#define TARGET_LONG_SIZE (TARGET_LONG_BITS / 8)
+typedef int16_t target_short __attribute__ ((aligned(TARGET_SHORT_ALIGNMENT)));
+typedef uint16_t target_ushort __attribute__((aligned(TARGET_SHORT_ALIGNMENT)));
+typedef int32_t target_int __attribute__((aligned(TARGET_INT_ALIGNMENT)));
+typedef uint32_t target_uint __attribute__((aligned(TARGET_INT_ALIGNMENT)));
+typedef int64_t target_llong __attribute__((aligned(TARGET_LLONG_ALIGNMENT)));
+typedef uint64_t target_ullong __attribute__((aligned(TARGET_LLONG_ALIGNMENT)));
/* target_ulong is the type of a virtual address */
#if TARGET_LONG_SIZE == 4
-typedef int32_t target_long;
-typedef uint32_t target_ulong;
+typedef int32_t target_long __attribute__((aligned(TARGET_LONG_ALIGNMENT)));
+typedef uint32_t target_ulong __attribute__((aligned(TARGET_LONG_ALIGNMENT)));
#define TARGET_FMT_lx "%08x"
#define TARGET_FMT_ld "%d"
#define TARGET_FMT_lu "%u"
#elif TARGET_LONG_SIZE == 8
-typedef int64_t target_long;
-typedef uint64_t target_ulong;
+typedef int64_t target_long __attribute__((aligned(TARGET_LONG_ALIGNMENT)));
+typedef uint64_t target_ulong __attribute__((aligned(TARGET_LONG_ALIGNMENT)));
#define TARGET_FMT_lx "%016" PRIx64
#define TARGET_FMT_ld "%" PRId64
#define TARGET_FMT_lu "%" PRIu64
#define CPU_TLB_BITS 8
#define CPU_TLB_SIZE (1 << CPU_TLB_BITS)
-#if TARGET_PHYS_ADDR_BITS == 32 && TARGET_LONG_BITS == 32
+#if HOST_LONG_BITS == 32 && TARGET_LONG_BITS == 32
#define CPU_TLB_ENTRY_BITS 4
#else
#define CPU_TLB_ENTRY_BITS 5
target_ulong addr_read;
target_ulong addr_write;
target_ulong addr_code;
- /* Addend to virtual address to get physical address. IO accesses
+ /* Addend to virtual address to get host address. IO accesses
use the corresponding iotlb value. */
-#if TARGET_PHYS_ADDR_BITS == 64
- /* on i386 Linux make sure it is aligned */
- target_phys_addr_t addend __attribute__((aligned(8)));
-#else
- target_phys_addr_t addend;
-#endif
+ unsigned long addend;
/* padding to get a power of two size */
uint8_t dummy[(1 << CPU_TLB_ENTRY_BITS) -
(sizeof(target_ulong) * 3 +
- ((-sizeof(target_ulong) * 3) & (sizeof(target_phys_addr_t) - 1)) +
- sizeof(target_phys_addr_t))];
+ ((-sizeof(target_ulong) * 3) & (sizeof(unsigned long) - 1)) +
+ sizeof(unsigned long))];
} CPUTLBEntry;
+extern int CPUTLBEntry_wrong_size[sizeof(CPUTLBEntry) == (1 << CPU_TLB_ENTRY_BITS) ? 1 : -1];
+
#define CPU_COMMON_TLB \
/* The meaning of the MMU modes is defined in the target code. */ \
CPUTLBEntry tlb_table[NB_MMU_MODES][CPU_TLB_SIZE]; \
struct kvm_run;
struct KVMState;
+struct qemu_work_item;
typedef struct CPUBreakpoint {
target_ulong pc;
target_ulong mem_io_vaddr; /* target virtual addr at which the \
memory was accessed */ \
uint32_t halted; /* Nonzero if the CPU is in suspend state */ \
- uint32_t stop; /* Stop request */ \
- uint32_t stopped; /* Artificially stopped */ \
uint32_t interrupt_request; \
volatile sig_atomic_t exit_request; \
CPU_COMMON_TLB \
int nr_cores; /* number of cores within this CPU package */ \
int nr_threads;/* number of threads within this CPU */ \
int running; /* Nonzero if cpu is currently running(usermode). */ \
+ int thread_id; \
/* user data */ \
void *opaque; \
\
uint32_t created; \
+ uint32_t stop; /* Stop request */ \
+ uint32_t stopped; /* Artificially stopped */ \
struct QemuThread *thread; \
struct QemuCond *halt_cond; \
+ int thread_kicked; \
+ struct qemu_work_item *queued_work_first, *queued_work_last; \
const char *cpu_model_str; \
struct KVMState *kvm_state; \
struct kvm_run *kvm_run; \