask;
#else /* CONFIG_USER_ONLY */
-void cpu_interrupt(CPUState *env, int mask)
+void cpu_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request |= mask;
cpu_unlink_tb(env);
}
#endif /* CONFIG_USER_ONLY */
-void cpu_reset_interrupt(CPUState *env, int mask)
+void cpu_reset_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request &= ~mask;
}
-void cpu_exit(CPUState *env)
+void cpu_exit(CPUArchState *env)
{
env->exit_request = 1;
cpu_unlink_tb(env);
}
-const CPULogItem cpu_log_items[] = {
- { CPU_LOG_TB_OUT_ASM, "out_asm",
- "show generated host assembly code for each compiled TB" },
- { CPU_LOG_TB_IN_ASM, "in_asm",
- "show target assembly code for each compiled TB" },
- { CPU_LOG_TB_OP, "op",
- "show micro ops for each compiled TB" },
- { CPU_LOG_TB_OP_OPT, "op_opt",
- "show micro ops "
-#ifdef TARGET_I386
- "before eflags optimization and "
-#endif
- "after liveness analysis" },
- { CPU_LOG_INT, "int",
- "show interrupts/exceptions in short format" },
- { CPU_LOG_EXEC, "exec",
- "show trace before each executed TB (lots of logs)" },
- { CPU_LOG_TB_CPU, "cpu",
- "show CPU state before block translation" },
-#ifdef TARGET_I386
- { CPU_LOG_PCALL, "pcall",
- "show protected mode far calls/returns/exceptions" },
- { CPU_LOG_RESET, "cpu_reset",
- "show CPU state before CPU resets" },
-#endif
-#ifdef DEBUG_IOPORT
- { CPU_LOG_IOPORT, "ioport",
- "show all i/o ports accesses" },
-#endif
- { 0, NULL, NULL },
-};
-
-#ifndef CONFIG_USER_ONLY
-static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
- = QLIST_HEAD_INITIALIZER(memory_client_list);
-
-static void cpu_notify_set_memory(target_phys_addr_t start_addr,
- ram_addr_t size,
- ram_addr_t phys_offset,
- bool log_dirty)
-{
- CPUPhysMemoryClient *client;
- QLIST_FOREACH(client, &memory_client_list, list) {
- client->set_memory(client, start_addr, size, phys_offset, log_dirty);
- }
-}
-
-static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
- target_phys_addr_t end)
-{
- CPUPhysMemoryClient *client;
- QLIST_FOREACH(client, &memory_client_list, list) {
- int r = client->sync_dirty_bitmap(client, start, end);
- if (r < 0)
- return r;
- }
- return 0;
-}
-
-static int cpu_notify_migration_log(int enable)
-{
- CPUPhysMemoryClient *client;
- QLIST_FOREACH(client, &memory_client_list, list) {
- int r = client->migration_log(client, enable);
- if (r < 0)
- return r;
- }
- return 0;
-}
-
-struct last_map {
- target_phys_addr_t start_addr;
- ram_addr_t size;
- ram_addr_t phys_offset;
-};
-
-/* The l1_phys_map provides the upper P_L1_BITs of the guest physical
- * address. Each intermediate table provides the next L2_BITs of guest
- * physical address space. The number of levels vary based on host and
- * guest configuration, making it efficient to build the final guest
- * physical address by seeding the L1 offset and shifting and adding in
- * each L2 offset as we recurse through them. */
-static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
- void **lp, target_phys_addr_t addr,
- struct last_map *map)
-{
- int i;
-
- if (*lp == NULL) {
- return;
- }
- if (level == 0) {
- PhysPageDesc *pd = *lp;
- addr <<= L2_BITS + TARGET_PAGE_BITS;
- for (i = 0; i < L2_SIZE; ++i) {
- if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
- target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
-
- if (map->size &&
- start_addr == map->start_addr + map->size &&
- pd[i].phys_offset == map->phys_offset + map->size) {
-
- map->size += TARGET_PAGE_SIZE;
- continue;
- } else if (map->size) {
- client->set_memory(client, map->start_addr,
- map->size, map->phys_offset, false);
- }
-
- map->start_addr = start_addr;
- map->size = TARGET_PAGE_SIZE;
- map->phys_offset = pd[i].phys_offset;
- }
- }
- } else {
- void **pp = *lp;
- for (i = 0; i < L2_SIZE; ++i) {
- phys_page_for_each_1(client, level - 1, pp + i,
- (addr << L2_BITS) | i, map);
- }
- }
-}
-
-static void phys_page_for_each(CPUPhysMemoryClient *client)
-{
- int i;
- struct last_map map = { };
-
- for (i = 0; i < P_L1_SIZE; ++i) {
- phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
- l1_phys_map + i, i, &map);
- }
- if (map.size) {
- client->set_memory(client, map.start_addr, map.size, map.phys_offset,
- false);
- }
-}
-
-void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
-{
- QLIST_INSERT_HEAD(&memory_client_list, client, list);
- phys_page_for_each(client);
-}
-
-void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
-{
- QLIST_REMOVE(client, list);
-}
-#endif
-
-static int cmp1(const char *s1, int n, const char *s2)
-{
- if (strlen(s2) != n)
- return 0;
- return memcmp(s1, s2, n) == 0;
-}
-
-/* takes a comma separated list of log masks. Return 0 if error. */
-int cpu_str_to_log_mask(const char *str)
-{
- const CPULogItem *item;
- int mask;
- const char *p, *p1;
-
- p = str;
- mask = 0;
- for(;;) {
- p1 = strchr(p, ',');
- if (!p1)
- p1 = p + strlen(p);
- if(cmp1(p,p1-p,"all")) {
- for(item = cpu_log_items; item->mask != 0; item++) {
- mask |= item->mask;
- }
- } else {
- for(item = cpu_log_items; item->mask != 0; item++) {
- if (cmp1(p, p1 - p, item->name))
- goto found;
- }
- return 0;
- }
- found:
- mask |= item->mask;
- if (*p1 != ',')
- break;
- p = p1 + 1;
- }
- return mask;
-}
-
-void cpu_abort(CPUState *env, const char *fmt, ...)
+void cpu_abort(CPUArchState *env, const char *fmt, ...)
{
va_list ap;
va_list ap2;
abort();
}
-CPUState *cpu_copy(CPUState *env)
+CPUArchState *cpu_copy(CPUArchState *env)
{
- CPUState *new_env = cpu_init(env->cpu_model_str);
- CPUState *next_cpu = new_env->next_cpu;
+ CPUArchState *new_env = cpu_init(env->cpu_model_str);
+ CPUArchState *next_cpu = new_env->next_cpu;
int cpu_index = new_env->cpu_index;
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
CPUWatchpoint *wp;
#endif
- memcpy(new_env, env, sizeof(CPUState));
+ memcpy(new_env, env, sizeof(CPUArchState));
/* Preserve chaining and index. */
new_env->next_cpu = next_cpu;
}
#if !defined(CONFIG_USER_ONLY)
-
-static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
{
unsigned int i;
TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}
-static CPUTLBEntry s_cputlb_empty_entry = {
- .addr_read = -1,
- .addr_write = -1,
- .addr_code = -1,
- .addend = -1,
-};
-
-/* NOTE: if flush_global is true, also flush global entries (not
- implemented yet) */
-void tlb_flush(CPUState *env, int flush_global)
-{
- int i;
-
-#if defined(DEBUG_TLB)
- printf("tlb_flush:\n");
-#endif
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- for(i = 0; i < CPU_TLB_SIZE; i++) {
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
- }
- }
-
- memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
-
- env->tlb_flush_addr = -1;
- env->tlb_flush_mask = 0;
- tlb_flush_count++;
-}
-
-static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
-{
- if (addr == (tlb_entry->addr_read &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_write &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_code &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
- *tlb_entry = s_cputlb_empty_entry;
- }
-}
-
-void tlb_flush_page(CPUState *env, target_ulong addr)
+static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
+ uintptr_t length)
{
- int i;
- int mmu_idx;
+ uintptr_t start1;
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
-#endif
- /* Check if we need to flush due to large pages. */
- if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: forced full flush ("
- TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
- env->tlb_flush_addr, env->tlb_flush_mask);
-#endif
- tlb_flush(env, 1);
- return;
+ /* we modify the TLB cache so that the dirty bit will be set again
+ when accessing the range */
+ start1 = (uintptr_t)qemu_safe_ram_ptr(start);
+ /* Check that we don't span multiple blocks - this breaks the
+ address comparisons below. */
+ if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
+ != (end - 1) - start) {
+ abort();
}
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- addr &= TARGET_PAGE_MASK;
- i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
- tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
-
- tlb_flush_jmp_cache(env, addr);
-}
-
-/* update the TLBs so that writes to code in the virtual page 'addr'
- can be detected */
-static void tlb_protect_code(ram_addr_t ram_addr)
-{
- cpu_physical_memory_reset_dirty(ram_addr,
- ram_addr + TARGET_PAGE_SIZE,
- CODE_DIRTY_FLAG);
-}
+ cpu_tlb_reset_dirty_all(start1, length);
-/* update the TLB so that writes in physical page 'phys_addr' are no longer
- tested for self modifying code */
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
- target_ulong vaddr)
-{
- cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
-}
-
-static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
- unsigned long start, unsigned long length)
-{
- unsigned long addr;
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
- addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
- if ((addr - start) < length) {
- tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
- }
- }
}
/* Note: start and end must be within the same ram block. */
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags)
{
- CPUState *env;
- unsigned long length, start1;
- int i;
+ uintptr_t length;
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
return;
cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
- /* we modify the TLB cache so that the dirty bit will be set again
- when accessing the range */
- start1 = (unsigned long)qemu_safe_ram_ptr(start);
- /* Check that we don't span multiple blocks - this breaks the
- address comparisons below. */
- if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
- != (end - 1) - start) {
- abort();
- }
-
- for(env = first_cpu; env != NULL; env = env->next_cpu) {
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
- start1, length);
- }
+ if (tcg_enabled()) {
+ tlb_reset_dirty_range_all(start, end, length);
}
}
{
int ret = 0;
in_migration = enable;
- ret = cpu_notify_migration_log(!!enable);
return ret;
}
-int cpu_physical_memory_get_dirty_tracking(void)
-{
- return in_migration;
-}
-
-int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
- target_phys_addr_t end_addr)
+target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
+ MemoryRegionSection *section,
+ target_ulong vaddr,
+ target_phys_addr_t paddr,
+ int prot,
+ target_ulong *address)
{
- int ret;
-
- ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
- return ret;
-}
+ target_phys_addr_t iotlb;
+ CPUWatchpoint *wp;
-int cpu_physical_log_start(target_phys_addr_t start_addr,
- ram_addr_t size)
-{
- CPUPhysMemoryClient *client;
- QLIST_FOREACH(client, &memory_client_list, list) {
- if (client->log_start) {
- int r = client->log_start(client, start_addr, size);
- if (r < 0) {
- return r;
- }
+ if (memory_region_is_ram(section->mr)) {
+ /* Normal RAM. */
+ iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, paddr);
+ if (!section->readonly) {
+ iotlb |= phys_section_notdirty;
+ } else {
+ iotlb |= phys_section_rom;
}
+ } else {
+ /* IO handlers are currently passed a physical address.
+ It would be nice to pass an offset from the base address
+ of that region. This would avoid having to special case RAM,
+ and avoid full address decoding in every device.
+ We can't use the high bits of pd for this because
+ IO_MEM_ROMD uses these as a ram address. */
+ iotlb = section - phys_sections;
+ iotlb += memory_region_section_addr(section, paddr);
}
- return 0;
-}
-int cpu_physical_log_stop(target_phys_addr_t start_addr,
- ram_addr_t size)
-{
- CPUPhysMemoryClient *client;
- QLIST_FOREACH(client, &memory_client_list, list) {
- if (client->log_stop) {
- int r = client->log_stop(client, start_addr, size);
- if (r < 0) {
- return r;
+ /* Make accesses to pages with watchpoints go via the
+ watchpoint trap routines. */
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
+ /* Avoid trapping reads of pages with a write breakpoint. */
+ if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
+ iotlb = phys_section_watch + paddr;
+ *address |= TLB_MMIO;
+ break;
}
}
}
- return 0;
-}
-static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
-{
- ram_addr_t ram_addr;
- void *p;
-
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
- p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
- + tlb_entry->addend);
- ram_addr = qemu_ram_addr_from_host_nofail(p);
- if (!cpu_physical_memory_is_dirty(ram_addr)) {
- tlb_entry->addr_write |= TLB_NOTDIRTY;
- }
- }
+ return iotlb;
}
-/* update the TLB according to the current state of the dirty bits */
-void cpu_tlb_update_dirty(CPUState *env)
-{
- int i;
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
- }
-}
-
-static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
-{
- if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
- tlb_entry->addr_write = vaddr;
-}
-
-/* update the TLB corresponding to virtual page vaddr
- so that it is no longer dirty */
-static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
-{
- int i;
- int mmu_idx;
-
- vaddr &= TARGET_PAGE_MASK;
- i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
- tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
-}
-
-/* Our TLB does not support large pages, so remember the area covered by
- large pages and trigger a full TLB flush if these are invalidated. */
-static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
- target_ulong size)
-{
- target_ulong mask = ~(size - 1);
-
- if (env->tlb_flush_addr == (target_ulong)-1) {
- env->tlb_flush_addr = vaddr & mask;
- env->tlb_flush_mask = mask;
- return;
- }
- /* Extend the existing region to include the new page.
- This is a compromise between unnecessary flushes and the cost
- of maintaining a full variable size TLB. */
- mask &= env->tlb_flush_mask;
- while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
- mask <<= 1;
- }
- env->tlb_flush_addr &= mask;
- env->tlb_flush_mask = mask;
-}
-
-/* Add a new TLB entry. At most one entry for a given virtual address
- is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
- supplied size is only used by tlb_flush_page. */
-void tlb_set_page(CPUState *env, target_ulong vaddr,
- target_phys_addr_t paddr, int prot,
- int mmu_idx, target_ulong size)
-{
- PhysPageDesc *p;
- unsigned long pd;
- unsigned int index;
- target_ulong address;
- target_ulong code_address;
- unsigned long addend;
- CPUTLBEntry *te;
- CPUWatchpoint *wp;
- target_phys_addr_t iotlb;
-
- assert(size >= TARGET_PAGE_SIZE);
- if (size != TARGET_PAGE_SIZE) {
- tlb_add_large_page(env, vaddr, size);
- }
- p = phys_page_find(paddr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
-#if defined(DEBUG_TLB)
- printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
- " prot=%x idx=%d pd=0x%08lx\n",
- vaddr, paddr, prot, mmu_idx, pd);
-#endif
-
- address = vaddr;
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
- /* IO memory case (romd handled later) */
- address |= TLB_MMIO;
- }
- addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
- if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
- /* Normal RAM. */
- iotlb = pd & TARGET_PAGE_MASK;
- if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
- iotlb |= IO_MEM_NOTDIRTY;
- else
- iotlb |= IO_MEM_ROM;
- } else {
- /* IO handlers are currently passed a physical address.
- It would be nice to pass an offset from the base address
- of that region. This would avoid having to special case RAM,
- and avoid full address decoding in every device.
- We can't use the high bits of pd for this because
- IO_MEM_ROMD uses these as a ram address. */
- iotlb = (pd & ~TARGET_PAGE_MASK);
- if (p) {
- iotlb += p->region_offset;
- } else {
- iotlb += paddr;
- }
- }
-
- code_address = address;
- /* Make accesses to pages with watchpoints go via the
- watchpoint trap routines. */
- QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
- if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
- /* Avoid trapping reads of pages with a write breakpoint. */
- if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
- iotlb = io_mem_watch + paddr;
- address |= TLB_MMIO;
- break;
- }
- }
- }
-
- index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- env->iotlb[mmu_idx][index] = iotlb - vaddr;
- te = &env->tlb_table[mmu_idx][index];
- te->addend = addend - vaddr;
- if (prot & PAGE_READ) {
- te->addr_read = address;
- } else {
- te->addr_read = -1;
- }
-
- if (prot & PAGE_EXEC) {
- te->addr_code = code_address;
- } else {
- te->addr_code = -1;
- }
- if (prot & PAGE_WRITE) {
- if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
- (pd & IO_MEM_ROMD)) {
- /* Write access calls the I/O callback. */
- te->addr_write = address | TLB_MMIO;
- } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
- !cpu_physical_memory_is_dirty(pd)) {
- te->addr_write = address | TLB_NOTDIRTY;
- } else {
- te->addr_write = address;
- }
- } else {
- te->addr_write = -1;
- }
-}
-
-#else
-
-void tlb_flush(CPUState *env, int flush_global)
-{
-}
-
-void tlb_flush_page(CPUState *env, target_ulong addr)
-{
-}
-
-/*
- * Walks guest process memory "regions" one by one
- * and calls callback function 'fn' for each region.
- */
-
-struct walk_memory_regions_data
+#else
+/*
+ * Walks guest process memory "regions" one by one
+ * and calls callback function 'fn' for each region.
+ */
+
+struct walk_memory_regions_data
{
walk_memory_regions_fn fn;
void *priv;
- unsigned long start;
+ uintptr_t start;
int prot;
};
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
struct walk_memory_regions_data data;
- unsigned long i;
+ uintptr_t i;
data.fn = fn;
data.priv = priv;
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was successfully handled. */
-int page_unprotect(target_ulong address, unsigned long pc, void *puc)
+int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
unsigned int prot;
PageDesc *p;
mmap_unlock();
return 0;
}
-
-static inline void tlb_set_dirty(CPUState *env,
- unsigned long addr, target_ulong vaddr)
-{
-}
#endif /* defined(CONFIG_USER_ONLY) */
#if !defined(CONFIG_USER_ONLY)
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
+ MemoryRegion iomem;
target_phys_addr_t base;
- ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
- ram_addr_t region_offset[TARGET_PAGE_SIZE];
+ uint16_t sub_section[TARGET_PAGE_SIZE];
} subpage_t;
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- ram_addr_t memory, ram_addr_t region_offset);
-static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
- ram_addr_t orig_memory,
- ram_addr_t region_offset);
-#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
- need_subpage) \
- do { \
- if (addr > start_addr) \
- start_addr2 = 0; \
- else { \
- start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
- if (start_addr2 > 0) \
- need_subpage = 1; \
- } \
- \
- if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
- end_addr2 = TARGET_PAGE_SIZE - 1; \
- else { \
- end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
- if (end_addr2 < TARGET_PAGE_SIZE - 1) \
- need_subpage = 1; \
- } \
- } while (0)
+ uint16_t section);
+static subpage_t *subpage_init(target_phys_addr_t base);
+static void destroy_page_desc(uint16_t section_index)
+{
+ MemoryRegionSection *section = &phys_sections[section_index];
+ MemoryRegion *mr = section->mr;
-/* register physical memory.
- For RAM, 'size' must be a multiple of the target page size.
- If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
- io memory page. The address used when calling the IO function is
- the offset from the start of the region, plus region_offset. Both
- start_addr and region_offset are rounded down to a page boundary
- before calculating this offset. This should not be a problem unless
- the low bits of start_addr and region_offset differ. */
-void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
- ram_addr_t size,
- ram_addr_t phys_offset,
- ram_addr_t region_offset,
- bool log_dirty)
-{
- target_phys_addr_t addr, end_addr;
- PhysPageDesc *p;
- CPUState *env;
- ram_addr_t orig_size = size;
- subpage_t *subpage;
+ if (mr->subpage) {
+ subpage_t *subpage = container_of(mr, subpage_t, iomem);
+ memory_region_destroy(&subpage->iomem);
+ g_free(subpage);
+ }
+}
- assert(size);
- cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
+static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
+{
+ unsigned i;
+ PhysPageEntry *p;
- if (phys_offset == IO_MEM_UNASSIGNED) {
- region_offset = start_addr;
+ if (lp->ptr == PHYS_MAP_NODE_NIL) {
+ return;
}
- region_offset &= TARGET_PAGE_MASK;
- size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
- end_addr = start_addr + (target_phys_addr_t)size;
- addr = start_addr;
- do {
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
- ram_addr_t orig_memory = p->phys_offset;
- target_phys_addr_t start_addr2, end_addr2;
- int need_subpage = 0;
-
- CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
- need_subpage);
- if (need_subpage) {
- if (!(orig_memory & IO_MEM_SUBPAGE)) {
- subpage = subpage_init((addr & TARGET_PAGE_MASK),
- &p->phys_offset, orig_memory,
- p->region_offset);
- } else {
- subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
- >> IO_MEM_SHIFT];
- }
- subpage_register(subpage, start_addr2, end_addr2, phys_offset,
- region_offset);
- p->region_offset = 0;
- } else {
- p->phys_offset = phys_offset;
- if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
- (phys_offset & IO_MEM_ROMD))
- phys_offset += TARGET_PAGE_SIZE;
- }
+ p = phys_map_nodes[lp->ptr];
+ for (i = 0; i < L2_SIZE; ++i) {
+ if (!p[i].is_leaf) {
+ destroy_l2_mapping(&p[i], level - 1);
} else {
- p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
- p->phys_offset = phys_offset;
- p->region_offset = region_offset;
- if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
- (phys_offset & IO_MEM_ROMD)) {
- phys_offset += TARGET_PAGE_SIZE;
- } else {
- target_phys_addr_t start_addr2, end_addr2;
- int need_subpage = 0;
-
- CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
- end_addr2, need_subpage);
-
- if (need_subpage) {
- subpage = subpage_init((addr & TARGET_PAGE_MASK),
- &p->phys_offset, IO_MEM_UNASSIGNED,
- addr & TARGET_PAGE_MASK);
- subpage_register(subpage, start_addr2, end_addr2,
- phys_offset, region_offset);
- p->region_offset = 0;
- }
- }
+ destroy_page_desc(p[i].ptr);
}
- region_offset += TARGET_PAGE_SIZE;
- addr += TARGET_PAGE_SIZE;
- } while (addr != end_addr);
+ }
+ lp->is_leaf = 0;
+ lp->ptr = PHYS_MAP_NODE_NIL;
+}
- /* since each CPU stores ram addresses in its TLB cache, we must
- reset the modified entries */
- /* XXX: slow ! */
- for(env = first_cpu; env != NULL; env = env->next_cpu) {
- tlb_flush(env, 1);
+static void destroy_all_mappings(void)
+{
+ destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
+ phys_map_nodes_reset();
+}
+
+static uint16_t phys_section_add(MemoryRegionSection *section)
+{
+ if (phys_sections_nb == phys_sections_nb_alloc) {
+ phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
+ phys_sections = g_renew(MemoryRegionSection, phys_sections,
+ phys_sections_nb_alloc);
}
+ phys_sections[phys_sections_nb] = *section;
+ return phys_sections_nb++;
}
-/* XXX: temporary until new memory mapping API */
-ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
+static void phys_sections_clear(void)
{
- PhysPageDesc *p;
+ phys_sections_nb = 0;
+}
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p)
- return IO_MEM_UNASSIGNED;
- return p->phys_offset;
+static void register_subpage(MemoryRegionSection *section)
+{
+ subpage_t *subpage;
+ target_phys_addr_t base = section->offset_within_address_space
+ & TARGET_PAGE_MASK;
+ MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
+ MemoryRegionSection subsection = {
+ .offset_within_address_space = base,
+ .size = TARGET_PAGE_SIZE,
+ };
+ target_phys_addr_t start, end;
+
+ assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
+
+ if (!(existing->mr->subpage)) {
+ subpage = subpage_init(base);
+ subsection.mr = &subpage->iomem;
+ phys_page_set(base >> TARGET_PAGE_BITS, 1,
+ phys_section_add(&subsection));
+ } else {
+ subpage = container_of(existing->mr, subpage_t, iomem);
+ }
+ start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
+ end = start + section->size - 1;
+ subpage_register(subpage, start, end, phys_section_add(section));
}
+
+static void register_multipage(MemoryRegionSection *section)
+{
+ target_phys_addr_t start_addr = section->offset_within_address_space;
+ ram_addr_t size = section->size;
+ target_phys_addr_t addr;
+ uint16_t section_index = phys_section_add(section);
+
+ assert(size);
+
+ addr = start_addr;
+ phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
+ section_index);
+}
+
+void cpu_register_physical_memory_log(MemoryRegionSection *section,
+ bool readonly)
+{
+ MemoryRegionSection now = *section, remain = *section;
+
+ if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
+ || (now.size < TARGET_PAGE_SIZE)) {
+ now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
+ - now.offset_within_address_space,
+ now.size);
+ register_subpage(&now);
+ remain.size -= now.size;
+ remain.offset_within_address_space += now.size;
+ remain.offset_within_region += now.size;
+ }
+ while (remain.size >= TARGET_PAGE_SIZE) {
+ now = remain;
+ if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
+ now.size = TARGET_PAGE_SIZE;
+ register_subpage(&now);
+ } else {
+ now.size &= TARGET_PAGE_MASK;
+ register_multipage(&now);
+ }
+ remain.size -= now.size;
+ remain.offset_within_address_space += now.size;
+ remain.offset_within_region += now.size;
+ }
+ now = remain;
+ if (now.size) {
+ register_subpage(&now);
+ }
+}
+
+
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
{
if (kvm_enabled())
return last;
}
-ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
- ram_addr_t size, void *host)
+static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
+{
+ int ret;
+ QemuOpts *machine_opts;
+
+ /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
+ machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
+ if (machine_opts &&
+ !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
+ ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
+ if (ret) {
+ perror("qemu_madvise");
+ fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
+ "but dump_guest_core=off specified\n");
+ }
+ }
+}
+
+void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
{
RAMBlock *new_block, *block;
- size = TARGET_PAGE_ALIGN(size);
- new_block = g_malloc0(sizeof(*new_block));
+ new_block = NULL;
+ QLIST_FOREACH(block, &ram_list.blocks, next) {
+ if (block->offset == addr) {
+ new_block = block;
+ break;
+ }
+ }
+ assert(new_block);
+ assert(!new_block->idstr[0]);
- if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
- char *id = dev->parent_bus->info->get_dev_path(dev);
+ if (dev) {
+ char *id = qdev_get_dev_path(dev);
if (id) {
snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
g_free(id);
pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
QLIST_FOREACH(block, &ram_list.blocks, next) {
- if (!strcmp(block->idstr, new_block->idstr)) {
+ if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
new_block->idstr);
abort();
}
}
+}
+
+static int memory_try_enable_merging(void *addr, size_t len)
+{
+ QemuOpts *opts;
+
+ opts = qemu_opts_find(qemu_find_opts("machine"), 0);
+ if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
+ /* disabled by the user */
+ return 0;
+ }
+ return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
+}
+
+ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
+ MemoryRegion *mr)
+{
+ RAMBlock *new_block;
+
+ size = TARGET_PAGE_ALIGN(size);
+ new_block = g_malloc0(sizeof(*new_block));
+
+ new_block->mr = mr;
new_block->offset = find_ram_offset(size);
if (host) {
new_block->host = host;
new_block->host = file_ram_alloc(new_block, size, mem_path);
if (!new_block->host) {
new_block->host = qemu_vmalloc(size);
- qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+ memory_try_enable_merging(new_block->host, size);
}
#else
fprintf(stderr, "-mem-path option unsupported\n");
exit(1);
#endif
} else {
-#if defined(TARGET_S390X) && defined(CONFIG_KVM)
- /* S390 KVM requires the topmost vma of the RAM to be smaller than
- an system defined value, which is at least 256GB. Larger systems
- have larger values. We put the guest between the end of data
- segment (system break) and this value. We use 32GB as a base to
- have enough room for the system break to grow. */
- new_block->host = mmap((void*)0x800000000, size,
- PROT_EXEC|PROT_READ|PROT_WRITE,
- MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
- if (new_block->host == MAP_FAILED) {
- fprintf(stderr, "Allocating RAM failed\n");
- abort();
- }
-#else
if (xen_enabled()) {
- xen_ram_alloc(new_block->offset, size);
+ xen_ram_alloc(new_block->offset, size, mr);
+ } else if (kvm_enabled()) {
+ /* some s390/kvm configurations have special constraints */
+ new_block->host = kvm_vmalloc(size);
} else {
new_block->host = qemu_vmalloc(size);
}
-#endif
- qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+ memory_try_enable_merging(new_block->host, size);
}
}
new_block->length = size;
ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
last_ram_offset() >> TARGET_PAGE_BITS);
memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
- 0xff, size >> TARGET_PAGE_BITS);
+ 0, size >> TARGET_PAGE_BITS);
+ cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
+
+ qemu_ram_setup_dump(new_block->host, size);
if (kvm_enabled())
kvm_setup_guest_memory(new_block->host, size);
return new_block->offset;
}
-ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
+ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
{
- return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
+ return qemu_ram_alloc_from_ptr(size, NULL, mr);
}
void qemu_ram_free_from_ptr(ram_addr_t addr)
length, addr);
exit(1);
}
- qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
+ memory_try_enable_merging(vaddr, length);
+ qemu_ram_setup_dump(vaddr, length);
}
return;
}
return ram_addr;
}
-static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
-{
-#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
-#endif
-#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
- cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
-#endif
- return 0;
-}
-
-static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
+static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
+ unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
- cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
+ cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
#endif
return 0;
}
-static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
+static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
+ uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
#endif
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
- cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
+ cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
#endif
- return 0;
}
-static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
-{
-#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
-#endif
-#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
- cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
-#endif
-}
+static const MemoryRegionOps unassigned_mem_ops = {
+ .read = unassigned_mem_read,
+ .write = unassigned_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
-static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
+ unsigned size)
{
-#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
-#endif
-#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
- cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
-#endif
+ abort();
}
-static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void error_mem_write(void *opaque, target_phys_addr_t addr,
+ uint64_t value, unsigned size)
{
-#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
-#endif
-#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
- cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
-#endif
+ abort();
}
-static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
- unassigned_mem_readb,
- unassigned_mem_readw,
- unassigned_mem_readl,
+static const MemoryRegionOps error_mem_ops = {
+ .read = error_mem_read,
+ .write = error_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
};
-static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
- unassigned_mem_writeb,
- unassigned_mem_writew,
- unassigned_mem_writel,
+static const MemoryRegionOps rom_mem_ops = {
+ .read = error_mem_read,
+ .write = unassigned_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
};
-static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
- uint32_t val)
-{
- int dirty_flags;
- dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
- if (!(dirty_flags & CODE_DIRTY_FLAG)) {
-#if !defined(CONFIG_USER_ONLY)
- tb_invalidate_phys_page_fast(ram_addr, 1);
- dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
-#endif
- }
- stb_p(qemu_get_ram_ptr(ram_addr), val);
- dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
- cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
- /* we remove the notdirty callback only if the code has been
- flushed */
- if (dirty_flags == 0xff)
- tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
-}
-
-static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
- uint32_t val)
+static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
+ uint64_t val, unsigned size)
{
int dirty_flags;
dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
- tb_invalidate_phys_page_fast(ram_addr, 2);
+ tb_invalidate_phys_page_fast(ram_addr, size);
dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
#endif
}
- stw_p(qemu_get_ram_ptr(ram_addr), val);
- dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
- cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
- /* we remove the notdirty callback only if the code has been
- flushed */
- if (dirty_flags == 0xff)
- tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
-}
-
-static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
- uint32_t val)
-{
- int dirty_flags;
- dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
- if (!(dirty_flags & CODE_DIRTY_FLAG)) {
-#if !defined(CONFIG_USER_ONLY)
- tb_invalidate_phys_page_fast(ram_addr, 4);
- dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
-#endif
+ switch (size) {
+ case 1:
+ stb_p(qemu_get_ram_ptr(ram_addr), val);
+ break;
+ case 2:
+ stw_p(qemu_get_ram_ptr(ram_addr), val);
+ break;
+ case 4:
+ stl_p(qemu_get_ram_ptr(ram_addr), val);
+ break;
+ default:
+ abort();
}
- stl_p(qemu_get_ram_ptr(ram_addr), val);
dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
/* we remove the notdirty callback only if the code has been
tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}
-static CPUReadMemoryFunc * const error_mem_read[3] = {
- NULL, /* never used */
- NULL, /* never used */
- NULL, /* never used */
-};
-
-static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
- notdirty_mem_writeb,
- notdirty_mem_writew,
- notdirty_mem_writel,
+static const MemoryRegionOps notdirty_mem_ops = {
+ .read = error_mem_read,
+ .write = notdirty_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
};
/* Generate a debug exception if a watchpoint has been hit. */
static void check_watchpoint(int offset, int len_mask, int flags)
{
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
target_ulong pc, cs_base;
TranslationBlock *tb;
target_ulong vaddr;
tb_phys_invalidate(tb, -1);
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
env->exception_index = EXCP_DEBUG;
+ cpu_loop_exit(env);
} else {
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
tb_gen_code(env, pc, cs_base, cpu_flags, 1);
+ cpu_resume_from_signal(env, NULL);
}
- cpu_resume_from_signal(env, NULL);
}
} else {
wp->flags &= ~BP_WATCHPOINT_HIT;
/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
so these check for a hit then pass through to the normal out-of-line
phys routines. */
-static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
-{
- check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
- return ldub_phys(addr);
-}
-
-static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
-{
- check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
- return lduw_phys(addr);
-}
-
-static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
-{
- check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
- return ldl_phys(addr);
-}
-
-static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
- uint32_t val)
+static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
+ unsigned size)
{
- check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
- stb_phys(addr, val);
-}
-
-static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
- uint32_t val)
-{
- check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
- stw_phys(addr, val);
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
+ switch (size) {
+ case 1: return ldub_phys(addr);
+ case 2: return lduw_phys(addr);
+ case 4: return ldl_phys(addr);
+ default: abort();
+ }
}
-static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
- uint32_t val)
+static void watch_mem_write(void *opaque, target_phys_addr_t addr,
+ uint64_t val, unsigned size)
{
- check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
- stl_phys(addr, val);
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
+ switch (size) {
+ case 1:
+ stb_phys(addr, val);
+ break;
+ case 2:
+ stw_phys(addr, val);
+ break;
+ case 4:
+ stl_phys(addr, val);
+ break;
+ default: abort();
+ }
}
-static CPUReadMemoryFunc * const watch_mem_read[3] = {
- watch_mem_readb,
- watch_mem_readw,
- watch_mem_readl,
-};
-
-static CPUWriteMemoryFunc * const watch_mem_write[3] = {
- watch_mem_writeb,
- watch_mem_writew,
- watch_mem_writel,
+static const MemoryRegionOps watch_mem_ops = {
+ .read = watch_mem_read,
+ .write = watch_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
};
-static inline uint32_t subpage_readlen (subpage_t *mmio,
- target_phys_addr_t addr,
- unsigned int len)
+static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
+ unsigned len)
{
+ subpage_t *mmio = opaque;
unsigned int idx = SUBPAGE_IDX(addr);
+ MemoryRegionSection *section;
#if defined(DEBUG_SUBPAGE)
printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
mmio, len, addr, idx);
#endif
- addr += mmio->region_offset[idx];
- idx = mmio->sub_io_index[idx];
- return io_mem_read[idx][len](io_mem_opaque[idx], addr);
+ section = &phys_sections[mmio->sub_section[idx]];
+ addr += mmio->base;
+ addr -= section->offset_within_address_space;
+ addr += section->offset_within_region;
+ return io_mem_read(section->mr, addr, len);
}
-static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
- uint32_t value, unsigned int len)
+static void subpage_write(void *opaque, target_phys_addr_t addr,
+ uint64_t value, unsigned len)
{
+ subpage_t *mmio = opaque;
unsigned int idx = SUBPAGE_IDX(addr);
+ MemoryRegionSection *section;
#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx
+ " idx %d value %"PRIx64"\n",
__func__, mmio, len, addr, idx, value);
#endif
- addr += mmio->region_offset[idx];
- idx = mmio->sub_io_index[idx];
- io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
-}
-
-static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
-{
- return subpage_readlen(opaque, addr, 0);
-}
-
-static void subpage_writeb (void *opaque, target_phys_addr_t addr,
- uint32_t value)
-{
- subpage_writelen(opaque, addr, value, 0);
-}
-
-static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
-{
- return subpage_readlen(opaque, addr, 1);
+ section = &phys_sections[mmio->sub_section[idx]];
+ addr += mmio->base;
+ addr -= section->offset_within_address_space;
+ addr += section->offset_within_region;
+ io_mem_write(section->mr, addr, value, len);
}
-static void subpage_writew (void *opaque, target_phys_addr_t addr,
- uint32_t value)
-{
- subpage_writelen(opaque, addr, value, 1);
-}
+static const MemoryRegionOps subpage_ops = {
+ .read = subpage_read,
+ .write = subpage_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
-static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
+static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
+ unsigned size)
{
- return subpage_readlen(opaque, addr, 2);
+ ram_addr_t raddr = addr;
+ void *ptr = qemu_get_ram_ptr(raddr);
+ switch (size) {
+ case 1: return ldub_p(ptr);
+ case 2: return lduw_p(ptr);
+ case 4: return ldl_p(ptr);
+ default: abort();
+ }
}
-static void subpage_writel (void *opaque, target_phys_addr_t addr,
- uint32_t value)
+static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
+ uint64_t value, unsigned size)
{
- subpage_writelen(opaque, addr, value, 2);
+ ram_addr_t raddr = addr;
+ void *ptr = qemu_get_ram_ptr(raddr);
+ switch (size) {
+ case 1: return stb_p(ptr, value);
+ case 2: return stw_p(ptr, value);
+ case 4: return stl_p(ptr, value);
+ default: abort();
+ }
}
-static CPUReadMemoryFunc * const subpage_read[] = {
- &subpage_readb,
- &subpage_readw,
- &subpage_readl,
-};
-
-static CPUWriteMemoryFunc * const subpage_write[] = {
- &subpage_writeb,
- &subpage_writew,
- &subpage_writel,
+static const MemoryRegionOps subpage_ram_ops = {
+ .read = subpage_ram_read,
+ .write = subpage_ram_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
};
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- ram_addr_t memory, ram_addr_t region_offset)
+ uint16_t section)
{
int idx, eidx;
printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
mmio, start, end, idx, eidx, memory);
#endif
- if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
- memory = IO_MEM_UNASSIGNED;
- memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (memory_region_is_ram(phys_sections[section].mr)) {
+ MemoryRegionSection new_section = phys_sections[section];
+ new_section.mr = &io_mem_subpage_ram;
+ section = phys_section_add(&new_section);
+ }
for (; idx <= eidx; idx++) {
- mmio->sub_io_index[idx] = memory;
- mmio->region_offset[idx] = region_offset;
+ mmio->sub_section[idx] = section;
}
return 0;
}
-static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
- ram_addr_t orig_memory,
- ram_addr_t region_offset)
+static subpage_t *subpage_init(target_phys_addr_t base)
{
subpage_t *mmio;
- int subpage_memory;
mmio = g_malloc0(sizeof(subpage_t));
mmio->base = base;
- subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
- DEVICE_NATIVE_ENDIAN);
+ memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
+ "subpage", TARGET_PAGE_SIZE);
+ mmio->iomem.subpage = true;
#if defined(DEBUG_SUBPAGE)
printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
mmio, base, TARGET_PAGE_SIZE, subpage_memory);
#endif
- *phys = subpage_memory | IO_MEM_SUBPAGE;
- subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
+ subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
return mmio;
}
-static int get_free_io_mem_idx(void)
+static uint16_t dummy_section(MemoryRegion *mr)
{
- int i;
+ MemoryRegionSection section = {
+ .mr = mr,
+ .offset_within_address_space = 0,
+ .offset_within_region = 0,
+ .size = UINT64_MAX,
+ };
- for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
- if (!io_mem_used[i]) {
- io_mem_used[i] = 1;
- return i;
- }
- fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
- return -1;
+ return phys_section_add(§ion);
}
-/*
- * Usually, devices operate in little endian mode. There are devices out
- * there that operate in big endian too. Each device gets byte swapped
- * mmio if plugged onto a CPU that does the other endianness.
- *
- * CPU Device swap?
- *
- * little little no
- * little big yes
- * big little yes
- * big big no
- */
+MemoryRegion *iotlb_to_region(target_phys_addr_t index)
+{
+ return phys_sections[index & ~TARGET_PAGE_MASK].mr;
+}
-typedef struct SwapEndianContainer {
- CPUReadMemoryFunc *read[3];
- CPUWriteMemoryFunc *write[3];
- void *opaque;
-} SwapEndianContainer;
+static void io_mem_init(void)
+{
+ memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
+ memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
+ memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
+ "unassigned", UINT64_MAX);
+ memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL,
+ "notdirty", UINT64_MAX);
+ memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
+ "subpage-ram", UINT64_MAX);
+ memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
+ "watch", UINT64_MAX);
+}
-static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
+static void core_begin(MemoryListener *listener)
{
- uint32_t val;
- SwapEndianContainer *c = opaque;
- val = c->read[0](c->opaque, addr);
- return val;
+ destroy_all_mappings();
+ phys_sections_clear();
+ phys_map.ptr = PHYS_MAP_NODE_NIL;
+ phys_section_unassigned = dummy_section(&io_mem_unassigned);
+ phys_section_notdirty = dummy_section(&io_mem_notdirty);
+ phys_section_rom = dummy_section(&io_mem_rom);
+ phys_section_watch = dummy_section(&io_mem_watch);
}
-static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
+static void core_commit(MemoryListener *listener)
{
- uint32_t val;
- SwapEndianContainer *c = opaque;
- val = bswap16(c->read[1](c->opaque, addr));
- return val;
+ CPUArchState *env;
+
+ /* since each CPU stores ram addresses in its TLB cache, we must
+ reset the modified entries */
+ /* XXX: slow ! */
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ tlb_flush(env, 1);
+ }
}
-static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
+static void core_region_add(MemoryListener *listener,
+ MemoryRegionSection *section)
{
- uint32_t val;
- SwapEndianContainer *c = opaque;
- val = bswap32(c->read[2](c->opaque, addr));
- return val;
+ cpu_register_physical_memory_log(section, section->readonly);
}
-static CPUReadMemoryFunc * const swapendian_readfn[3]={
- swapendian_mem_readb,
- swapendian_mem_readw,
- swapendian_mem_readl
-};
+static void core_region_del(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
-static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
- uint32_t val)
+static void core_region_nop(MemoryListener *listener,
+ MemoryRegionSection *section)
{
- SwapEndianContainer *c = opaque;
- c->write[0](c->opaque, addr, val);
+ cpu_register_physical_memory_log(section, section->readonly);
}
-static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
- uint32_t val)
+static void core_log_start(MemoryListener *listener,
+ MemoryRegionSection *section)
{
- SwapEndianContainer *c = opaque;
- c->write[1](c->opaque, addr, bswap16(val));
}
-static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
- uint32_t val)
+static void core_log_stop(MemoryListener *listener,
+ MemoryRegionSection *section)
{
- SwapEndianContainer *c = opaque;
- c->write[2](c->opaque, addr, bswap32(val));
}
-static CPUWriteMemoryFunc * const swapendian_writefn[3]={
- swapendian_mem_writeb,
- swapendian_mem_writew,
- swapendian_mem_writel
-};
+static void core_log_sync(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
-static void swapendian_init(int io_index)
+static void core_log_global_start(MemoryListener *listener)
{
- SwapEndianContainer *c = g_malloc(sizeof(SwapEndianContainer));
- int i;
+ cpu_physical_memory_set_dirty_tracking(1);
+}
- /* Swap mmio for big endian targets */
- c->opaque = io_mem_opaque[io_index];
- for (i = 0; i < 3; i++) {
- c->read[i] = io_mem_read[io_index][i];
- c->write[i] = io_mem_write[io_index][i];
+static void core_log_global_stop(MemoryListener *listener)
+{
+ cpu_physical_memory_set_dirty_tracking(0);
+}
- io_mem_read[io_index][i] = swapendian_readfn[i];
- io_mem_write[io_index][i] = swapendian_writefn[i];
- }
- io_mem_opaque[io_index] = c;
+static void core_eventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, EventNotifier *e)
+{
}
-static void swapendian_del(int io_index)
+static void core_eventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, EventNotifier *e)
{
- if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
- g_free(io_mem_opaque[io_index]);
- }
}
-/* mem_read and mem_write are arrays of functions containing the
- function to access byte (index 0), word (index 1) and dword (index
- 2). Functions can be omitted with a NULL function pointer.
- If io_index is non zero, the corresponding io zone is
- modified. If it is zero, a new io zone is allocated. The return
- value can be used with cpu_register_physical_memory(). (-1) is
- returned if error. */
-static int cpu_register_io_memory_fixed(int io_index,
- CPUReadMemoryFunc * const *mem_read,
- CPUWriteMemoryFunc * const *mem_write,
- void *opaque, enum device_endian endian)
+static void io_begin(MemoryListener *listener)
{
- int i;
+}
- if (io_index <= 0) {
- io_index = get_free_io_mem_idx();
- if (io_index == -1)
- return io_index;
- } else {
- io_index >>= IO_MEM_SHIFT;
- if (io_index >= IO_MEM_NB_ENTRIES)
- return -1;
- }
+static void io_commit(MemoryListener *listener)
+{
+}
- for (i = 0; i < 3; ++i) {
- io_mem_read[io_index][i]
- = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
- }
- for (i = 0; i < 3; ++i) {
- io_mem_write[io_index][i]
- = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
- }
- io_mem_opaque[io_index] = opaque;
+static void io_region_add(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
- switch (endian) {
- case DEVICE_BIG_ENDIAN:
-#ifndef TARGET_WORDS_BIGENDIAN
- swapendian_init(io_index);
-#endif
- break;
- case DEVICE_LITTLE_ENDIAN:
-#ifdef TARGET_WORDS_BIGENDIAN
- swapendian_init(io_index);
-#endif
- break;
- case DEVICE_NATIVE_ENDIAN:
- default:
- break;
- }
+ mrio->mr = section->mr;
+ mrio->offset = section->offset_within_region;
+ iorange_init(&mrio->iorange, &memory_region_iorange_ops,
+ section->offset_within_address_space, section->size);
+ ioport_register(&mrio->iorange);
+}
- return (io_index << IO_MEM_SHIFT);
+static void io_region_del(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ isa_unassign_ioport(section->offset_within_address_space, section->size);
}
-int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
- CPUWriteMemoryFunc * const *mem_write,
- void *opaque, enum device_endian endian)
+static void io_region_nop(MemoryListener *listener,
+ MemoryRegionSection *section)
{
- return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
}
-void cpu_unregister_io_memory(int io_table_address)
+static void io_log_start(MemoryListener *listener,
+ MemoryRegionSection *section)
{
- int i;
- int io_index = io_table_address >> IO_MEM_SHIFT;
+}
- swapendian_del(io_index);
+static void io_log_stop(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
- for (i=0;i < 3; i++) {
- io_mem_read[io_index][i] = unassigned_mem_read[i];
- io_mem_write[io_index][i] = unassigned_mem_write[i];
- }
- io_mem_opaque[io_index] = NULL;
- io_mem_used[io_index] = 0;
+static void io_log_sync(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
}
-static void io_mem_init(void)
+static void io_log_global_start(MemoryListener *listener)
{
- int i;
+}
+
+static void io_log_global_stop(MemoryListener *listener)
+{
+}
- cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
- unassigned_mem_write, NULL,
- DEVICE_NATIVE_ENDIAN);
- cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
- unassigned_mem_write, NULL,
- DEVICE_NATIVE_ENDIAN);
- cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
- notdirty_mem_write, NULL,
- DEVICE_NATIVE_ENDIAN);
- for (i=0; i<5; i++)
- io_mem_used[i] = 1;
+static void io_eventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, EventNotifier *e)
+{
+}
- io_mem_watch = cpu_register_io_memory(watch_mem_read,
- watch_mem_write, NULL,
- DEVICE_NATIVE_ENDIAN);
+static void io_eventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, EventNotifier *e)
+{
}
+static MemoryListener core_memory_listener = {
+ .begin = core_begin,
+ .commit = core_commit,
+ .region_add = core_region_add,
+ .region_del = core_region_del,
+ .region_nop = core_region_nop,
+ .log_start = core_log_start,
+ .log_stop = core_log_stop,
+ .log_sync = core_log_sync,
+ .log_global_start = core_log_global_start,
+ .log_global_stop = core_log_global_stop,
+ .eventfd_add = core_eventfd_add,
+ .eventfd_del = core_eventfd_del,
+ .priority = 0,
+};
+
+static MemoryListener io_memory_listener = {
+ .begin = io_begin,
+ .commit = io_commit,
+ .region_add = io_region_add,
+ .region_del = io_region_del,
+ .region_nop = io_region_nop,
+ .log_start = io_log_start,
+ .log_stop = io_log_stop,
+ .log_sync = io_log_sync,
+ .log_global_start = io_log_global_start,
+ .log_global_stop = io_log_global_stop,
+ .eventfd_add = io_eventfd_add,
+ .eventfd_del = io_eventfd_del,
+ .priority = 0,
+};
+
static void memory_map_init(void)
{
system_memory = g_malloc(sizeof(*system_memory));
system_io = g_malloc(sizeof(*system_io));
memory_region_init(system_io, "io", 65536);
set_system_io_map(system_io);
+
+ memory_listener_register(&core_memory_listener, system_memory);
+ memory_listener_register(&io_memory_listener, system_io);
}
MemoryRegion *get_system_memory(void)
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l, flags;
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
{
- int l, io_index;
+ int l;
uint8_t *ptr;
uint32_t val;
target_phys_addr_t page;
- ram_addr_t pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- p = phys_page_find(page >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(page >> TARGET_PAGE_BITS);
if (is_write) {
- if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
- target_phys_addr_t addr1 = addr;
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ if (!memory_region_is_ram(section->mr)) {
+ target_phys_addr_t addr1;
+ addr1 = memory_region_section_addr(section, addr);
/* XXX: could force cpu_single_env to NULL to avoid
potential bugs */
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit write access */
val = ldl_p(buf);
- io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
+ io_mem_write(section->mr, addr1, val, 4);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit write access */
val = lduw_p(buf);
- io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
+ io_mem_write(section->mr, addr1, val, 2);
l = 2;
} else {
/* 8 bit write access */
val = ldub_p(buf);
- io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
+ io_mem_write(section->mr, addr1, val, 1);
l = 1;
}
- } else {
+ } else if (!section->readonly) {
ram_addr_t addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
qemu_put_ram_ptr(ptr);
}
} else {
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
- !(pd & IO_MEM_ROMD)) {
- target_phys_addr_t addr1 = addr;
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
+ target_phys_addr_t addr1;
/* I/O case */
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ addr1 = memory_region_section_addr(section, addr);
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit read access */
- val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
+ val = io_mem_read(section->mr, addr1, 4);
stl_p(buf, val);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit read access */
- val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
+ val = io_mem_read(section->mr, addr1, 2);
stw_p(buf, val);
l = 2;
} else {
/* 8 bit read access */
- val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
+ val = io_mem_read(section->mr, addr1, 1);
stb_p(buf, val);
l = 1;
}
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
- memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
+ ptr = qemu_get_ram_ptr(section->mr->ram_addr
+ + memory_region_section_addr(section,
+ addr));
+ memcpy(buf, ptr, l);
qemu_put_ram_ptr(ptr);
}
}
int l;
uint8_t *ptr;
target_phys_addr_t page;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- p = phys_page_find(page >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(page >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
- (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
- !(pd & IO_MEM_ROMD)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* do nothing */
} else {
unsigned long addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
/* ROM/RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(
+ addr1, (0xff & ~CODE_DIRTY_FLAG));
+ }
qemu_put_ram_ptr(ptr);
}
len -= l;
target_phys_addr_t todo = 0;
int l;
target_phys_addr_t page;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
ram_addr_t raddr = RAM_ADDR_MAX;
ram_addr_t rlen;
void *ret;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- p = phys_page_find(page >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(page >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
if (todo || bounce.buffer) {
break;
}
return bounce.buffer;
}
if (!todo) {
- raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ raddr = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
}
len -= l;
static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint32_t val;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
- !(pd & IO_MEM_ROMD)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
- val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ addr = memory_region_section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 4);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldl_le_p(ptr);
static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
- !(pd & IO_MEM_ROMD)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ addr = memory_region_section_addr(section, addr);
/* XXX This is broken when device endian != cpu endian.
Fix and add "endian" variable check */
#ifdef TARGET_WORDS_BIGENDIAN
- val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
- val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
+ val = io_mem_read(section->mr, addr, 4) << 32;
+ val |= io_mem_read(section->mr, addr + 4, 4);
#else
- val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
- val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
+ val = io_mem_read(section->mr, addr, 4);
+ val |= io_mem_read(section->mr, addr + 4, 4) << 32;
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldq_le_p(ptr);
static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
- !(pd & IO_MEM_ROMD)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
- val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
+ addr = memory_region_section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 2);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = lduw_le_p(ptr);
bits are used to track modified PTEs */
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
- io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
+ io_mem_write(section->mr, addr, val, 4);
} else {
- unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
ptr = qemu_get_ram_ptr(addr1);
stl_p(ptr, val);
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
#ifdef TARGET_WORDS_BIGENDIAN
- io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
- io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
+ io_mem_write(section->mr, addr, val >> 32, 4);
+ io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
#else
- io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
- io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
+ io_mem_write(section->mr, addr, (uint32_t)val, 4);
+ io_mem_write(section->mr, addr + 4, val >> 32, 4);
#endif
} else {
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr));
stq_p(ptr, val);
}
}
static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
val = bswap32(val);
}
#endif
- io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ io_mem_write(section->mr, addr, val, 4);
} else {
unsigned long addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc *p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!p) {
- pd = IO_MEM_UNASSIGNED;
- } else {
- pd = p->phys_offset;
- }
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
- io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
- if (p)
- addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
val = bswap16(val);
}
#endif
- io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
+ io_mem_write(section->mr, addr, val, 2);
} else {
unsigned long addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
}
/* virtual memory access for debug (includes writing to ROM) */
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l;
/* in deterministic execution mode, instructions doing device I/Os
must be at the end of the TB */
-void cpu_io_recompile(CPUState *env, void *retaddr)
+void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
{
TranslationBlock *tb;
uint32_t n, cflags;
target_ulong pc, cs_base;
uint64_t flags;
- tb = tb_find_pc((unsigned long)retaddr);
+ tb = tb_find_pc(retaddr);
if (!tb) {
cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
- retaddr);
+ (void *)retaddr);
}
n = env->icount_decr.u16.low + tb->icount;
- cpu_restore_state(tb, env, (unsigned long)retaddr);
+ cpu_restore_state(tb, env, retaddr);
/* Calculate how many instructions had been executed before the fault
occurred. */
n = n - env->icount_decr.u16.low;
tcg_dump_info(f, cpu_fprintf);
}
-#define MMUSUFFIX _cmmu
-#undef GETPC
-#define GETPC() NULL
-#define env cpu_single_env
-#define SOFTMMU_CODE_ACCESS
-
-#define SHIFT 0
-#include "softmmu_template.h"
-
-#define SHIFT 1
-#include "softmmu_template.h"
+/*
+ * A helper function for the _utterly broken_ virtio device model to find out if
+ * it's running on a big endian machine. Don't do this at home kids!
+ */
+bool virtio_is_big_endian(void);
+bool virtio_is_big_endian(void)
+{
+#if defined(TARGET_WORDS_BIGENDIAN)
+ return true;
+#else
+ return false;
+#endif
+}
-#define SHIFT 2
-#include "softmmu_template.h"
+#endif
-#define SHIFT 3
-#include "softmmu_template.h"
+#ifndef CONFIG_USER_ONLY
+bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
+{
+ MemoryRegionSection *section;
-#undef env
+ section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
+ return !(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr));
+}
#endif