#include <time.h>
#include "qemu.h"
-#include "disas.h"
+#include "disas/disas.h"
#ifdef _ARCH_PPC64
#undef ARCH_DLINFO
#undef ELF_PLATFORM
#undef ELF_HWCAP
+#undef ELF_HWCAP2
#undef ELF_CLASS
#undef ELF_DATA
#undef ELF_ARCH
#define ELF_DATA ELFDATA2LSB
#endif
-typedef target_ulong target_elf_greg_t;
+#ifdef TARGET_ABI_MIPSN32
+typedef abi_ullong target_elf_greg_t;
+#define tswapreg(ptr) tswap64(ptr)
+#else
+typedef abi_ulong target_elf_greg_t;
+#define tswapreg(ptr) tswapal(ptr)
+#endif
+
#ifdef USE_UID16
-typedef target_ushort target_uid_t;
-typedef target_ushort target_gid_t;
+typedef abi_ushort target_uid_t;
+typedef abi_ushort target_gid_t;
#else
-typedef target_uint target_uid_t;
-typedef target_uint target_gid_t;
+typedef abi_uint target_uid_t;
+typedef abi_uint target_gid_t;
#endif
-typedef target_int target_pid_t;
+typedef abi_int target_pid_t;
#ifdef TARGET_I386
static const char *get_elf_platform(void)
{
static char elf_platform[] = "i386";
- int family = (thread_env->cpuid_version >> 8) & 0xff;
+ int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
if (family > 6)
family = 6;
if (family >= 3)
static uint32_t get_elf_hwcap(void)
{
- return thread_env->cpuid_features;
+ X86CPU *cpu = X86_CPU(thread_cpu);
+
+ return cpu->env.features[FEAT_1_EDX];
}
#ifdef TARGET_X86_64
#ifdef TARGET_ARM
+#ifndef TARGET_AARCH64
+/* 32 bit ARM definitions */
+
#define ELF_START_MMAP 0x80000000
-#define elf_check_arch(x) ( (x) == EM_ARM )
+#define elf_check_arch(x) ((x) == ELF_MACHINE)
+#define ELF_ARCH ELF_MACHINE
#define ELF_CLASS ELFCLASS32
-#define ELF_ARCH EM_ARM
static inline void init_thread(struct target_pt_regs *regs,
struct image_info *infop)
{
abi_long stack = infop->start_stack;
memset(regs, 0, sizeof(*regs));
+
regs->ARM_cpsr = 0x10;
if (infop->entry & 1)
regs->ARM_cpsr |= CPSR_T;
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
{
- (*regs)[0] = tswapl(env->regs[0]);
- (*regs)[1] = tswapl(env->regs[1]);
- (*regs)[2] = tswapl(env->regs[2]);
- (*regs)[3] = tswapl(env->regs[3]);
- (*regs)[4] = tswapl(env->regs[4]);
- (*regs)[5] = tswapl(env->regs[5]);
- (*regs)[6] = tswapl(env->regs[6]);
- (*regs)[7] = tswapl(env->regs[7]);
- (*regs)[8] = tswapl(env->regs[8]);
- (*regs)[9] = tswapl(env->regs[9]);
- (*regs)[10] = tswapl(env->regs[10]);
- (*regs)[11] = tswapl(env->regs[11]);
- (*regs)[12] = tswapl(env->regs[12]);
- (*regs)[13] = tswapl(env->regs[13]);
- (*regs)[14] = tswapl(env->regs[14]);
- (*regs)[15] = tswapl(env->regs[15]);
-
- (*regs)[16] = tswapl(cpsr_read((CPUARMState *)env));
- (*regs)[17] = tswapl(env->regs[0]); /* XXX */
+ (*regs)[0] = tswapreg(env->regs[0]);
+ (*regs)[1] = tswapreg(env->regs[1]);
+ (*regs)[2] = tswapreg(env->regs[2]);
+ (*regs)[3] = tswapreg(env->regs[3]);
+ (*regs)[4] = tswapreg(env->regs[4]);
+ (*regs)[5] = tswapreg(env->regs[5]);
+ (*regs)[6] = tswapreg(env->regs[6]);
+ (*regs)[7] = tswapreg(env->regs[7]);
+ (*regs)[8] = tswapreg(env->regs[8]);
+ (*regs)[9] = tswapreg(env->regs[9]);
+ (*regs)[10] = tswapreg(env->regs[10]);
+ (*regs)[11] = tswapreg(env->regs[11]);
+ (*regs)[12] = tswapreg(env->regs[12]);
+ (*regs)[13] = tswapreg(env->regs[13]);
+ (*regs)[14] = tswapreg(env->regs[14]);
+ (*regs)[15] = tswapreg(env->regs[15]);
+
+ (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
+ (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
}
#define USE_ELF_CORE_DUMP
ARM_HWCAP_ARM_EDSP = 1 << 7,
ARM_HWCAP_ARM_JAVA = 1 << 8,
ARM_HWCAP_ARM_IWMMXT = 1 << 9,
- ARM_HWCAP_ARM_THUMBEE = 1 << 10,
- ARM_HWCAP_ARM_NEON = 1 << 11,
- ARM_HWCAP_ARM_VFPv3 = 1 << 12,
- ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
+ ARM_HWCAP_ARM_CRUNCH = 1 << 10,
+ ARM_HWCAP_ARM_THUMBEE = 1 << 11,
+ ARM_HWCAP_ARM_NEON = 1 << 12,
+ ARM_HWCAP_ARM_VFPv3 = 1 << 13,
+ ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
+ ARM_HWCAP_ARM_TLS = 1 << 15,
+ ARM_HWCAP_ARM_VFPv4 = 1 << 16,
+ ARM_HWCAP_ARM_IDIVA = 1 << 17,
+ ARM_HWCAP_ARM_IDIVT = 1 << 18,
+ ARM_HWCAP_ARM_VFPD32 = 1 << 19,
+ ARM_HWCAP_ARM_LPAE = 1 << 20,
+ ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
+};
+
+enum {
+ ARM_HWCAP2_ARM_AES = 1 << 0,
+ ARM_HWCAP2_ARM_PMULL = 1 << 1,
+ ARM_HWCAP2_ARM_SHA1 = 1 << 2,
+ ARM_HWCAP2_ARM_SHA2 = 1 << 3,
+ ARM_HWCAP2_ARM_CRC32 = 1 << 4,
};
-#define TARGET_HAS_GUEST_VALIDATE_BASE
-/* We want the opportunity to check the suggested base */
-bool guest_validate_base(unsigned long guest_base)
+/* The commpage only exists for 32 bit kernels */
+
+#define TARGET_HAS_VALIDATE_GUEST_SPACE
+/* Return 1 if the proposed guest space is suitable for the guest.
+ * Return 0 if the proposed guest space isn't suitable, but another
+ * address space should be tried.
+ * Return -1 if there is no way the proposed guest space can be
+ * valid regardless of the base.
+ * The guest code may leave a page mapped and populate it if the
+ * address is suitable.
+ */
+static int validate_guest_space(unsigned long guest_base,
+ unsigned long guest_size)
{
unsigned long real_start, test_page_addr;
* commpage at 0xffff0fxx
*/
test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
+
+ /* If the commpage lies within the already allocated guest space,
+ * then there is no way we can allocate it.
+ */
+ if (test_page_addr >= guest_base
+ && test_page_addr <= (guest_base + guest_size)) {
+ return -1;
+ }
+
/* Note it needs to be writeable to let us initialise it */
real_start = (unsigned long)
mmap((void *)test_page_addr, qemu_host_page_size,
return 1; /* All good */
}
-
#define ELF_HWCAP get_elf_hwcap()
+#define ELF_HWCAP2 get_elf_hwcap2()
static uint32_t get_elf_hwcap(void)
{
- CPUARMState *e = thread_env;
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
uint32_t hwcaps = 0;
hwcaps |= ARM_HWCAP_ARM_SWP;
hwcaps |= ARM_HWCAP_ARM_HALF;
hwcaps |= ARM_HWCAP_ARM_THUMB;
hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
- hwcaps |= ARM_HWCAP_ARM_FPA;
/* probe for the extra features */
#define GET_FEATURE(feat, hwcap) \
- do {if (arm_feature(e, feat)) { hwcaps |= hwcap; } } while (0)
+ do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
+ /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
+ GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
- GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
+ GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
+ GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
+ GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
+ GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
+ /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
+ * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
+ * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
+ * to our VFP_FP16 feature bit.
+ */
+ GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
+ GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
+
+ return hwcaps;
+}
+
+static uint32_t get_elf_hwcap2(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
+ GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
+ return hwcaps;
+}
+
+#undef GET_FEATURE
+
+#else
+/* 64 bit ARM definitions */
+#define ELF_START_MMAP 0x80000000
+
+#define elf_check_arch(x) ((x) == ELF_MACHINE)
+
+#define ELF_ARCH ELF_MACHINE
+#define ELF_CLASS ELFCLASS64
+#define ELF_PLATFORM "aarch64"
+
+static inline void init_thread(struct target_pt_regs *regs,
+ struct image_info *infop)
+{
+ abi_long stack = infop->start_stack;
+ memset(regs, 0, sizeof(*regs));
+
+ regs->pc = infop->entry & ~0x3ULL;
+ regs->sp = stack;
+}
+
+#define ELF_NREG 34
+typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
+
+static void elf_core_copy_regs(target_elf_gregset_t *regs,
+ const CPUARMState *env)
+{
+ int i;
+
+ for (i = 0; i < 32; i++) {
+ (*regs)[i] = tswapreg(env->xregs[i]);
+ }
+ (*regs)[32] = tswapreg(env->pc);
+ (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
+}
+
+#define USE_ELF_CORE_DUMP
+#define ELF_EXEC_PAGESIZE 4096
+
+enum {
+ ARM_HWCAP_A64_FP = 1 << 0,
+ ARM_HWCAP_A64_ASIMD = 1 << 1,
+ ARM_HWCAP_A64_EVTSTRM = 1 << 2,
+ ARM_HWCAP_A64_AES = 1 << 3,
+ ARM_HWCAP_A64_PMULL = 1 << 4,
+ ARM_HWCAP_A64_SHA1 = 1 << 5,
+ ARM_HWCAP_A64_SHA2 = 1 << 6,
+ ARM_HWCAP_A64_CRC32 = 1 << 7,
+};
+
+#define ELF_HWCAP get_elf_hwcap()
+
+static uint32_t get_elf_hwcap(void)
+{
+ ARMCPU *cpu = ARM_CPU(thread_cpu);
+ uint32_t hwcaps = 0;
+
+ hwcaps |= ARM_HWCAP_A64_FP;
+ hwcaps |= ARM_HWCAP_A64_ASIMD;
+
+ /* probe for the extra features */
+#define GET_FEATURE(feat, hwcap) \
+ do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
+ GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_PMULL);
#undef GET_FEATURE
return hwcaps;
}
-#endif
+#endif /* not TARGET_AARCH64 */
+#endif /* TARGET_ARM */
#ifdef TARGET_UNICORE32
static uint32_t get_elf_hwcap(void)
{
- CPUPPCState *e = thread_env;
+ PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
uint32_t features = 0;
/* We don't have to be terribly complete here; the high points are
Altivec/FP/SPE support. Anything else is just a bonus. */
#define GET_FEATURE(flag, feature) \
- do {if (e->insns_flags & flag) features |= feature; } while(0)
+ do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
target_ulong ccr = 0;
for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
- (*regs)[i] = tswapl(env->gpr[i]);
+ (*regs)[i] = tswapreg(env->gpr[i]);
}
- (*regs)[32] = tswapl(env->nip);
- (*regs)[33] = tswapl(env->msr);
- (*regs)[35] = tswapl(env->ctr);
- (*regs)[36] = tswapl(env->lr);
- (*regs)[37] = tswapl(env->xer);
+ (*regs)[32] = tswapreg(env->nip);
+ (*regs)[33] = tswapreg(env->msr);
+ (*regs)[35] = tswapreg(env->ctr);
+ (*regs)[36] = tswapreg(env->lr);
+ (*regs)[37] = tswapreg(env->xer);
for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
ccr |= env->crf[i] << (32 - ((i + 1) * 4));
}
- (*regs)[38] = tswapl(ccr);
+ (*regs)[38] = tswapreg(ccr);
}
#define USE_ELF_CORE_DUMP
(*regs)[TARGET_EF_R0] = 0;
for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
- (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
+ (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
}
(*regs)[TARGET_EF_R26] = 0;
(*regs)[TARGET_EF_R27] = 0;
- (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
- (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
- (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
- (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
- (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
- (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
+ (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
+ (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
+ (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
+ (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
+ (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
+ (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
}
#define USE_ELF_CORE_DUMP
int i, pos = 0;
for (i = 0; i < 32; i++) {
- (*regs)[pos++] = tswapl(env->regs[i]);
+ (*regs)[pos++] = tswapreg(env->regs[i]);
}
for (i = 0; i < 6; i++) {
- (*regs)[pos++] = tswapl(env->sregs[i]);
+ (*regs)[pos++] = tswapreg(env->sregs[i]);
}
}
int i;
for (i = 0; i < 32; i++) {
- (*regs)[i] = tswapl(env->gpr[i]);
+ (*regs)[i] = tswapreg(env->gpr[i]);
}
- (*regs)[32] = tswapl(env->pc);
- (*regs)[33] = tswapl(env->sr);
+ (*regs)[32] = tswapreg(env->pc);
+ (*regs)[33] = tswapreg(env->sr);
}
#define ELF_HWCAP 0
#define ELF_PLATFORM NULL
int i;
for (i = 0; i < 16; i++) {
- (*regs[i]) = tswapl(env->gregs[i]);
+ (*regs[i]) = tswapreg(env->gregs[i]);
}
- (*regs)[TARGET_REG_PC] = tswapl(env->pc);
- (*regs)[TARGET_REG_PR] = tswapl(env->pr);
- (*regs)[TARGET_REG_SR] = tswapl(env->sr);
- (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
- (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
- (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
+ (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
+ (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
+ (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
+ (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
+ (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
+ (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
(*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
}
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
{
- (*regs)[0] = tswapl(env->dregs[1]);
- (*regs)[1] = tswapl(env->dregs[2]);
- (*regs)[2] = tswapl(env->dregs[3]);
- (*regs)[3] = tswapl(env->dregs[4]);
- (*regs)[4] = tswapl(env->dregs[5]);
- (*regs)[5] = tswapl(env->dregs[6]);
- (*regs)[6] = tswapl(env->dregs[7]);
- (*regs)[7] = tswapl(env->aregs[0]);
- (*regs)[8] = tswapl(env->aregs[1]);
- (*regs)[9] = tswapl(env->aregs[2]);
- (*regs)[10] = tswapl(env->aregs[3]);
- (*regs)[11] = tswapl(env->aregs[4]);
- (*regs)[12] = tswapl(env->aregs[5]);
- (*regs)[13] = tswapl(env->aregs[6]);
- (*regs)[14] = tswapl(env->dregs[0]);
- (*regs)[15] = tswapl(env->aregs[7]);
- (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
- (*regs)[17] = tswapl(env->sr);
- (*regs)[18] = tswapl(env->pc);
+ (*regs)[0] = tswapreg(env->dregs[1]);
+ (*regs)[1] = tswapreg(env->dregs[2]);
+ (*regs)[2] = tswapreg(env->dregs[3]);
+ (*regs)[3] = tswapreg(env->dregs[4]);
+ (*regs)[4] = tswapreg(env->dregs[5]);
+ (*regs)[5] = tswapreg(env->dregs[6]);
+ (*regs)[6] = tswapreg(env->dregs[7]);
+ (*regs)[7] = tswapreg(env->aregs[0]);
+ (*regs)[8] = tswapreg(env->aregs[1]);
+ (*regs)[9] = tswapreg(env->aregs[2]);
+ (*regs)[10] = tswapreg(env->aregs[3]);
+ (*regs)[11] = tswapreg(env->aregs[4]);
+ (*regs)[12] = tswapreg(env->aregs[5]);
+ (*regs)[13] = tswapreg(env->aregs[6]);
+ (*regs)[14] = tswapreg(env->dregs[0]);
+ (*regs)[15] = tswapreg(env->aregs[7]);
+ (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
+ (*regs)[17] = tswapreg(env->sr);
+ (*regs)[18] = tswapreg(env->pc);
(*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
}
#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
-#define DLINFO_ITEMS 13
+#define DLINFO_ITEMS 14
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
{
size += 2;
#ifdef DLINFO_ARCH_ITEMS
size += DLINFO_ARCH_ITEMS * 2;
+#endif
+#ifdef ELF_HWCAP2
+ size += 2;
#endif
size += envc + argc + 2;
size += 1; /* argc itself */
NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
+#ifdef ELF_HWCAP2
+ NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
+#endif
+
if (k_platform)
NEW_AUX_ENT(AT_PLATFORM, u_platform);
#ifdef ARCH_DLINFO
info->auxv_len = sp_auxv - sp;
sp = loader_build_argptr(envc, argc, sp, p, 0);
+ /* Check the right amount of stack was allocated for auxvec, envp & argv. */
+ assert(sp_auxv - sp == size);
return sp;
}
-#ifndef TARGET_HAS_GUEST_VALIDATE_BASE
+#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
/* If the guest doesn't have a validation function just agree */
-bool guest_validate_base(unsigned long guest_base)
+static int validate_guest_space(unsigned long guest_base,
+ unsigned long guest_size)
{
return 1;
}
#endif
+unsigned long init_guest_space(unsigned long host_start,
+ unsigned long host_size,
+ unsigned long guest_start,
+ bool fixed)
+{
+ unsigned long current_start, real_start;
+ int flags;
+
+ assert(host_start || host_size);
+
+ /* If just a starting address is given, then just verify that
+ * address. */
+ if (host_start && !host_size) {
+ if (validate_guest_space(host_start, host_size) == 1) {
+ return host_start;
+ } else {
+ return (unsigned long)-1;
+ }
+ }
+
+ /* Setup the initial flags and start address. */
+ current_start = host_start & qemu_host_page_mask;
+ flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
+ if (fixed) {
+ flags |= MAP_FIXED;
+ }
+
+ /* Otherwise, a non-zero size region of memory needs to be mapped
+ * and validated. */
+ while (1) {
+ unsigned long real_size = host_size;
+
+ /* Do not use mmap_find_vma here because that is limited to the
+ * guest address space. We are going to make the
+ * guest address space fit whatever we're given.
+ */
+ real_start = (unsigned long)
+ mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
+ if (real_start == (unsigned long)-1) {
+ return (unsigned long)-1;
+ }
+
+ /* Ensure the address is properly aligned. */
+ if (real_start & ~qemu_host_page_mask) {
+ munmap((void *)real_start, host_size);
+ real_size = host_size + qemu_host_page_size;
+ real_start = (unsigned long)
+ mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
+ if (real_start == (unsigned long)-1) {
+ return (unsigned long)-1;
+ }
+ real_start = HOST_PAGE_ALIGN(real_start);
+ }
+
+ /* Check to see if the address is valid. */
+ if (!host_start || real_start == current_start) {
+ int valid = validate_guest_space(real_start - guest_start,
+ real_size);
+ if (valid == 1) {
+ break;
+ } else if (valid == -1) {
+ return (unsigned long)-1;
+ }
+ /* valid == 0, so try again. */
+ }
+
+ /* That address didn't work. Unmap and try a different one.
+ * The address the host picked because is typically right at
+ * the top of the host address space and leaves the guest with
+ * no usable address space. Resort to a linear search. We
+ * already compensated for mmap_min_addr, so this should not
+ * happen often. Probably means we got unlucky and host
+ * address space randomization put a shared library somewhere
+ * inconvenient.
+ */
+ munmap((void *)real_start, host_size);
+ current_start += qemu_host_page_size;
+ if (host_start == current_start) {
+ /* Theoretically possible if host doesn't have any suitably
+ * aligned areas. Normally the first mmap will fail.
+ */
+ return (unsigned long)-1;
+ }
+ }
+
+ qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
+
+ return real_start;
+}
+
static void probe_guest_base(const char *image_name,
abi_ulong loaddr, abi_ulong hiaddr)
{
}
}
host_size = hiaddr - loaddr;
- while (1) {
- /* Do not use mmap_find_vma here because that is limited to the
- guest address space. We are going to make the
- guest address space fit whatever we're given. */
- real_start = (unsigned long)
- mmap((void *)host_start, host_size, PROT_NONE,
- MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
- if (real_start == (unsigned long)-1) {
- goto exit_perror;
- }
- guest_base = real_start - loaddr;
- if ((real_start == host_start) &&
- guest_validate_base(guest_base)) {
- break;
- }
- /* That address didn't work. Unmap and try a different one.
- The address the host picked because is typically right at
- the top of the host address space and leaves the guest with
- no usable address space. Resort to a linear search. We
- already compensated for mmap_min_addr, so this should not
- happen often. Probably means we got unlucky and host
- address space randomization put a shared library somewhere
- inconvenient. */
- munmap((void *)real_start, host_size);
- host_start += qemu_host_page_size;
- if (host_start == loaddr) {
- /* Theoretically possible if host doesn't have any suitably
- aligned areas. Normally the first mmap will fail. */
- errmsg = "Unable to find space for application";
- goto exit_errmsg;
- }
+
+ /* Setup the initial guest memory space with ranges gleaned from
+ * the ELF image that is being loaded.
+ */
+ real_start = init_guest_space(host_start, host_size, loaddr, false);
+ if (real_start == (unsigned long)-1) {
+ errmsg = "Unable to find space for application";
+ goto exit_errmsg;
}
+ guest_base = real_start - loaddr;
+
qemu_log("Relocating guest address space from 0x"
TARGET_ABI_FMT_lx " to 0x%lx\n",
loaddr, real_start);
}
return;
-exit_perror:
- errmsg = strerror(errno);
exit_errmsg:
fprintf(stderr, "%s: %s\n", image_name, errmsg);
exit(-1);
free(syms);
}
-int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
- struct image_info * info)
+int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
{
struct image_info interp_info;
struct elfhdr elf_ex;
};
struct target_elf_siginfo {
- target_int si_signo; /* signal number */
- target_int si_code; /* extra code */
- target_int si_errno; /* errno */
+ abi_int si_signo; /* signal number */
+ abi_int si_code; /* extra code */
+ abi_int si_errno; /* errno */
};
struct target_elf_prstatus {
struct target_elf_siginfo pr_info; /* Info associated with signal */
- target_short pr_cursig; /* Current signal */
- target_ulong pr_sigpend; /* XXX */
- target_ulong pr_sighold; /* XXX */
+ abi_short pr_cursig; /* Current signal */
+ abi_ulong pr_sigpend; /* XXX */
+ abi_ulong pr_sighold; /* XXX */
target_pid_t pr_pid;
target_pid_t pr_ppid;
target_pid_t pr_pgrp;
struct target_timeval pr_cutime; /* XXX Cumulative user time */
struct target_timeval pr_cstime; /* XXX Cumulative system time */
target_elf_gregset_t pr_reg; /* GP registers */
- target_int pr_fpvalid; /* XXX */
+ abi_int pr_fpvalid; /* XXX */
};
#define ELF_PRARGSZ (80) /* Number of chars for args */
char pr_sname; /* char for pr_state */
char pr_zomb; /* zombie */
char pr_nice; /* nice val */
- target_ulong pr_flag; /* flags */
+ abi_ulong pr_flag; /* flags */
target_uid_t pr_uid;
target_gid_t pr_gid;
target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
#ifdef BSWAP_NEEDED
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
{
- prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
- prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
- prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
+ prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
+ prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
+ prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
- prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
- prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
+ prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
+ prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
prstatus->pr_pid = tswap32(prstatus->pr_pid);
prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
{
- psinfo->pr_flag = tswapl(psinfo->pr_flag);
+ psinfo->pr_flag = tswapal(psinfo->pr_flag);
psinfo->pr_uid = tswap16(psinfo->pr_uid);
psinfo->pr_gid = tswap16(psinfo->pr_gid);
psinfo->pr_pid = tswap32(psinfo->pr_pid);
static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
{
- char *filename, *base_filename;
+ char *base_filename;
unsigned int i, len;
(void) memset(psinfo, 0, sizeof (*psinfo));
psinfo->pr_uid = getuid();
psinfo->pr_gid = getgid();
- filename = strdup(ts->bprm->filename);
- base_filename = strdup(basename(filename));
+ base_filename = g_path_get_basename(ts->bprm->filename);
+ /*
+ * Using strncpy here is fine: at max-length,
+ * this field is not NUL-terminated.
+ */
(void) strncpy(psinfo->pr_fname, base_filename,
sizeof(psinfo->pr_fname));
- free(base_filename);
- free(filename);
+ g_free(base_filename);
bswap_psinfo(psinfo);
return (0);
}
static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
{
- TaskState *ts = (TaskState *)env->opaque;
+ CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
+ TaskState *ts = (TaskState *)cpu->opaque;
struct elf_thread_status *ets;
ets = g_malloc0(sizeof (*ets));
info->notes_size += note_size(&ets->notes[0]);
}
+static void init_note_info(struct elf_note_info *info)
+{
+ /* Initialize the elf_note_info structure so that it is at
+ * least safe to call free_note_info() on it. Must be
+ * called before calling fill_note_info().
+ */
+ memset(info, 0, sizeof (*info));
+ QTAILQ_INIT(&info->thread_list);
+}
+
static int fill_note_info(struct elf_note_info *info,
long signr, const CPUArchState *env)
{
#define NUMNOTES 3
- CPUArchState *cpu = NULL;
- TaskState *ts = (TaskState *)env->opaque;
+ CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
+ TaskState *ts = (TaskState *)cpu->opaque;
int i;
- (void) memset(info, 0, sizeof (*info));
-
- QTAILQ_INIT(&info->thread_list);
-
info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
if (info->notes == NULL)
return (-ENOMEM);
/* read and fill status of all threads */
cpu_list_lock();
- for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
- if (cpu == thread_env)
+ CPU_FOREACH(cpu) {
+ if (cpu == thread_cpu) {
continue;
- fill_thread_info(info, cpu);
+ }
+ fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
}
cpu_list_unlock();
*/
static int elf_core_dump(int signr, const CPUArchState *env)
{
- const TaskState *ts = (const TaskState *)env->opaque;
+ const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
+ const TaskState *ts = (const TaskState *)cpu->opaque;
struct vm_area_struct *vma = NULL;
char corefile[PATH_MAX];
struct elf_note_info info;
int segs = 0;
int fd = -1;
+ init_note_info(&info);
+
errno = 0;
getrlimit(RLIMIT_CORE, &dumpsize);
if (dumpsize.rlim_cur == 0)