#include "qemu/osdep.h"
#include "cpu.h"
-#include "tcg.h"
+#include "tcg/tcg.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#define QT1 (env->qt1)
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
-/* Calculates TSB pointer value for fault page size 8k or 64k */
-static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
- uint64_t tag_access_register,
- int page_size)
+/* Calculates TSB pointer value for fault page size
+ * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
+ * UA2005 holds the page size configuration in mmu_ctx registers */
+static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
+ const SparcV9MMU *mmu, const int idx)
{
- uint64_t tsb_base = tsb_register & ~0x1fffULL;
+ uint64_t tsb_register;
+ int page_size;
+ if (cpu_has_hypervisor(env)) {
+ int tsb_index = 0;
+ int ctx = mmu->tag_access & 0x1fffULL;
+ uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
+ tsb_index = idx;
+ tsb_index |= ctx ? 2 : 0;
+ page_size = idx ? ctx_register >> 8 : ctx_register;
+ page_size &= 7;
+ tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
+ } else {
+ page_size = idx;
+ tsb_register = mmu->tsb;
+ }
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
int tsb_size = tsb_register & 0xf;
- /* discard lower 13 bits which hold tag access context */
- uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
-
- /* now reorder bits */
- uint64_t tsb_base_mask = ~0x1fffULL;
- uint64_t va = tag_access_va;
-
- /* move va bits to correct position */
- if (page_size == 8*1024) {
- va >>= 9;
- } else if (page_size == 64*1024) {
- va >>= 12;
- }
+ uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
- if (tsb_size) {
- tsb_base_mask <<= tsb_size;
- }
+ /* move va bits to correct position,
+ * the context bits will be masked out later */
+ uint64_t va = mmu->tag_access >> (3 * page_size + 9);
/* calculate tsb_base mask and adjust va if split is in use */
if (tsb_split) {
- if (page_size == 8*1024) {
+ if (idx == 0) {
va &= ~(1ULL << (13 + tsb_size));
- } else if (page_size == 64*1024) {
+ } else {
va |= (1ULL << (13 + tsb_size));
}
tsb_base_mask <<= 1;
}
- return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
+ return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}
/* Calculates tag target register value by reordering bits
static void replace_tlb_entry(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
- CPUSPARCState *env1)
+ CPUSPARCState *env)
{
target_ulong mask, size, va, offset;
/* flush page range if translation is valid */
if (TTE_IS_VALID(tlb->tte)) {
- CPUState *cs = CPU(sparc_env_get_cpu(env1));
+ CPUState *cs = env_cpu(env);
- mask = 0xffffffffffffe000ULL;
- mask <<= 3 * ((tlb->tte >> 61) & 3);
- size = ~mask + 1;
+ size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
+ mask = 1ULL + ~size;
va = tlb->tag & mask;
replace_tlb_entry(&tlb[i], 0, 0, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
- dump_mmu(stdout, fprintf, env1);
+ dump_mmu(env1);
#endif
}
}
}
+static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
+ uint64_t sun4v_tte)
+{
+ uint64_t sun4u_tte;
+ if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
+ /* is already in the sun4u format */
+ return sun4v_tte;
+ }
+ sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
+ sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
+ sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
+ sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
+ sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
+ sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
+ TTE_SIDEEFFECT_BIT);
+ sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
+ sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
+ return sun4u_tte;
+}
+
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
- const char *strmmu, CPUSPARCState *env1)
+ const char *strmmu, CPUSPARCState *env1,
+ uint64_t addr)
{
unsigned int i, replace_used;
+ tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
+ if (cpu_has_hypervisor(env1)) {
+ uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
+ uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
+ uint32_t new_ctx = tlb_tag & 0x1fffU;
+ for (i = 0; i < 64; i++) {
+ uint32_t ctx = tlb[i].tag & 0x1fffU;
+ /* check if new mapping overlaps an existing one */
+ if (new_ctx == ctx) {
+ uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
+ uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
+ if (new_vaddr == vaddr
+ || (new_vaddr < vaddr + size
+ && vaddr < new_vaddr + new_size)) {
+ DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
+ new_vaddr);
+ replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
+ return;
+ }
+ }
+
+ }
+ }
/* Try replacing invalid entry */
for (i = 0; i < 64; i++) {
if (!TTE_IS_VALID(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
- dump_mmu(stdout, fprintf, env1);
+ dump_mmu(env1);
#endif
return;
}
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
strmmu, (replace_used ? "used" : "unused"), i);
- dump_mmu(stdout, fprintf, env1);
+ dump_mmu(env1);
#endif
return;
}
}
#ifdef DEBUG_MMU
- DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
+ DPRINTF_MMU("%s lru replacement: no free entries available, "
+ "replacing the last one\n", strmmu);
#endif
- /* error state? */
+ /* corner case: the last entry is replaced anyway */
+ replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
}
#endif
}
return addr;
}
+
+#ifndef CONFIG_USER_ONLY
+static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
+{
+ /* ASIs >= 0x80 are user mode.
+ * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
+ * ASIs <= 0x2f are super mode.
+ */
+ if (asi < 0x80
+ && !cpu_hypervisor_mode(env)
+ && (!cpu_supervisor_mode(env)
+ || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
+ cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
+ }
+}
+#endif /* !CONFIG_USER_ONLY */
#endif
static void do_check_align(CPUSPARCState *env, target_ulong addr,
}
#endif
+#ifndef CONFIG_USER_ONLY
+#ifndef TARGET_SPARC64
+static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
+ bool is_write, bool is_exec, int is_asi,
+ unsigned size, uintptr_t retaddr)
+{
+ SPARCCPU *cpu = SPARC_CPU(cs);
+ CPUSPARCState *env = &cpu->env;
+ int fault_type;
+
+#ifdef DEBUG_UNASSIGNED
+ if (is_asi) {
+ printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+ " asi 0x%02x from " TARGET_FMT_lx "\n",
+ is_exec ? "exec" : is_write ? "write" : "read", size,
+ size == 1 ? "" : "s", addr, is_asi, env->pc);
+ } else {
+ printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+ " from " TARGET_FMT_lx "\n",
+ is_exec ? "exec" : is_write ? "write" : "read", size,
+ size == 1 ? "" : "s", addr, env->pc);
+ }
+#endif
+ /* Don't overwrite translation and access faults */
+ fault_type = (env->mmuregs[3] & 0x1c) >> 2;
+ if ((fault_type > 4) || (fault_type == 0)) {
+ env->mmuregs[3] = 0; /* Fault status register */
+ if (is_asi) {
+ env->mmuregs[3] |= 1 << 16;
+ }
+ if (env->psrs) {
+ env->mmuregs[3] |= 1 << 5;
+ }
+ if (is_exec) {
+ env->mmuregs[3] |= 1 << 6;
+ }
+ if (is_write) {
+ env->mmuregs[3] |= 1 << 7;
+ }
+ env->mmuregs[3] |= (5 << 2) | 2;
+ /* SuperSPARC will never place instruction fault addresses in the FAR */
+ if (!is_exec) {
+ env->mmuregs[4] = addr; /* Fault address register */
+ }
+ }
+ /* overflow (same type fault was not read before another fault) */
+ if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
+ env->mmuregs[3] |= 1;
+ }
+
+ if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
+ int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
+ cpu_raise_exception_ra(env, tt, retaddr);
+ }
+
+ /*
+ * flush neverland mappings created during no-fault mode,
+ * so the sequential MMU faults report proper fault types
+ */
+ if (env->mmuregs[0] & MMU_NF) {
+ tlb_flush(cs);
+ }
+}
+#else
+static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
+ bool is_write, bool is_exec, int is_asi,
+ unsigned size, uintptr_t retaddr)
+{
+ SPARCCPU *cpu = SPARC_CPU(cs);
+ CPUSPARCState *env = &cpu->env;
+
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
+ "\n", addr, env->pc);
+#endif
+
+ if (is_exec) { /* XXX has_hypervisor */
+ if (env->lsu & (IMMU_E)) {
+ cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
+ } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
+ cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
+ }
+ } else {
+ if (env->lsu & (DMMU_E)) {
+ cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
+ } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
+ cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
+ }
+ }
+}
+#endif
+#endif
+
#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY
{
int size = 1 << (memop & MO_SIZE);
int sign = memop & MO_SIGN;
- CPUState *cs = CPU(sparc_env_get_cpu(env));
+ CPUState *cs = env_cpu(env);
uint64_t ret = 0;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
uint32_t last_addr = addr;
case 0x00: /* Leon3 Cache Control */
case 0x08: /* Leon3 Instruction Cache config */
case 0x0C: /* Leon3 Date Cache config */
- if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+ if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
ret = leon3_cache_control_ld(env, addr, size);
}
break;
case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+ {
+ MemTxResult result;
+ hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
+
switch (size) {
case 1:
- ret = ldub_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32));
+ ret = address_space_ldub(cs->as, access_addr,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
case 2:
- ret = lduw_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32));
+ ret = address_space_lduw(cs->as, access_addr,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
default:
case 4:
- ret = ldl_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32));
+ ret = address_space_ldl(cs->as, access_addr,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
case 8:
- ret = ldq_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32));
+ ret = address_space_ldq(cs->as, access_addr,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
}
+
+ if (result != MEMTX_OK) {
+ sparc_raise_mmu_fault(cs, access_addr, false, false, false,
+ size, GETPC());
+ }
break;
+ }
case 0x30: /* Turbosparc secondary cache diagnostic */
case 0x31: /* Turbosparc RAM snoop */
case 0x32: /* Turbosparc page table descriptor diagnostic */
break;
case ASI_USERTXT: /* User code access, XXX */
default:
- cpu_unassigned_access(cs, addr, false, false, asi, size);
+ sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
ret = 0;
break;
int asi, uint32_t memop)
{
int size = 1 << (memop & MO_SIZE);
- SPARCCPU *cpu = sparc_env_get_cpu(env);
- CPUState *cs = CPU(cpu);
+ CPUState *cs = env_cpu(env);
do_check_align(env, addr, size - 1, GETPC());
switch (asi) {
case 0x00: /* Leon3 Cache Control */
case 0x08: /* Leon3 Instruction Cache config */
case 0x0C: /* Leon3 Date Cache config */
- if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+ if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
leon3_cache_control_st(env, addr, val, size);
}
break;
}
break;
case 0x01c00100: /* MXCC stream source */
+ {
+ int i;
+
if (size == 8) {
env->mxccregs[0] = val;
} else {
"%08x: unimplemented access size: %d\n", addr,
size);
}
- env->mxccdata[0] = ldq_phys(cs->as,
- (env->mxccregs[0] & 0xffffffffULL) +
- 0);
- env->mxccdata[1] = ldq_phys(cs->as,
- (env->mxccregs[0] & 0xffffffffULL) +
- 8);
- env->mxccdata[2] = ldq_phys(cs->as,
- (env->mxccregs[0] & 0xffffffffULL) +
- 16);
- env->mxccdata[3] = ldq_phys(cs->as,
- (env->mxccregs[0] & 0xffffffffULL) +
- 24);
+
+ for (i = 0; i < 4; i++) {
+ MemTxResult result;
+ hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
+
+ env->mxccdata[i] = address_space_ldq(cs->as,
+ access_addr,
+ MEMTXATTRS_UNSPECIFIED,
+ &result);
+ if (result != MEMTX_OK) {
+ /* TODO: investigate whether this is the right behaviour */
+ sparc_raise_mmu_fault(cs, access_addr, false, false,
+ false, size, GETPC());
+ }
+ }
break;
+ }
case 0x01c00200: /* MXCC stream destination */
+ {
+ int i;
+
if (size == 8) {
env->mxccregs[1] = val;
} else {
"%08x: unimplemented access size: %d\n", addr,
size);
}
- stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 0,
- env->mxccdata[0]);
- stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 8,
- env->mxccdata[1]);
- stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
- env->mxccdata[2]);
- stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
- env->mxccdata[3]);
+
+ for (i = 0; i < 4; i++) {
+ MemTxResult result;
+ hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
+
+ address_space_stq(cs->as, access_addr, env->mxccdata[i],
+ MEMTXATTRS_UNSPECIFIED, &result);
+
+ if (result != MEMTX_OK) {
+ /* TODO: investigate whether this is the right behaviour */
+ sparc_raise_mmu_fault(cs, access_addr, true, false,
+ false, size, GETPC());
+ }
+ }
break;
+ }
case 0x01c00a00: /* MXCC control register */
if (size == 8) {
env->mxccregs[3] = val;
DPRINTF_MMU("mmu flush level %d\n", mmulev);
switch (mmulev) {
case 0: /* flush page */
- tlb_flush_page(CPU(cpu), addr & 0xfffff000);
+ tlb_flush_page(cs, addr & 0xfffff000);
break;
case 1: /* flush segment (256k) */
case 2: /* flush region (16M) */
case 3: /* flush context (4G) */
case 4: /* flush entire */
- tlb_flush(CPU(cpu), 1);
+ tlb_flush(cs);
break;
default:
break;
}
#ifdef DEBUG_MMU
- dump_mmu(stdout, fprintf, env);
+ dump_mmu(env);
#endif
}
break;
/* Mappings generated during no-fault mode
are invalid in normal mode. */
if ((oldreg ^ env->mmuregs[reg])
- & (MMU_NF | env->def->mmu_bm)) {
- tlb_flush(CPU(cpu), 1);
+ & (MMU_NF | env->def.mmu_bm)) {
+ tlb_flush(cs);
}
break;
case 1: /* Context Table Pointer Register */
- env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
+ env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
break;
case 2: /* Context Register */
- env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
+ env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
- tlb_flush(CPU(cpu), 1);
+ tlb_flush(cs);
}
break;
case 3: /* Synchronous Fault Status Register with Clear */
case 4: /* Synchronous Fault Address Register */
break;
case 0x10: /* TLB Replacement Control Register */
- env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
+ env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
break;
case 0x13: /* Synchronous Fault Status Register with Read
and Clear */
- env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
+ env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
break;
case 0x14: /* Synchronous Fault Address Register */
env->mmuregs[4] = val;
reg, oldreg, env->mmuregs[reg]);
}
#ifdef DEBUG_MMU
- dump_mmu(stdout, fprintf, env);
+ dump_mmu(env);
#endif
}
break;
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
{
+ MemTxResult result;
+ hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
+
switch (size) {
case 1:
- stb_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32), val);
+ address_space_stb(cs->as, access_addr, val,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
case 2:
- stw_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32), val);
+ address_space_stw(cs->as, access_addr, val,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
case 4:
default:
- stl_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32), val);
+ address_space_stl(cs->as, access_addr, val,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
case 8:
- stq_phys(cs->as, (hwaddr)addr
- | ((hwaddr)(asi & 0xf) << 32), val);
+ address_space_stq(cs->as, access_addr, val,
+ MEMTXATTRS_UNSPECIFIED, &result);
break;
}
+ if (result != MEMTX_OK) {
+ sparc_raise_mmu_fault(cs, access_addr, true, false, false,
+ size, GETPC());
+ }
}
break;
case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
case ASI_USERTXT: /* User code access, XXX */
case ASI_KERNELTXT: /* Supervisor code access, XXX */
default:
- cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
- addr, true, false, asi, size);
+ sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
break;
case ASI_USERDATA: /* User data access */
{
int size = 1 << (memop & MO_SIZE);
int sign = memop & MO_SIGN;
- CPUState *cs = CPU(sparc_env_get_cpu(env));
+ CPUState *cs = env_cpu(env);
uint64_t ret = 0;
#if defined(DEBUG_ASI)
target_ulong last_addr = addr;
asi &= 0xff;
- if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
- || (cpu_has_hypervisor(env)
- && asi >= 0x30 && asi < 0x80
- && !(env->hpstate & HS_PRIV))) {
- cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
- }
-
+ do_check_asi(env, asi, GETPC());
do_check_align(env, addr, size - 1, GETPC());
addr = asi_address_mask(env, asi, addr);
case ASI_IMMU: /* I-MMU regs */
{
int reg = (addr >> 3) & 0xf;
-
- if (reg == 0) {
- /* I-TSB Tag Target register */
+ switch (reg) {
+ case 0:
+ /* 0x00 I-TSB Tag Target register */
ret = ultrasparc_tag_target(env->immu.tag_access);
- } else {
- ret = env->immuregs[reg];
+ break;
+ case 3: /* SFSR */
+ ret = env->immu.sfsr;
+ break;
+ case 5: /* TSB access */
+ ret = env->immu.tsb;
+ break;
+ case 6:
+ /* 0x30 I-TSB Tag Access register */
+ ret = env->immu.tag_access;
+ break;
+ default:
+ sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
+ ret = 0;
}
-
break;
}
case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
{
/* env->immuregs[5] holds I-MMU TSB register value
env->immuregs[6] holds I-MMU Tag Access register value */
- ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
- 8*1024);
+ ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
break;
}
case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
{
/* env->immuregs[5] holds I-MMU TSB register value
env->immuregs[6] holds I-MMU Tag Access register value */
- ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
- 64*1024);
+ ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
break;
}
case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
case ASI_DMMU: /* D-MMU regs */
{
int reg = (addr >> 3) & 0xf;
-
- if (reg == 0) {
- /* D-TSB Tag Target register */
+ switch (reg) {
+ case 0:
+ /* 0x00 D-TSB Tag Target register */
ret = ultrasparc_tag_target(env->dmmu.tag_access);
- } else {
- ret = env->dmmuregs[reg];
+ break;
+ case 1: /* 0x08 Primary Context */
+ ret = env->dmmu.mmu_primary_context;
+ break;
+ case 2: /* 0x10 Secondary Context */
+ ret = env->dmmu.mmu_secondary_context;
+ break;
+ case 3: /* SFSR */
+ ret = env->dmmu.sfsr;
+ break;
+ case 4: /* 0x20 SFAR */
+ ret = env->dmmu.sfar;
+ break;
+ case 5: /* 0x28 TSB access */
+ ret = env->dmmu.tsb;
+ break;
+ case 6: /* 0x30 D-TSB Tag Access register */
+ ret = env->dmmu.tag_access;
+ break;
+ case 7:
+ ret = env->dmmu.virtual_watchpoint;
+ break;
+ case 8:
+ ret = env->dmmu.physical_watchpoint;
+ break;
+ default:
+ sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
+ ret = 0;
}
break;
}
{
/* env->dmmuregs[5] holds D-MMU TSB register value
env->dmmuregs[6] holds D-MMU Tag Access register value */
- ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
- 8*1024);
+ ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
break;
}
case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
{
/* env->dmmuregs[5] holds D-MMU TSB register value
env->dmmuregs[6] holds D-MMU Tag Access register value */
- ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
- 64*1024);
+ ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
break;
}
case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
}
break;
}
+ case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
+ if (unlikely((addr >= 0x20) && (addr < 0x30))) {
+ /* Hyperprivileged access only */
+ sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
+ }
+ /* fall through */
+ case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
+ {
+ unsigned int i = (addr >> 3) & 0x7;
+ ret = env->scratch[i];
+ break;
+ }
+ case ASI_MMU: /* UA2005 Context ID registers */
+ switch ((addr >> 3) & 0x3) {
+ case 1:
+ ret = env->dmmu.mmu_primary_context;
+ break;
+ case 2:
+ ret = env->dmmu.mmu_secondary_context;
+ break;
+ default:
+ sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
+ }
+ break;
case ASI_DCACHE_DATA: /* D-cache data */
case ASI_DCACHE_TAG: /* D-cache tag access */
case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
case ASI_DMMU_DEMAP: /* D-MMU demap, WO */
case ASI_INTR_W: /* Interrupt vector, WO */
default:
- cpu_unassigned_access(cs, addr, false, false, 1, size);
+ sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
ret = 0;
break;
}
int asi, uint32_t memop)
{
int size = 1 << (memop & MO_SIZE);
- SPARCCPU *cpu = sparc_env_get_cpu(env);
- CPUState *cs = CPU(cpu);
+ CPUState *cs = env_cpu(env);
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
asi &= 0xff;
- if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
- || (cpu_has_hypervisor(env)
- && asi >= 0x30 && asi < 0x80
- && !(env->hpstate & HS_PRIV))) {
- cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
- }
-
+ do_check_asi(env, asi, GETPC());
do_check_align(env, addr, size - 1, GETPC());
addr = asi_address_mask(env, asi, addr);
case ASI_TWINX_SL: /* Secondary, twinx, LE */
/* These are always handled inline. */
g_assert_not_reached();
-
+ /* these ASIs have different functions on UltraSPARC-IIIi
+ * and UA2005 CPUs. Use the explicit numbers to avoid confusion
+ */
+ case 0x31:
+ case 0x32:
+ case 0x39:
+ case 0x3a:
+ if (cpu_has_hypervisor(env)) {
+ /* UA2005
+ * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
+ * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
+ * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
+ * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
+ */
+ int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
+ env->dmmu.sun4v_tsb_pointers[idx] = val;
+ } else {
+ helper_raise_exception(env, TT_ILL_INSN);
+ }
+ break;
+ case 0x33:
+ case 0x3b:
+ if (cpu_has_hypervisor(env)) {
+ /* UA2005
+ * ASI_DMMU_CTX_ZERO_CONFIG
+ * ASI_DMMU_CTX_NONZERO_CONFIG
+ */
+ env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
+ } else {
+ helper_raise_exception(env, TT_ILL_INSN);
+ }
+ break;
+ case 0x35:
+ case 0x36:
+ case 0x3d:
+ case 0x3e:
+ if (cpu_has_hypervisor(env)) {
+ /* UA2005
+ * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
+ * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
+ * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
+ * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
+ */
+ int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
+ env->immu.sun4v_tsb_pointers[idx] = val;
+ } else {
+ helper_raise_exception(env, TT_ILL_INSN);
+ }
+ break;
+ case 0x37:
+ case 0x3f:
+ if (cpu_has_hypervisor(env)) {
+ /* UA2005
+ * ASI_IMMU_CTX_ZERO_CONFIG
+ * ASI_IMMU_CTX_NONZERO_CONFIG
+ */
+ env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
+ } else {
+ helper_raise_exception(env, TT_ILL_INSN);
+ }
+ break;
case ASI_UPA_CONFIG: /* UPA config */
/* XXX */
return;
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
- oldreg = env->immuregs[reg];
+ oldreg = env->immu.mmuregs[reg];
switch (reg) {
case 0: /* RO */
return;
case 8:
return;
default:
+ sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
break;
}
- if (oldreg != env->immuregs[reg]) {
+ if (oldreg != env->immu.mmuregs[reg]) {
DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
}
#ifdef DEBUG_MMU
- dump_mmu(stdout, fprintf, env);
+ dump_mmu(env);
#endif
return;
}
case ASI_ITLB_DATA_IN: /* I-MMU data in */
- replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
+ /* ignore real translation entries */
+ if (!(addr & TLB_UST1_IS_REAL_BIT)) {
+ replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
+ val, "immu", env, addr);
+ }
return;
case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
{
unsigned int i = (addr >> 3) & 0x3f;
- replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
-
+ /* ignore real translation entries */
+ if (!(addr & TLB_UST1_IS_REAL_BIT)) {
+ replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
+ sun4v_tte_to_sun4u(env, addr, val), env);
+ }
#ifdef DEBUG_MMU
DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
- dump_mmu(stdout, fprintf, env);
+ dump_mmu(env);
#endif
return;
}
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
- oldreg = env->dmmuregs[reg];
+ oldreg = env->dmmu.mmuregs[reg];
switch (reg) {
case 0: /* RO */
case 4:
env->dmmu.mmu_primary_context = val;
/* can be optimized to only flush MMU_USER_IDX
and MMU_KERNEL_IDX entries */
- tlb_flush(CPU(cpu), 1);
+ tlb_flush(cs);
break;
case 2: /* Secondary context */
env->dmmu.mmu_secondary_context = val;
/* can be optimized to only flush MMU_USER_SECONDARY_IDX
and MMU_KERNEL_SECONDARY_IDX entries */
- tlb_flush(CPU(cpu), 1);
+ tlb_flush(cs);
break;
case 5: /* TSB access */
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
env->dmmu.tag_access = val;
break;
case 7: /* Virtual Watchpoint */
+ env->dmmu.virtual_watchpoint = val;
+ break;
case 8: /* Physical Watchpoint */
+ env->dmmu.physical_watchpoint = val;
+ break;
default:
- env->dmmuregs[reg] = val;
+ sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
break;
}
- if (oldreg != env->dmmuregs[reg]) {
+ if (oldreg != env->dmmu.mmuregs[reg]) {
DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
}
#ifdef DEBUG_MMU
- dump_mmu(stdout, fprintf, env);
+ dump_mmu(env);
#endif
return;
}
case ASI_DTLB_DATA_IN: /* D-MMU data in */
- replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
- return;
+ /* ignore real translation entries */
+ if (!(addr & TLB_UST1_IS_REAL_BIT)) {
+ replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
+ val, "dmmu", env, addr);
+ }
+ return;
case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
{
unsigned int i = (addr >> 3) & 0x3f;
- replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
-
+ /* ignore real translation entries */
+ if (!(addr & TLB_UST1_IS_REAL_BIT)) {
+ replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
+ sun4v_tte_to_sun4u(env, addr, val), env);
+ }
#ifdef DEBUG_MMU
DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
- dump_mmu(stdout, fprintf, env);
+ dump_mmu(env);
#endif
return;
}
case ASI_INTR_RECEIVE: /* Interrupt data receive */
env->ivec_status = val & 0x20;
return;
+ case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
+ if (unlikely((addr >= 0x20) && (addr < 0x30))) {
+ /* Hyperprivileged access only */
+ sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
+ }
+ /* fall through */
+ case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
+ {
+ unsigned int i = (addr >> 3) & 0x7;
+ env->scratch[i] = val;
+ return;
+ }
+ case ASI_MMU: /* UA2005 Context ID registers */
+ {
+ switch ((addr >> 3) & 0x3) {
+ case 1:
+ env->dmmu.mmu_primary_context = val;
+ env->immu.mmu_primary_context = val;
+ tlb_flush_by_mmuidx(cs,
+ (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
+ break;
+ case 2:
+ env->dmmu.mmu_secondary_context = val;
+ env->immu.mmu_secondary_context = val;
+ tlb_flush_by_mmuidx(cs,
+ (1 << MMU_USER_SECONDARY_IDX) |
+ (1 << MMU_KERNEL_SECONDARY_IDX));
+ break;
+ default:
+ sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
+ }
+ }
+ return;
+ case ASI_QUEUE: /* UA2005 CPU mondo queue */
case ASI_DCACHE_DATA: /* D-cache data */
case ASI_DCACHE_TAG: /* D-cache tag access */
case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
case ASI_PNFL: /* Primary no-fault LE, RO */
case ASI_SNFL: /* Secondary no-fault LE, RO */
default:
- cpu_unassigned_access(cs, addr, true, false, 1, size);
+ sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
return;
}
}
#endif /* TARGET_SPARC64 */
#if !defined(CONFIG_USER_ONLY)
-#ifndef TARGET_SPARC64
-void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
- bool is_write, bool is_exec, int is_asi,
- unsigned size)
-{
- SPARCCPU *cpu = SPARC_CPU(cs);
- CPUSPARCState *env = &cpu->env;
- int fault_type;
-
-#ifdef DEBUG_UNASSIGNED
- if (is_asi) {
- printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
- " asi 0x%02x from " TARGET_FMT_lx "\n",
- is_exec ? "exec" : is_write ? "write" : "read", size,
- size == 1 ? "" : "s", addr, is_asi, env->pc);
- } else {
- printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
- " from " TARGET_FMT_lx "\n",
- is_exec ? "exec" : is_write ? "write" : "read", size,
- size == 1 ? "" : "s", addr, env->pc);
- }
-#endif
- /* Don't overwrite translation and access faults */
- fault_type = (env->mmuregs[3] & 0x1c) >> 2;
- if ((fault_type > 4) || (fault_type == 0)) {
- env->mmuregs[3] = 0; /* Fault status register */
- if (is_asi) {
- env->mmuregs[3] |= 1 << 16;
- }
- if (env->psrs) {
- env->mmuregs[3] |= 1 << 5;
- }
- if (is_exec) {
- env->mmuregs[3] |= 1 << 6;
- }
- if (is_write) {
- env->mmuregs[3] |= 1 << 7;
- }
- env->mmuregs[3] |= (5 << 2) | 2;
- /* SuperSPARC will never place instruction fault addresses in the FAR */
- if (!is_exec) {
- env->mmuregs[4] = addr; /* Fault address register */
- }
- }
- /* overflow (same type fault was not read before another fault) */
- if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
- env->mmuregs[3] |= 1;
- }
-
- if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
- int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
- cpu_raise_exception_ra(env, tt, GETPC());
- }
- /* flush neverland mappings created during no-fault mode,
- so the sequential MMU faults report proper fault types */
- if (env->mmuregs[0] & MMU_NF) {
- tlb_flush(cs, 1);
- }
-}
-#else
-void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
- bool is_write, bool is_exec, int is_asi,
- unsigned size)
+void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
+ vaddr addr, unsigned size,
+ MMUAccessType access_type,
+ int mmu_idx, MemTxAttrs attrs,
+ MemTxResult response, uintptr_t retaddr)
{
- SPARCCPU *cpu = SPARC_CPU(cs);
- CPUSPARCState *env = &cpu->env;
- int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
+ bool is_write = access_type == MMU_DATA_STORE;
+ bool is_exec = access_type == MMU_INST_FETCH;
+ bool is_asi = false;
-#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
- "\n", addr, env->pc);
-#endif
-
- cpu_raise_exception_ra(env, tt, GETPC());
+ sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
+ is_asi, size, retaddr);
}
#endif
-#endif
#if !defined(CONFIG_USER_ONLY)
void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
#endif
cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
}
-
-/* try to fill the TLB and return an exception if error. If retaddr is
- NULL, it means that the function was called in C code (i.e. not
- from generated code or from helper.c) */
-/* XXX: fix it to restore all registers */
-void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
- int mmu_idx, uintptr_t retaddr)
-{
- int ret;
-
- ret = sparc_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
- if (ret) {
- cpu_loop_exit_restore(cs, retaddr);
- }
-}
#endif