-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
#include "cpu.h"
#include "gdbstub.h"
#include "helper.h"
-#include "qemu-common.h"
#include "host-utils.h"
-#if !defined(CONFIG_USER_ONLY)
-#include "hw/loader.h"
-#endif
#include "sysemu.h"
-static uint32_t cortexa15_cp15_c0_c1[8] = {
- 0x00001131, 0x00011011, 0x02010555, 0x00000000,
- 0x10201105, 0x20000000, 0x01240000, 0x02102211
-};
+#ifndef CONFIG_USER_ONLY
+static inline int get_phys_addr(CPUARMState *env, uint32_t address,
+ int access_type, int is_user,
+ uint32_t *phys_ptr, int *prot,
+ target_ulong *page_size);
+#endif
-static uint32_t cortexa15_cp15_c0_c2[8] = {
- 0x02101110, 0x13112111, 0x21232041, 0x11112131, 0x10011142, 0, 0, 0
-};
+static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+ int nregs;
-static uint32_t cortexa9_cp15_c0_c1[8] =
-{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
+ /* VFP data registers are always little-endian. */
+ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
+ if (reg < nregs) {
+ stfq_le_p(buf, env->vfp.regs[reg]);
+ return 8;
+ }
+ if (arm_feature(env, ARM_FEATURE_NEON)) {
+ /* Aliases for Q regs. */
+ nregs += 16;
+ if (reg < nregs) {
+ stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
+ stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
+ return 16;
+ }
+ }
+ switch (reg - nregs) {
+ case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
+ case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
+ case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
+ }
+ return 0;
+}
-static uint32_t cortexa9_cp15_c0_c2[8] =
-{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
+static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
+{
+ int nregs;
-static uint32_t cortexa8_cp15_c0_c1[8] =
-{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
+ nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
+ if (reg < nregs) {
+ env->vfp.regs[reg] = ldfq_le_p(buf);
+ return 8;
+ }
+ if (arm_feature(env, ARM_FEATURE_NEON)) {
+ nregs += 16;
+ if (reg < nregs) {
+ env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
+ env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
+ return 16;
+ }
+ }
+ switch (reg - nregs) {
+ case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
+ case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
+ case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
+ }
+ return 0;
+}
-static uint32_t cortexa8_cp15_c0_c2[8] =
-{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
+static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ env->cp15.c3 = value;
+ tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
+ return 0;
+}
-static uint32_t mpcore_cp15_c0_c1[8] =
-{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
+static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ if (env->cp15.c13_fcse != value) {
+ /* Unlike real hardware the qemu TLB uses virtual addresses,
+ * not modified virtual addresses, so this causes a TLB flush.
+ */
+ tlb_flush(env, 1);
+ env->cp15.c13_fcse = value;
+ }
+ return 0;
+}
+static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
+ /* For VMSA (when not using the LPAE long descriptor page table
+ * format) this register includes the ASID, so do a TLB flush.
+ * For PMSA it is purely a process ID and no action is needed.
+ */
+ tlb_flush(env, 1);
+ }
+ env->cp15.c13_context = value;
+ return 0;
+}
-static uint32_t mpcore_cp15_c0_c2[8] =
-{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
+static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate all (TLBIALL) */
+ tlb_flush(env, 1);
+ return 0;
+}
-static uint32_t arm1136_cp15_c0_c1[8] =
-{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
+static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
+ tlb_flush_page(env, value & TARGET_PAGE_MASK);
+ return 0;
+}
-static uint32_t arm1136_cp15_c0_c2[8] =
-{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
+static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate by ASID (TLBIASID) */
+ tlb_flush(env, value == 0);
+ return 0;
+}
-static uint32_t arm1176_cp15_c0_c1[8] =
-{ 0x111, 0x11, 0x33, 0, 0x01130003, 0x10030302, 0x01222100, 0 };
+static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
+ tlb_flush_page(env, value & TARGET_PAGE_MASK);
+ return 0;
+}
+
+static const ARMCPRegInfo cp_reginfo[] = {
+ /* DBGDIDR: just RAZ. In particular this means the "debug architecture
+ * version" bits will read as a reserved value, which should cause
+ * Linux to not try to use the debug hardware.
+ */
+ { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* MMU Domain access control / MPU write buffer control */
+ { .name = "DACR", .cp = 15,
+ .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
+ .resetvalue = 0, .writefn = dacr_write },
+ { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
+ .resetvalue = 0, .writefn = fcse_write },
+ { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
+ .resetvalue = 0, .writefn = contextidr_write },
+ /* ??? This covers not just the impdef TLB lockdown registers but also
+ * some v7VMSA registers relating to TEX remap, so it is overly broad.
+ */
+ { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
+ /* MMU TLB control. Note that the wildcarding means we cover not just
+ * the unified TLB ops but also the dside/iside/inner-shareable variants.
+ */
+ { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
+ { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
+ { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
+ { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
+ /* Cache maintenance ops; some of this space may be overridden later. */
+ { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+ .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
+ .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
+ REGINFO_SENTINEL
+};
-static uint32_t arm1176_cp15_c0_c2[8] =
-{ 0x0140011, 0x12002111, 0x11231121, 0x01102131, 0x01141, 0, 0, 0 };
+static const ARMCPRegInfo not_v6_cp_reginfo[] = {
+ /* Not all pre-v6 cores implemented this WFI, so this is slightly
+ * over-broad.
+ */
+ { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
+ .access = PL1_W, .type = ARM_CP_WFI },
+ REGINFO_SENTINEL
+};
-static uint32_t cpu_arm_find_by_name(const char *name);
+static const ARMCPRegInfo not_v7_cp_reginfo[] = {
+ /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
+ * is UNPREDICTABLE; we choose to NOP as most implementations do).
+ */
+ { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_W, .type = ARM_CP_WFI },
+ /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
+ * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
+ * OMAPCP will override this space.
+ */
+ { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
+ .resetvalue = 0 },
+ { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
+ .resetvalue = 0 },
+ /* v6 doesn't have the cache ID registers but Linux reads them anyway */
+ { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
-static inline void set_feature(CPUARMState *env, int feature)
+static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
- env->features |= 1u << feature;
+ if (env->cp15.c1_coproc != value) {
+ env->cp15.c1_coproc = value;
+ /* ??? Is this safe when called from within a TB? */
+ tb_flush(env);
+ }
+ return 0;
}
-static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
+static const ARMCPRegInfo v6_cp_reginfo[] = {
+ /* prefetch by MVA in v6, NOP in v7 */
+ { .name = "MVA_prefetch",
+ .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
+ .resetvalue = 0, },
+ /* Watchpoint Fault Address Register : should actually only be present
+ * for 1136, 1176, 11MPCore.
+ */
+ { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
+ { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
+ .resetvalue = 0, .writefn = cpacr_write },
+ REGINFO_SENTINEL
+};
+
+static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
{
- env->cp15.c0_cpuid = id;
- switch (id) {
- case ARM_CPUID_ARM926:
- set_feature(env, ARM_FEATURE_V5);
- set_feature(env, ARM_FEATURE_VFP);
- env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
- env->cp15.c0_cachetype = 0x1dd20d2;
- env->cp15.c1_sys = 0x00090078;
- break;
- case ARM_CPUID_ARM946:
- set_feature(env, ARM_FEATURE_V5);
- set_feature(env, ARM_FEATURE_MPU);
- env->cp15.c0_cachetype = 0x0f004006;
- env->cp15.c1_sys = 0x00000078;
- break;
- case ARM_CPUID_ARM1026:
- set_feature(env, ARM_FEATURE_V5);
- set_feature(env, ARM_FEATURE_VFP);
- set_feature(env, ARM_FEATURE_AUXCR);
- env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
- env->cp15.c0_cachetype = 0x1dd20d2;
- env->cp15.c1_sys = 0x00090078;
- break;
- case ARM_CPUID_ARM1136:
- /* This is the 1136 r1, which is a v6K core */
- set_feature(env, ARM_FEATURE_V6K);
- /* Fall through */
- case ARM_CPUID_ARM1136_R2:
- /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
- * older core than plain "arm1136". In particular this does not
- * have the v6K features.
- */
- set_feature(env, ARM_FEATURE_V6);
- set_feature(env, ARM_FEATURE_VFP);
- /* These ID register values are correct for 1136 but may be wrong
- * for 1136_r2 (in particular r0p2 does not actually implement most
- * of the ID registers).
- */
- env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
- env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
- env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
- memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
- memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
- env->cp15.c0_cachetype = 0x1dd20d2;
- env->cp15.c1_sys = 0x00050078;
- break;
- case ARM_CPUID_ARM1176:
- set_feature(env, ARM_FEATURE_V6K);
- set_feature(env, ARM_FEATURE_VFP);
- set_feature(env, ARM_FEATURE_VAPA);
- env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b5;
- env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
- env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
- memcpy(env->cp15.c0_c1, arm1176_cp15_c0_c1, 8 * sizeof(uint32_t));
- memcpy(env->cp15.c0_c2, arm1176_cp15_c0_c2, 8 * sizeof(uint32_t));
- env->cp15.c0_cachetype = 0x1dd20d2;
- env->cp15.c1_sys = 0x00050078;
- break;
- case ARM_CPUID_ARM11MPCORE:
- set_feature(env, ARM_FEATURE_V6K);
- set_feature(env, ARM_FEATURE_VFP);
- set_feature(env, ARM_FEATURE_VAPA);
- env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
- env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
- env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
- memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
- memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
- env->cp15.c0_cachetype = 0x1dd20d2;
- break;
- case ARM_CPUID_CORTEXA8:
- set_feature(env, ARM_FEATURE_V7);
- set_feature(env, ARM_FEATURE_VFP3);
- set_feature(env, ARM_FEATURE_NEON);
- set_feature(env, ARM_FEATURE_THUMB2EE);
- env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
- env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
- env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
- memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
- memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
- env->cp15.c0_cachetype = 0x82048004;
- env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
- env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
- env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
- env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
- env->cp15.c1_sys = 0x00c50078;
- break;
- case ARM_CPUID_CORTEXA9:
- set_feature(env, ARM_FEATURE_V7);
- set_feature(env, ARM_FEATURE_VFP3);
- set_feature(env, ARM_FEATURE_VFP_FP16);
- set_feature(env, ARM_FEATURE_NEON);
- set_feature(env, ARM_FEATURE_THUMB2EE);
- /* Note that A9 supports the MP extensions even for
- * A9UP and single-core A9MP (which are both different
- * and valid configurations; we don't model A9UP).
- */
- set_feature(env, ARM_FEATURE_V7MP);
- env->vfp.xregs[ARM_VFP_FPSID] = 0x41033090;
- env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
- env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
- memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
- memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
- env->cp15.c0_cachetype = 0x80038003;
- env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
- env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
- env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
- env->cp15.c1_sys = 0x00c50078;
- break;
- case ARM_CPUID_CORTEXA15:
- set_feature(env, ARM_FEATURE_V7);
- set_feature(env, ARM_FEATURE_VFP4);
- set_feature(env, ARM_FEATURE_VFP_FP16);
- set_feature(env, ARM_FEATURE_NEON);
- set_feature(env, ARM_FEATURE_THUMB2EE);
- set_feature(env, ARM_FEATURE_ARM_DIV);
- set_feature(env, ARM_FEATURE_V7MP);
- set_feature(env, ARM_FEATURE_GENERIC_TIMER);
- env->vfp.xregs[ARM_VFP_FPSID] = 0x410430f0;
- env->vfp.xregs[ARM_VFP_MVFR0] = 0x10110222;
- env->vfp.xregs[ARM_VFP_MVFR1] = 0x11111111;
- memcpy(env->cp15.c0_c1, cortexa15_cp15_c0_c1, 8 * sizeof(uint32_t));
- memcpy(env->cp15.c0_c2, cortexa15_cp15_c0_c2, 8 * sizeof(uint32_t));
- env->cp15.c0_cachetype = 0x8444c004;
- env->cp15.c0_clid = 0x0a200023;
- env->cp15.c0_ccsid[0] = 0x701fe00a; /* 32K L1 dcache */
- env->cp15.c0_ccsid[1] = 0x201fe00a; /* 32K L1 icache */
- env->cp15.c0_ccsid[2] = 0x711fe07a; /* 4096K L2 unified cache */
- env->cp15.c1_sys = 0x00c50078;
- break;
- case ARM_CPUID_CORTEXM3:
- set_feature(env, ARM_FEATURE_V7);
- set_feature(env, ARM_FEATURE_M);
- break;
- case ARM_CPUID_ANY: /* For userspace emulation. */
- set_feature(env, ARM_FEATURE_V7);
- set_feature(env, ARM_FEATURE_VFP4);
- set_feature(env, ARM_FEATURE_VFP_FP16);
- set_feature(env, ARM_FEATURE_NEON);
- set_feature(env, ARM_FEATURE_THUMB2EE);
- set_feature(env, ARM_FEATURE_ARM_DIV);
- set_feature(env, ARM_FEATURE_V7MP);
- break;
- case ARM_CPUID_TI915T:
- case ARM_CPUID_TI925T:
- set_feature(env, ARM_FEATURE_V4T);
- set_feature(env, ARM_FEATURE_OMAPCP);
- env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring. */
- env->cp15.c0_cachetype = 0x5109149;
- env->cp15.c1_sys = 0x00000070;
- env->cp15.c15_i_max = 0x000;
- env->cp15.c15_i_min = 0xff0;
- break;
- case ARM_CPUID_PXA250:
- case ARM_CPUID_PXA255:
- case ARM_CPUID_PXA260:
- case ARM_CPUID_PXA261:
- case ARM_CPUID_PXA262:
- set_feature(env, ARM_FEATURE_V5);
- set_feature(env, ARM_FEATURE_XSCALE);
- /* JTAG_ID is ((id << 28) | 0x09265013) */
- env->cp15.c0_cachetype = 0xd172172;
- env->cp15.c1_sys = 0x00000078;
- break;
- case ARM_CPUID_PXA270_A0:
- case ARM_CPUID_PXA270_A1:
- case ARM_CPUID_PXA270_B0:
- case ARM_CPUID_PXA270_B1:
- case ARM_CPUID_PXA270_C0:
- case ARM_CPUID_PXA270_C5:
- set_feature(env, ARM_FEATURE_V5);
- set_feature(env, ARM_FEATURE_XSCALE);
- /* JTAG_ID is ((id << 28) | 0x09265013) */
- set_feature(env, ARM_FEATURE_IWMMXT);
- env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
- env->cp15.c0_cachetype = 0xd172172;
- env->cp15.c1_sys = 0x00000078;
- break;
- case ARM_CPUID_SA1100:
- case ARM_CPUID_SA1110:
- set_feature(env, ARM_FEATURE_STRONGARM);
- env->cp15.c1_sys = 0x00000070;
- break;
- default:
- cpu_abort(env, "Bad CPU ID: %x\n", id);
- break;
+ /* Generic performance monitor register read function for where
+ * user access may be allowed by PMUSERENR.
+ */
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
}
+ *value = CPREG_FIELD32(env, ri);
+ return 0;
+}
- /* Some features automatically imply others: */
- if (arm_feature(env, ARM_FEATURE_V7)) {
- set_feature(env, ARM_FEATURE_VAPA);
- set_feature(env, ARM_FEATURE_THUMB2);
- if (!arm_feature(env, ARM_FEATURE_M)) {
- set_feature(env, ARM_FEATURE_V6K);
- } else {
- set_feature(env, ARM_FEATURE_V6);
- }
- }
- if (arm_feature(env, ARM_FEATURE_V6K)) {
- set_feature(env, ARM_FEATURE_V6);
- }
- if (arm_feature(env, ARM_FEATURE_V6)) {
- set_feature(env, ARM_FEATURE_V5);
- if (!arm_feature(env, ARM_FEATURE_M)) {
- set_feature(env, ARM_FEATURE_AUXCR);
- }
+static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
}
- if (arm_feature(env, ARM_FEATURE_V5)) {
- set_feature(env, ARM_FEATURE_V4T);
+ /* only the DP, X, D and E bits are writable */
+ env->cp15.c9_pmcr &= ~0x39;
+ env->cp15.c9_pmcr |= (value & 0x39);
+ return 0;
+}
+
+static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
}
- if (arm_feature(env, ARM_FEATURE_M)) {
- set_feature(env, ARM_FEATURE_THUMB_DIV);
+ value &= (1 << 31);
+ env->cp15.c9_pmcnten |= value;
+ return 0;
+}
+
+static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
}
- if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
- set_feature(env, ARM_FEATURE_THUMB_DIV);
+ value &= (1 << 31);
+ env->cp15.c9_pmcnten &= ~value;
+ return 0;
+}
+
+static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
}
- if (arm_feature(env, ARM_FEATURE_VFP4)) {
- set_feature(env, ARM_FEATURE_VFP3);
+ env->cp15.c9_pmovsr &= ~value;
+ return 0;
+}
+
+static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
+ return EXCP_UDEF;
}
- if (arm_feature(env, ARM_FEATURE_VFP3)) {
- set_feature(env, ARM_FEATURE_VFP);
+ env->cp15.c9_pmxevtyper = value & 0xff;
+ return 0;
+}
+
+static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c9_pmuserenr = value & 1;
+ return 0;
+}
+
+static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* We have no event counters so only the C bit can be changed */
+ value &= (1 << 31);
+ env->cp15.c9_pminten |= value;
+ return 0;
+}
+
+static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= (1 << 31);
+ env->cp15.c9_pminten &= ~value;
+ return 0;
+}
+
+static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ *value = cpu->ccsidr[env->cp15.c0_cssel];
+ return 0;
+}
+
+static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c0_cssel = value & 0xf;
+ return 0;
+}
+
+static const ARMCPRegInfo v7_cp_reginfo[] = {
+ /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
+ * debug components
+ */
+ { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
+ { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_W, .type = ARM_CP_NOP },
+ /* Performance monitors are implementation defined in v7,
+ * but with an ARM recommended set of registers, which we
+ * follow (although we don't actually implement any counters)
+ *
+ * Performance registers fall into three categories:
+ * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
+ * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
+ * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
+ * For the cases controlled by PMUSERENR we must set .access to PL0_RW
+ * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
+ */
+ { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
+ .readfn = pmreg_read, .writefn = pmcntenset_write },
+ { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
+ .readfn = pmreg_read, .writefn = pmcntenclr_write },
+ { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
+ .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
+ .readfn = pmreg_read, .writefn = pmovsr_write },
+ /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
+ * respect PMUSERENR.
+ */
+ { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
+ .access = PL0_W, .type = ARM_CP_NOP },
+ /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
+ * We choose to RAZ/WI. XXX should respect PMUSERENR.
+ */
+ { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
+ .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* Unimplemented, RAZ/WI. XXX PMUSERENR */
+ { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
+ .access = PL0_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
+ .readfn = pmreg_read, .writefn = pmxevtyper_write },
+ /* Unimplemented, RAZ/WI. XXX PMUSERENR */
+ { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
+ .access = PL0_R | PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
+ .resetvalue = 0,
+ .writefn = pmuserenr_write },
+ { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .resetvalue = 0,
+ .writefn = pmintenset_write },
+ { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
+ .resetvalue = 0,
+ .writefn = pmintenclr_write },
+ { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
+ .resetvalue = 0, },
+ { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
+ .access = PL1_R, .readfn = ccsidr_read },
+ { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
+ .writefn = csselr_write, .resetvalue = 0 },
+ /* Auxiliary ID register: this actually has an IMPDEF value but for now
+ * just RAZ for all cores:
+ */
+ { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ value &= 1;
+ env->teecr = value;
+ return 0;
+}
+
+static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ /* This is a helper function because the user access rights
+ * depend on the value of the TEECR.
+ */
+ if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
+ return EXCP_UDEF;
}
+ *value = env->teehbr;
+ return 0;
}
-void cpu_reset(CPUARMState *env)
+static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
{
- uint32_t id;
- uint32_t tmp = 0;
+ if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
+ return EXCP_UDEF;
+ }
+ env->teehbr = value;
+ return 0;
+}
+
+static const ARMCPRegInfo t2ee_cp_reginfo[] = {
+ { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
+ .resetvalue = 0,
+ .writefn = teecr_write },
+ { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
+ .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
+ .resetvalue = 0,
+ .readfn = teehbr_read, .writefn = teehbr_write },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo v6k_cp_reginfo[] = {
+ { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL0_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
+ .resetvalue = 0 },
+ { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R|PL1_W,
+ .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
+ .resetvalue = 0 },
+ { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
+ .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
+ /* Dummy implementation: RAZ/WI the whole crn=14 space */
+ { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
- if (qemu_loglevel_mask(CPU_LOG_RESET)) {
- qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
- log_cpu_state(env, 0);
+static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ env->cp15.c7_par = value;
+ } else if (arm_feature(env, ARM_FEATURE_V7)) {
+ env->cp15.c7_par = value & 0xfffff6ff;
+ } else {
+ env->cp15.c7_par = value & 0xfffff1ff;
}
+ return 0;
+}
+
+#ifndef CONFIG_USER_ONLY
+/* get_phys_addr() isn't present for user-mode-only targets */
+static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ uint32_t phys_addr;
+ target_ulong page_size;
+ int prot;
+ int ret, is_user = ri->opc2 & 2;
+ int access_type = ri->opc2 & 1;
- id = env->cp15.c0_cpuid;
- tmp = env->cp15.c15_config_base_address;
- memset(env, 0, offsetof(CPUARMState, breakpoints));
- if (id)
- cpu_reset_model_id(env, id);
- env->cp15.c15_config_base_address = tmp;
-#if defined (CONFIG_USER_ONLY)
- env->uncached_cpsr = ARM_CPU_MODE_USR;
- /* For user mode we must enable access to coprocessors */
- env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
- if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
- env->cp15.c15_cpar = 3;
- } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
- env->cp15.c15_cpar = 1;
+ if (ri->opc2 & 4) {
+ /* Other states are only available with TrustZone */
+ return EXCP_UDEF;
}
-#else
- /* SVC mode with interrupts disabled. */
- env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
- /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
- clear at reset. Initial SP and PC are loaded from ROM. */
- if (IS_M(env)) {
- uint32_t pc;
- uint8_t *rom;
- env->uncached_cpsr &= ~CPSR_I;
- rom = rom_ptr(0);
- if (rom) {
- /* We should really use ldl_phys here, in case the guest
- modified flash and reset itself. However images
- loaded via -kernel have not been copied yet, so load the
- values directly from there. */
- env->regs[13] = ldl_p(rom);
- pc = ldl_p(rom + 4);
- env->thumb = pc & 1;
- env->regs[15] = pc & ~1;
+ ret = get_phys_addr(env, value, access_type, is_user,
+ &phys_addr, &prot, &page_size);
+ if (ret == 0) {
+ /* We do not set any attribute bits in the PAR */
+ if (page_size == (1 << 24)
+ && arm_feature(env, ARM_FEATURE_V7)) {
+ env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
+ } else {
+ env->cp15.c7_par = phys_addr & 0xfffff000;
}
+ } else {
+ env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
+ ((ret & (12 << 1)) >> 6) |
+ ((ret & 0xf) << 1) | 1;
}
- env->vfp.xregs[ARM_VFP_FPEXC] = 0;
- env->cp15.c2_base_mask = 0xffffc000u;
- /* v7 performance monitor control register: same implementor
- * field as main ID register, and we implement no event counters.
- */
- env->cp15.c9_pmcr = (id & 0xff000000);
+ env->cp15.c7_par_hi = 0;
+ return 0;
+}
#endif
- set_flush_to_zero(1, &env->vfp.standard_fp_status);
- set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
- set_default_nan_mode(1, &env->vfp.standard_fp_status);
- set_float_detect_tininess(float_tininess_before_rounding,
- &env->vfp.fp_status);
- set_float_detect_tininess(float_tininess_before_rounding,
- &env->vfp.standard_fp_status);
- tlb_flush(env, 1);
- /* Reset is a state change for some CPUState fields which we
- * bake assumptions about into translated code, so we need to
- * tb_flush().
- */
- tb_flush(env);
+
+static const ARMCPRegInfo vapa_cp_reginfo[] = {
+ { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
+ .writefn = par_write },
+#ifndef CONFIG_USER_ONLY
+ { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_W, .writefn = ats_write },
+#endif
+ REGINFO_SENTINEL
+};
+
+/* Return basic MPU access permission bits. */
+static uint32_t simple_mpu_ap_bits(uint32_t val)
+{
+ uint32_t ret;
+ uint32_t mask;
+ int i;
+ ret = 0;
+ mask = 3;
+ for (i = 0; i < 16; i += 2) {
+ ret |= (val >> i) & mask;
+ mask <<= 2;
+ }
+ return ret;
}
-static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
+/* Pad basic MPU access permission bits to extended format. */
+static uint32_t extended_mpu_ap_bits(uint32_t val)
{
- int nregs;
+ uint32_t ret;
+ uint32_t mask;
+ int i;
+ ret = 0;
+ mask = 3;
+ for (i = 0; i < 16; i += 2) {
+ ret |= (val & mask) << i;
+ mask <<= 2;
+ }
+ return ret;
+}
- /* VFP data registers are always little-endian. */
- nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
- if (reg < nregs) {
- stfq_le_p(buf, env->vfp.regs[reg]);
- return 8;
+static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c5_data = extended_mpu_ap_bits(value);
+ return 0;
+}
+
+static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = simple_mpu_ap_bits(env->cp15.c5_data);
+ return 0;
+}
+
+static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c5_insn = extended_mpu_ap_bits(value);
+ return 0;
+}
+
+static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = simple_mpu_ap_bits(env->cp15.c5_insn);
+ return 0;
+}
+
+static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ if (ri->crm > 8) {
+ return EXCP_UDEF;
}
- if (arm_feature(env, ARM_FEATURE_NEON)) {
- /* Aliases for Q regs. */
- nregs += 16;
- if (reg < nregs) {
- stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
- stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
- return 16;
- }
+ *value = env->cp15.c6_region[ri->crm];
+ return 0;
+}
+
+static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ if (ri->crm > 8) {
+ return EXCP_UDEF;
}
- switch (reg - nregs) {
- case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
- case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
- case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
+ env->cp15.c6_region[ri->crm] = value;
+ return 0;
+}
+
+static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
+ { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
+ .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
+ { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
+ .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
+ { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
+ { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
+ { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
+ { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
+ /* Protection region base and size registers */
+ { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
+ .opc2 = CP_ANY, .access = PL1_RW,
+ .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
+ REGINFO_SENTINEL
+};
+
+static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= 7;
+ env->cp15.c2_control = value;
+ env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
+ env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
+ return 0;
+}
+
+static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c2_base_mask = 0xffffc000u;
+ env->cp15.c2_control = 0;
+ env->cp15.c2_mask = 0;
+}
+
+static const ARMCPRegInfo vmsa_cp_reginfo[] = {
+ { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
+ { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
+ { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
+ { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
+ { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_RW, .writefn = vmsa_ttbcr_write,
+ .resetfn = vmsa_ttbcr_reset,
+ .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
+ { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
+ .resetvalue = 0, },
+ REGINFO_SENTINEL
+};
+
+static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c15_ticonfig = value & 0xe7;
+ /* The OS_TYPE bit in this register changes the reported CPUID! */
+ env->cp15.c0_cpuid = (value & (1 << 5)) ?
+ ARM_CPUID_TI915T : ARM_CPUID_TI925T;
+ return 0;
+}
+
+static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c15_threadid = value & 0xffff;
+ return 0;
+}
+
+static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Wait-for-interrupt (deprecated) */
+ cpu_interrupt(env, CPU_INTERRUPT_HALT);
+ return 0;
+}
+
+static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* On OMAP there are registers indicating the max/min index of dcache lines
+ * containing a dirty line; cache flush operations have to reset these.
+ */
+ env->cp15.c15_i_max = 0x000;
+ env->cp15.c15_i_min = 0xff0;
+ return 0;
+}
+
+static const ARMCPRegInfo omap_cp_reginfo[] = {
+ { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
+ .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
+ { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_NOP },
+ { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
+ .writefn = omap_ticonfig_write },
+ { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
+ { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .resetvalue = 0xff0,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
+ { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
+ .writefn = omap_threadid_write },
+ { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
+ .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+ .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
+ /* TODO: Peripheral port remap register:
+ * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
+ * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
+ * when MMU is off.
+ */
+ { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
+ .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
+ .writefn = omap_cachemaint_write },
+ { .name = "C9", .cp = 15, .crn = 9,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
+ .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ value &= 0x3fff;
+ if (env->cp15.c15_cpar != value) {
+ /* Changes cp0 to cp13 behavior, so needs a TB flush. */
+ tb_flush(env);
+ env->cp15.c15_cpar = value;
+ }
+ return 0;
+}
+
+static const ARMCPRegInfo xscale_cp_reginfo[] = {
+ { .name = "XSCALE_CPAR",
+ .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
+ .writefn = xscale_cpar_write, },
+ { .name = "XSCALE_AUXCR",
+ .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
+ .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
+ .resetvalue = 0, },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
+ /* RAZ/WI the whole crn=15 space, when we don't have a more specific
+ * implementation of this implementation-defined space.
+ * Ideally this should eventually disappear in favour of actually
+ * implementing the correct behaviour for all cores.
+ */
+ { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
+ /* Cache status: RAZ because we have no cache so it's always clean */
+ { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
+ /* We never have a a block transfer operation in progress */
+ { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* The cache ops themselves: these all NOP for QEMU */
+ { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
+ .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
+ .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
+ .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
+ .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
+ /* The cache test-and-clean instructions always return (1 << 30)
+ * to indicate that there are no dirty cache lines.
+ */
+ { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
+ { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
+ .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
+ REGINFO_SENTINEL
+};
+
+static const ARMCPRegInfo strongarm_cp_reginfo[] = {
+ /* Ignore ReadBuffer accesses */
+ { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
+ .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
+ .resetvalue = 0 },
+ REGINFO_SENTINEL
+};
+
+static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ uint32_t mpidr = env->cpu_index;
+ /* We don't support setting cluster ID ([8..11])
+ * so these bits always RAZ.
+ */
+ if (arm_feature(env, ARM_FEATURE_V7MP)) {
+ mpidr |= (1 << 31);
+ /* Cores which are uniprocessor (non-coherent)
+ * but still implement the MP extensions set
+ * bit 30. (For instance, A9UP.) However we do
+ * not currently model any of those cores.
+ */
}
+ *value = mpidr;
return 0;
}
-static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
+static const ARMCPRegInfo mpidr_cp_reginfo[] = {
+ { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
+ .access = PL1_R, .readfn = mpidr_read },
+ REGINFO_SENTINEL
+};
+
+static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
{
- int nregs;
+ *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
+ return 0;
+}
- nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
- if (reg < nregs) {
- env->vfp.regs[reg] = ldfq_le_p(buf);
- return 8;
+static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ env->cp15.c7_par_hi = value >> 32;
+ env->cp15.c7_par = value;
+ return 0;
+}
+
+static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c7_par_hi = 0;
+ env->cp15.c7_par = 0;
+}
+
+static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
+ return 0;
+}
+
+static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c2_base0_hi = value >> 32;
+ env->cp15.c2_base0 = value;
+ /* Writes to the 64 bit format TTBRs may change the ASID */
+ tlb_flush(env, 1);
+ return 0;
+}
+
+static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c2_base0_hi = 0;
+ env->cp15.c2_base0 = 0;
+}
+
+static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t *value)
+{
+ *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
+ return 0;
+}
+
+static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ env->cp15.c2_base1_hi = value >> 32;
+ env->cp15.c2_base1 = value;
+ return 0;
+}
+
+static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+ env->cp15.c2_base1_hi = 0;
+ env->cp15.c2_base1 = 0;
+}
+
+static const ARMCPRegInfo lpae_cp_reginfo[] = {
+ /* NOP AMAIR0/1: the override is because these clash with tha rather
+ * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
+ */
+ { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
+ .resetvalue = 0 },
+ { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
+ .resetvalue = 0 },
+ /* 64 bit access versions of the (dummy) debug registers */
+ { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
+ { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
+ .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
+ { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
+ .access = PL1_RW, .type = ARM_CP_64BIT,
+ .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
+ { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
+ .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
+ .writefn = ttbr064_write, .resetfn = ttbr064_reset },
+ { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
+ .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
+ .writefn = ttbr164_write, .resetfn = ttbr164_reset },
+ REGINFO_SENTINEL
+};
+
+static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
+{
+ env->cp15.c1_sys = value;
+ /* ??? Lots of these bits are not implemented. */
+ /* This may enable/disable the MMU, so do a TLB flush. */
+ tlb_flush(env, 1);
+ return 0;
+}
+
+void register_cp_regs_for_features(ARMCPU *cpu)
+{
+ /* Register all the coprocessor registers based on feature bits */
+ CPUARMState *env = &cpu->env;
+ if (arm_feature(env, ARM_FEATURE_M)) {
+ /* M profile has no coprocessor registers */
+ return;
}
- if (arm_feature(env, ARM_FEATURE_NEON)) {
- nregs += 16;
- if (reg < nregs) {
- env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
- env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
- return 16;
+
+ define_arm_cp_regs(cpu, cp_reginfo);
+ if (arm_feature(env, ARM_FEATURE_V6)) {
+ /* The ID registers all have impdef reset values */
+ ARMCPRegInfo v6_idregs[] = {
+ { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_pfr0 },
+ { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_pfr1 },
+ { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_dfr0 },
+ { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_afr0 },
+ { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr0 },
+ { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr1 },
+ { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr2 },
+ { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
+ .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_mmfr3 },
+ { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar0 },
+ { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar1 },
+ { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar2 },
+ { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar3 },
+ { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar4 },
+ { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = cpu->id_isar5 },
+ /* 6..7 are as yet unallocated and must RAZ */
+ { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
+ .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
+ .resetvalue = 0 },
+ REGINFO_SENTINEL
+ };
+ define_arm_cp_regs(cpu, v6_idregs);
+ define_arm_cp_regs(cpu, v6_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, not_v6_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V6K)) {
+ define_arm_cp_regs(cpu, v6k_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_V7)) {
+ /* v7 performance monitor control register: same implementor
+ * field as main ID register, and we implement no event counters.
+ */
+ ARMCPRegInfo pmcr = {
+ .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
+ .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
+ .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
+ .readfn = pmreg_read, .writefn = pmcr_write
+ };
+ ARMCPRegInfo clidr = {
+ .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
+ };
+ define_one_arm_cp_reg(cpu, &pmcr);
+ define_one_arm_cp_reg(cpu, &clidr);
+ define_arm_cp_regs(cpu, v7_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, not_v7_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_MPU)) {
+ /* These are the MPU registers prior to PMSAv6. Any new
+ * PMSA core later than the ARM946 will require that we
+ * implement the PMSAv6 or PMSAv7 registers, which are
+ * completely different.
+ */
+ assert(!arm_feature(env, ARM_FEATURE_V6));
+ define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
+ } else {
+ define_arm_cp_regs(cpu, vmsa_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
+ define_arm_cp_regs(cpu, t2ee_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
+ define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_VAPA)) {
+ define_arm_cp_regs(cpu, vapa_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
+ define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
+ define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
+ define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
+ define_arm_cp_regs(cpu, omap_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
+ define_arm_cp_regs(cpu, strongarm_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ define_arm_cp_regs(cpu, xscale_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
+ define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_MPIDR)) {
+ define_arm_cp_regs(cpu, mpidr_cp_reginfo);
+ }
+ if (arm_feature(env, ARM_FEATURE_LPAE)) {
+ define_arm_cp_regs(cpu, lpae_cp_reginfo);
+ }
+ /* Slightly awkwardly, the OMAP and StrongARM cores need all of
+ * cp15 crn=0 to be writes-ignored, whereas for other cores they should
+ * be read-only (ie write causes UNDEF exception).
+ */
+ {
+ ARMCPRegInfo id_cp_reginfo[] = {
+ /* Note that the MIDR isn't a simple constant register because
+ * of the TI925 behaviour where writes to another register can
+ * cause the MIDR value to change.
+ */
+ { .name = "MIDR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_R, .resetvalue = cpu->midr,
+ .writefn = arm_cp_write_ignore,
+ .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
+ { .name = "CTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
+ { .name = "TCMTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "TLBTR",
+ .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ { .name = "DUMMY",
+ .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
+ .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
+ REGINFO_SENTINEL
+ };
+ ARMCPRegInfo crn0_wi_reginfo = {
+ .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
+ .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
+ .type = ARM_CP_NOP | ARM_CP_OVERRIDE
+ };
+ if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
+ arm_feature(env, ARM_FEATURE_STRONGARM)) {
+ ARMCPRegInfo *r;
+ /* Register the blanket "writes ignored" value first to cover the
+ * whole space. Then define the specific ID registers, but update
+ * their access field to allow write access, so that they ignore
+ * writes rather than causing them to UNDEF.
+ */
+ define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
+ for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
+ r->access = PL1_RW;
+ define_one_arm_cp_reg(cpu, r);
+ }
+ } else {
+ /* Just register the standard ID registers (read-only, meaning
+ * that writes will UNDEF).
+ */
+ define_arm_cp_regs(cpu, id_cp_reginfo);
}
}
- switch (reg - nregs) {
- case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
- case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
- case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
+
+ if (arm_feature(env, ARM_FEATURE_AUXCR)) {
+ ARMCPRegInfo auxcr = {
+ .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
+ .access = PL1_RW, .type = ARM_CP_CONST,
+ .resetvalue = cpu->reset_auxcr
+ };
+ define_one_arm_cp_reg(cpu, &auxcr);
+ }
+
+ /* Generic registers whose values depend on the implementation */
+ {
+ ARMCPRegInfo sctlr = {
+ .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
+ .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
+ .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
+ };
+ if (arm_feature(env, ARM_FEATURE_XSCALE)) {
+ /* Normally we would always end the TB on an SCTLR write, but Linux
+ * arch/arm/mach-pxa/sleep.S expects two instructions following
+ * an MMU enable to execute from cache. Imitate this behaviour.
+ */
+ sctlr.type |= ARM_CP_SUPPRESS_TB_END;
+ }
+ define_one_arm_cp_reg(cpu, &sctlr);
}
- return 0;
}
-CPUARMState *cpu_arm_init(const char *cpu_model)
+ARMCPU *cpu_arm_init(const char *cpu_model)
{
+ ARMCPU *cpu;
CPUARMState *env;
- uint32_t id;
static int inited = 0;
- id = cpu_arm_find_by_name(cpu_model);
- if (id == 0)
+ if (!object_class_by_name(cpu_model)) {
return NULL;
- env = g_malloc0(sizeof(CPUARMState));
- cpu_exec_init(env);
+ }
+ cpu = ARM_CPU(object_new(cpu_model));
+ env = &cpu->env;
+ env->cpu_model_str = cpu_model;
+ arm_cpu_realize(cpu);
+
if (tcg_enabled() && !inited) {
inited = 1;
arm_translate_init();
}
- env->cpu_model_str = cpu_model;
- env->cp15.c0_cpuid = id;
- cpu_reset(env);
+ cpu_reset(CPU(cpu));
if (arm_feature(env, ARM_FEATURE_NEON)) {
gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
51, "arm-neon.xml", 0);
19, "arm-vfp.xml", 0);
}
qemu_init_vcpu(env);
- return env;
+ return cpu;
}
-struct arm_cpu_t {
- uint32_t id;
- const char *name;
-};
+typedef struct ARMCPUListState {
+ fprintf_function cpu_fprintf;
+ FILE *file;
+} ARMCPUListState;
-static const struct arm_cpu_t arm_cpu_names[] = {
- { ARM_CPUID_ARM926, "arm926"},
- { ARM_CPUID_ARM946, "arm946"},
- { ARM_CPUID_ARM1026, "arm1026"},
- { ARM_CPUID_ARM1136, "arm1136"},
- { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
- { ARM_CPUID_ARM1176, "arm1176"},
- { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
- { ARM_CPUID_CORTEXM3, "cortex-m3"},
- { ARM_CPUID_CORTEXA8, "cortex-a8"},
- { ARM_CPUID_CORTEXA9, "cortex-a9"},
- { ARM_CPUID_CORTEXA15, "cortex-a15" },
- { ARM_CPUID_TI925T, "ti925t" },
- { ARM_CPUID_PXA250, "pxa250" },
- { ARM_CPUID_SA1100, "sa1100" },
- { ARM_CPUID_SA1110, "sa1110" },
- { ARM_CPUID_PXA255, "pxa255" },
- { ARM_CPUID_PXA260, "pxa260" },
- { ARM_CPUID_PXA261, "pxa261" },
- { ARM_CPUID_PXA262, "pxa262" },
- { ARM_CPUID_PXA270, "pxa270" },
- { ARM_CPUID_PXA270_A0, "pxa270-a0" },
- { ARM_CPUID_PXA270_A1, "pxa270-a1" },
- { ARM_CPUID_PXA270_B0, "pxa270-b0" },
- { ARM_CPUID_PXA270_B1, "pxa270-b1" },
- { ARM_CPUID_PXA270_C0, "pxa270-c0" },
- { ARM_CPUID_PXA270_C5, "pxa270-c5" },
- { ARM_CPUID_ANY, "any"},
- { 0, NULL}
-};
+/* Sort alphabetically by type name, except for "any". */
+static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
+{
+ ObjectClass *class_a = (ObjectClass *)a;
+ ObjectClass *class_b = (ObjectClass *)b;
+ const char *name_a, *name_b;
+
+ name_a = object_class_get_name(class_a);
+ name_b = object_class_get_name(class_b);
+ if (strcmp(name_a, "any") == 0) {
+ return 1;
+ } else if (strcmp(name_b, "any") == 0) {
+ return -1;
+ } else {
+ return strcmp(name_a, name_b);
+ }
+}
+
+static void arm_cpu_list_entry(gpointer data, gpointer user_data)
+{
+ ObjectClass *oc = data;
+ ARMCPUListState *s = user_data;
+
+ (*s->cpu_fprintf)(s->file, " %s\n",
+ object_class_get_name(oc));
+}
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
- int i;
+ ARMCPUListState s = {
+ .file = f,
+ .cpu_fprintf = cpu_fprintf,
+ };
+ GSList *list;
+
+ list = object_class_get_list(TYPE_ARM_CPU, false);
+ list = g_slist_sort(list, arm_cpu_list_compare);
+ (*cpu_fprintf)(f, "Available CPUs:\n");
+ g_slist_foreach(list, arm_cpu_list_entry, &s);
+ g_slist_free(list);
+}
+
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *r, void *opaque)
+{
+ /* Define implementations of coprocessor registers.
+ * We store these in a hashtable because typically
+ * there are less than 150 registers in a space which
+ * is 16*16*16*8*8 = 262144 in size.
+ * Wildcarding is supported for the crm, opc1 and opc2 fields.
+ * If a register is defined twice then the second definition is
+ * used, so this can be used to define some generic registers and
+ * then override them with implementation specific variations.
+ * At least one of the original and the second definition should
+ * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
+ * against accidental use.
+ */
+ int crm, opc1, opc2;
+ int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
+ int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
+ int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
+ int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
+ int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
+ int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
+ /* 64 bit registers have only CRm and Opc1 fields */
+ assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
+ /* Check that the register definition has enough info to handle
+ * reads and writes if they are permitted.
+ */
+ if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
+ if (r->access & PL3_R) {
+ assert(r->fieldoffset || r->readfn);
+ }
+ if (r->access & PL3_W) {
+ assert(r->fieldoffset || r->writefn);
+ }
+ }
+ /* Bad type field probably means missing sentinel at end of reg list */
+ assert(cptype_valid(r->type));
+ for (crm = crmmin; crm <= crmmax; crm++) {
+ for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
+ for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
+ uint32_t *key = g_new(uint32_t, 1);
+ ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
+ int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
+ *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
+ r2->opaque = opaque;
+ /* Make sure reginfo passed to helpers for wildcarded regs
+ * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
+ */
+ r2->crm = crm;
+ r2->opc1 = opc1;
+ r2->opc2 = opc2;
+ /* Overriding of an existing definition must be explicitly
+ * requested.
+ */
+ if (!(r->type & ARM_CP_OVERRIDE)) {
+ ARMCPRegInfo *oldreg;
+ oldreg = g_hash_table_lookup(cpu->cp_regs, key);
+ if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
+ fprintf(stderr, "Register redefined: cp=%d %d bit "
+ "crn=%d crm=%d opc1=%d opc2=%d, "
+ "was %s, now %s\n", r2->cp, 32 + 32 * is64,
+ r2->crn, r2->crm, r2->opc1, r2->opc2,
+ oldreg->name, r2->name);
+ assert(0);
+ }
+ }
+ g_hash_table_insert(cpu->cp_regs, key, r2);
+ }
+ }
+ }
+}
- (*cpu_fprintf)(f, "Available CPUs:\n");
- for (i = 0; arm_cpu_names[i].name; i++) {
- (*cpu_fprintf)(f, " %s\n", arm_cpu_names[i].name);
+void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
+ const ARMCPRegInfo *regs, void *opaque)
+{
+ /* Define a whole list of registers */
+ const ARMCPRegInfo *r;
+ for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
+ define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
}
}
-/* return 0 if not found */
-static uint32_t cpu_arm_find_by_name(const char *name)
+const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
{
- int i;
- uint32_t id;
+ return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
+}
- id = 0;
- for (i = 0; arm_cpu_names[i].name; i++) {
- if (strcmp(name, arm_cpu_names[i].name) == 0) {
- id = arm_cpu_names[i].id;
- break;
- }
- }
- return id;
+int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+ uint64_t value)
+{
+ /* Helper coprocessor write function for write-ignore registers */
+ return 0;
}
-void cpu_arm_close(CPUARMState *env)
+int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
{
- g_free(env);
+ /* Helper coprocessor write function for read-as-zero registers */
+ *value = 0;
+ return 0;
}
-static int bad_mode_switch(CPUState *env, int mode)
+static int bad_mode_switch(CPUARMState *env, int mode)
{
/* Return true if it is not valid for us to switch to
* this CPU mode (ie all the UNPREDICTABLE cases in
#if defined(CONFIG_USER_ONLY)
-void do_interrupt (CPUState *env)
+void do_interrupt (CPUARMState *env)
{
env->exception_index = -1;
}
-int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
+int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
int mmu_idx)
{
if (rw == 2) {
}
/* These should probably raise undefined insn exceptions. */
-void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
-{
- int op1 = (insn >> 8) & 0xf;
- cpu_abort(env, "cp%i insn %08x\n", op1, insn);
- return;
-}
-
-uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
-{
- int op1 = (insn >> 8) & 0xf;
- cpu_abort(env, "cp%i insn %08x\n", op1, insn);
- return 0;
-}
-
-void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
-{
- cpu_abort(env, "cp15 insn %08x\n", insn);
-}
-
-uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
-{
- cpu_abort(env, "cp15 insn %08x\n", insn);
-}
-
-/* These should probably raise undefined insn exceptions. */
-void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
+void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
cpu_abort(env, "v7m_mrs %d\n", reg);
}
-uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
+uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
cpu_abort(env, "v7m_mrs %d\n", reg);
return 0;
}
-void switch_mode(CPUState *env, int mode)
+void switch_mode(CPUARMState *env, int mode)
{
if (mode != ARM_CPU_MODE_USR)
cpu_abort(env, "Tried to switch out of user mode\n");
}
-void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
+void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
cpu_abort(env, "banked r13 write\n");
}
-uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
+uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
cpu_abort(env, "banked r13 read\n");
return 0;
#else
/* Map CPU modes onto saved register banks. */
-static inline int bank_number(CPUState *env, int mode)
+static inline int bank_number(CPUARMState *env, int mode)
{
switch (mode) {
case ARM_CPU_MODE_USR:
return -1;
}
-void switch_mode(CPUState *env, int mode)
+void switch_mode(CPUARMState *env, int mode)
{
int old_mode;
int i;
case EXCP_BKPT:
if (semihosting_enabled) {
int nr;
- nr = lduw_code(env->regs[15]) & 0xff;
+ nr = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
if (nr == 0xab) {
env->regs[15] += 2;
env->regs[0] = do_arm_semihosting(env);
v7m_push(env, env->regs[1]);
v7m_push(env, env->regs[0]);
switch_v7m_sp(env, 0);
- env->uncached_cpsr &= ~CPSR_IT;
+ /* Clear IT bits */
+ env->condexec_bits = 0;
env->regs[14] = lr;
addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
env->regs[15] = addr & 0xfffffffe;
if (semihosting_enabled) {
/* Check for semihosting interrupt. */
if (env->thumb) {
- mask = lduw_code(env->regs[15] - 2) & 0xff;
+ mask = arm_lduw_code(env->regs[15] - 2, env->bswap_code) & 0xff;
} else {
- mask = ldl_code(env->regs[15] - 4) & 0xffffff;
+ mask = arm_ldl_code(env->regs[15] - 4, env->bswap_code)
+ & 0xffffff;
}
/* Only intercept calls from privileged modes, to provide some
semblance of security. */
case EXCP_BKPT:
/* See if this is a semihosting syscall. */
if (env->thumb && semihosting_enabled) {
- mask = lduw_code(env->regs[15]) & 0xff;
+ mask = arm_lduw_code(env->regs[15], env->bswap_code) & 0xff;
if (mask == 0xab
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
env->regs[15] += 2;
/* Check section/page access permissions.
Returns the page protection flags, or zero if the access is not
permitted. */
-static inline int check_ap(CPUState *env, int ap, int domain_prot,
+static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
int access_type, int is_user)
{
int prot_ro;
}
}
-static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
+static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
{
uint32_t table;
return table;
}
-static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
+static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
int is_user, uint32_t *phys_ptr, int *prot,
target_ulong *page_size)
{
return code | (domain << 4);
}
-static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
+static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
int is_user, uint32_t *phys_ptr, int *prot,
target_ulong *page_size)
{
uint32_t table;
uint32_t desc;
uint32_t xn;
+ uint32_t pxn = 0;
int type;
int ap;
- int domain;
+ int domain = 0;
int domain_prot;
uint32_t phys_addr;
table = get_level1_table_address(env, address);
desc = ldl_phys(table);
type = (desc & 3);
- if (type == 0) {
- /* Section translation fault. */
+ if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
+ /* Section translation fault, or attempt to use the encoding
+ * which is Reserved on implementations without PXN.
+ */
code = 5;
- domain = 0;
goto do_fault;
- } else if (type == 2 && (desc & (1 << 18))) {
- /* Supersection. */
- domain = 0;
- } else {
- /* Section or page. */
+ }
+ if ((type == 1) || !(desc & (1 << 18))) {
+ /* Page or Section. */
domain = (desc >> 5) & 0x0f;
}
domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
if (domain_prot == 0 || domain_prot == 2) {
- if (type == 2)
+ if (type != 1) {
code = 9; /* Section domain fault. */
- else
+ } else {
code = 11; /* Page domain fault. */
+ }
goto do_fault;
}
- if (type == 2) {
+ if (type != 1) {
if (desc & (1 << 18)) {
/* Supersection. */
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
}
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
xn = desc & (1 << 4);
+ pxn = desc & 1;
code = 13;
} else {
+ if (arm_feature(env, ARM_FEATURE_PXN)) {
+ pxn = (desc >> 2) & 1;
+ }
/* Lookup l2 entry. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
desc = ldl_phys(table);
if (domain_prot == 3) {
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
} else {
+ if (pxn && !is_user) {
+ xn = 1;
+ }
if (xn && access_type == 2)
goto do_fault;
return code | (domain << 4);
}
-static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
+static int get_phys_addr_mpu(CPUARMState *env, uint32_t address, int access_type,
int is_user, uint32_t *phys_ptr, int *prot)
{
int n;
return 0;
}
-static inline int get_phys_addr(CPUState *env, uint32_t address,
+static inline int get_phys_addr(CPUARMState *env, uint32_t address,
int access_type, int is_user,
uint32_t *phys_ptr, int *prot,
target_ulong *page_size)
}
}
-int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
+int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
int access_type, int mmu_idx)
{
uint32_t phys_addr;
return 1;
}
-target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
+target_phys_addr_t cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
{
uint32_t phys_addr;
target_ulong page_size;
return phys_addr;
}
-void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
-{
- int cp_num = (insn >> 8) & 0xf;
- int cp_info = (insn >> 5) & 7;
- int src = (insn >> 16) & 0xf;
- int operand = insn & 0xf;
-
- if (env->cp[cp_num].cp_write)
- env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
- cp_info, src, operand, val);
-}
-
-uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
-{
- int cp_num = (insn >> 8) & 0xf;
- int cp_info = (insn >> 5) & 7;
- int dest = (insn >> 16) & 0xf;
- int operand = insn & 0xf;
-
- if (env->cp[cp_num].cp_read)
- return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
- cp_info, dest, operand);
- return 0;
-}
-
-/* Return basic MPU access permission bits. */
-static uint32_t simple_mpu_ap_bits(uint32_t val)
-{
- uint32_t ret;
- uint32_t mask;
- int i;
- ret = 0;
- mask = 3;
- for (i = 0; i < 16; i += 2) {
- ret |= (val >> i) & mask;
- mask <<= 2;
- }
- return ret;
-}
-
-/* Pad basic MPU access permission bits to extended format. */
-static uint32_t extended_mpu_ap_bits(uint32_t val)
-{
- uint32_t ret;
- uint32_t mask;
- int i;
- ret = 0;
- mask = 3;
- for (i = 0; i < 16; i += 2) {
- ret |= (val & mask) << i;
- mask <<= 2;
- }
- return ret;
-}
-
-void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
-{
- int op1;
- int op2;
- int crm;
-
- op1 = (insn >> 21) & 7;
- op2 = (insn >> 5) & 7;
- crm = insn & 0xf;
- switch ((insn >> 16) & 0xf) {
- case 0:
- /* ID codes. */
- if (arm_feature(env, ARM_FEATURE_XSCALE))
- break;
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- break;
- if (arm_feature(env, ARM_FEATURE_V7)
- && op1 == 2 && crm == 0 && op2 == 0) {
- env->cp15.c0_cssel = val & 0xf;
- break;
- }
- goto bad_reg;
- case 1: /* System configuration. */
- if (arm_feature(env, ARM_FEATURE_V7)
- && op1 == 0 && crm == 1 && op2 == 0) {
- env->cp15.c1_scr = val;
- break;
- }
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- op2 = 0;
- switch (op2) {
- case 0:
- if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
- env->cp15.c1_sys = val;
- /* ??? Lots of these bits are not implemented. */
- /* This may enable/disable the MMU, so do a TLB flush. */
- tlb_flush(env, 1);
- break;
- case 1: /* Auxiliary control register. */
- if (arm_feature(env, ARM_FEATURE_XSCALE)) {
- env->cp15.c1_xscaleauxcr = val;
- break;
- }
- /* Not implemented. */
- break;
- case 2:
- if (arm_feature(env, ARM_FEATURE_XSCALE))
- goto bad_reg;
- if (env->cp15.c1_coproc != val) {
- env->cp15.c1_coproc = val;
- /* ??? Is this safe when called from within a TB? */
- tb_flush(env);
- }
- break;
- default:
- goto bad_reg;
- }
- break;
- case 2: /* MMU Page table control / MPU cache control. */
- if (arm_feature(env, ARM_FEATURE_MPU)) {
- switch (op2) {
- case 0:
- env->cp15.c2_data = val;
- break;
- case 1:
- env->cp15.c2_insn = val;
- break;
- default:
- goto bad_reg;
- }
- } else {
- switch (op2) {
- case 0:
- env->cp15.c2_base0 = val;
- break;
- case 1:
- env->cp15.c2_base1 = val;
- break;
- case 2:
- val &= 7;
- env->cp15.c2_control = val;
- env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
- env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
- break;
- default:
- goto bad_reg;
- }
- }
- break;
- case 3: /* MMU Domain access control / MPU write buffer control. */
- env->cp15.c3 = val;
- tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
- break;
- case 4: /* Reserved. */
- goto bad_reg;
- case 5: /* MMU Fault status / MPU access permission. */
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- op2 = 0;
- switch (op2) {
- case 0:
- if (arm_feature(env, ARM_FEATURE_MPU))
- val = extended_mpu_ap_bits(val);
- env->cp15.c5_data = val;
- break;
- case 1:
- if (arm_feature(env, ARM_FEATURE_MPU))
- val = extended_mpu_ap_bits(val);
- env->cp15.c5_insn = val;
- break;
- case 2:
- if (!arm_feature(env, ARM_FEATURE_MPU))
- goto bad_reg;
- env->cp15.c5_data = val;
- break;
- case 3:
- if (!arm_feature(env, ARM_FEATURE_MPU))
- goto bad_reg;
- env->cp15.c5_insn = val;
- break;
- default:
- goto bad_reg;
- }
- break;
- case 6: /* MMU Fault address / MPU base/size. */
- if (arm_feature(env, ARM_FEATURE_MPU)) {
- if (crm >= 8)
- goto bad_reg;
- env->cp15.c6_region[crm] = val;
- } else {
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- op2 = 0;
- switch (op2) {
- case 0:
- env->cp15.c6_data = val;
- break;
- case 1: /* ??? This is WFAR on armv6 */
- case 2:
- env->cp15.c6_insn = val;
- break;
- default:
- goto bad_reg;
- }
- }
- break;
- case 7: /* Cache control. */
- env->cp15.c15_i_max = 0x000;
- env->cp15.c15_i_min = 0xff0;
- if (op1 != 0) {
- goto bad_reg;
- }
- /* No cache, so nothing to do except VA->PA translations. */
- if (arm_feature(env, ARM_FEATURE_VAPA)) {
- switch (crm) {
- case 4:
- if (arm_feature(env, ARM_FEATURE_V7)) {
- env->cp15.c7_par = val & 0xfffff6ff;
- } else {
- env->cp15.c7_par = val & 0xfffff1ff;
- }
- break;
- case 8: {
- uint32_t phys_addr;
- target_ulong page_size;
- int prot;
- int ret, is_user = op2 & 2;
- int access_type = op2 & 1;
-
- if (op2 & 4) {
- /* Other states are only available with TrustZone */
- goto bad_reg;
- }
- ret = get_phys_addr(env, val, access_type, is_user,
- &phys_addr, &prot, &page_size);
- if (ret == 0) {
- /* We do not set any attribute bits in the PAR */
- if (page_size == (1 << 24)
- && arm_feature(env, ARM_FEATURE_V7)) {
- env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
- } else {
- env->cp15.c7_par = phys_addr & 0xfffff000;
- }
- } else {
- env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
- ((ret & (12 << 1)) >> 6) |
- ((ret & 0xf) << 1) | 1;
- }
- break;
- }
- }
- }
- break;
- case 8: /* MMU TLB control. */
- switch (op2) {
- case 0: /* Invalidate all (TLBIALL) */
- tlb_flush(env, 1);
- break;
- case 1: /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
- tlb_flush_page(env, val & TARGET_PAGE_MASK);
- break;
- case 2: /* Invalidate by ASID (TLBIASID) */
- tlb_flush(env, val == 0);
- break;
- case 3: /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
- tlb_flush_page(env, val & TARGET_PAGE_MASK);
- break;
- default:
- goto bad_reg;
- }
- break;
- case 9:
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- break;
- if (arm_feature(env, ARM_FEATURE_STRONGARM))
- break; /* Ignore ReadBuffer access */
- switch (crm) {
- case 0: /* Cache lockdown. */
- switch (op1) {
- case 0: /* L1 cache. */
- switch (op2) {
- case 0:
- env->cp15.c9_data = val;
- break;
- case 1:
- env->cp15.c9_insn = val;
- break;
- default:
- goto bad_reg;
- }
- break;
- case 1: /* L2 cache. */
- /* Ignore writes to L2 lockdown/auxiliary registers. */
- break;
- default:
- goto bad_reg;
- }
- break;
- case 1: /* TCM memory region registers. */
- /* Not implemented. */
- goto bad_reg;
- case 12: /* Performance monitor control */
- /* Performance monitors are implementation defined in v7,
- * but with an ARM recommended set of registers, which we
- * follow (although we don't actually implement any counters)
- */
- if (!arm_feature(env, ARM_FEATURE_V7)) {
- goto bad_reg;
- }
- switch (op2) {
- case 0: /* performance monitor control register */
- /* only the DP, X, D and E bits are writable */
- env->cp15.c9_pmcr &= ~0x39;
- env->cp15.c9_pmcr |= (val & 0x39);
- break;
- case 1: /* Count enable set register */
- val &= (1 << 31);
- env->cp15.c9_pmcnten |= val;
- break;
- case 2: /* Count enable clear */
- val &= (1 << 31);
- env->cp15.c9_pmcnten &= ~val;
- break;
- case 3: /* Overflow flag status */
- env->cp15.c9_pmovsr &= ~val;
- break;
- case 4: /* Software increment */
- /* RAZ/WI since we don't implement the software-count event */
- break;
- case 5: /* Event counter selection register */
- /* Since we don't implement any events, writing to this register
- * is actually UNPREDICTABLE. So we choose to RAZ/WI.
- */
- break;
- default:
- goto bad_reg;
- }
- break;
- case 13: /* Performance counters */
- if (!arm_feature(env, ARM_FEATURE_V7)) {
- goto bad_reg;
- }
- switch (op2) {
- case 0: /* Cycle count register: not implemented, so RAZ/WI */
- break;
- case 1: /* Event type select */
- env->cp15.c9_pmxevtyper = val & 0xff;
- break;
- case 2: /* Event count register */
- /* Unimplemented (we have no events), RAZ/WI */
- break;
- default:
- goto bad_reg;
- }
- break;
- case 14: /* Performance monitor control */
- if (!arm_feature(env, ARM_FEATURE_V7)) {
- goto bad_reg;
- }
- switch (op2) {
- case 0: /* user enable */
- env->cp15.c9_pmuserenr = val & 1;
- /* changes access rights for cp registers, so flush tbs */
- tb_flush(env);
- break;
- case 1: /* interrupt enable set */
- /* We have no event counters so only the C bit can be changed */
- val &= (1 << 31);
- env->cp15.c9_pminten |= val;
- break;
- case 2: /* interrupt enable clear */
- val &= (1 << 31);
- env->cp15.c9_pminten &= ~val;
- break;
- }
- break;
- default:
- goto bad_reg;
- }
- break;
- case 10: /* MMU TLB lockdown. */
- /* ??? TLB lockdown not implemented. */
- break;
- case 12: /* Reserved. */
- goto bad_reg;
- case 13: /* Process ID. */
- switch (op2) {
- case 0:
- /* Unlike real hardware the qemu TLB uses virtual addresses,
- not modified virtual addresses, so this causes a TLB flush.
- */
- if (env->cp15.c13_fcse != val)
- tlb_flush(env, 1);
- env->cp15.c13_fcse = val;
- break;
- case 1:
- /* This changes the ASID, so do a TLB flush. */
- if (env->cp15.c13_context != val
- && !arm_feature(env, ARM_FEATURE_MPU))
- tlb_flush(env, 0);
- env->cp15.c13_context = val;
- break;
- default:
- goto bad_reg;
- }
- break;
- case 14: /* Generic timer */
- if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
- /* Dummy implementation: RAZ/WI for all */
- break;
- }
- goto bad_reg;
- case 15: /* Implementation specific. */
- if (arm_feature(env, ARM_FEATURE_XSCALE)) {
- if (op2 == 0 && crm == 1) {
- if (env->cp15.c15_cpar != (val & 0x3fff)) {
- /* Changes cp0 to cp13 behavior, so needs a TB flush. */
- tb_flush(env);
- env->cp15.c15_cpar = val & 0x3fff;
- }
- break;
- }
- goto bad_reg;
- }
- if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
- switch (crm) {
- case 0:
- break;
- case 1: /* Set TI925T configuration. */
- env->cp15.c15_ticonfig = val & 0xe7;
- env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
- ARM_CPUID_TI915T : ARM_CPUID_TI925T;
- break;
- case 2: /* Set I_max. */
- env->cp15.c15_i_max = val;
- break;
- case 3: /* Set I_min. */
- env->cp15.c15_i_min = val;
- break;
- case 4: /* Set thread-ID. */
- env->cp15.c15_threadid = val & 0xffff;
- break;
- case 8: /* Wait-for-interrupt (deprecated). */
- cpu_interrupt(env, CPU_INTERRUPT_HALT);
- break;
- default:
- goto bad_reg;
- }
- }
- if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
- switch (crm) {
- case 0:
- if ((op1 == 0) && (op2 == 0)) {
- env->cp15.c15_power_control = val;
- } else if ((op1 == 0) && (op2 == 1)) {
- env->cp15.c15_diagnostic = val;
- } else if ((op1 == 0) && (op2 == 2)) {
- env->cp15.c15_power_diagnostic = val;
- }
- default:
- break;
- }
- }
- break;
- }
- return;
-bad_reg:
- /* ??? For debugging only. Should raise illegal instruction exception. */
- cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
- (insn >> 16) & 0xf, crm, op1, op2);
-}
-
-uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
-{
- int op1;
- int op2;
- int crm;
-
- op1 = (insn >> 21) & 7;
- op2 = (insn >> 5) & 7;
- crm = insn & 0xf;
- switch ((insn >> 16) & 0xf) {
- case 0: /* ID codes. */
- switch (op1) {
- case 0:
- switch (crm) {
- case 0:
- switch (op2) {
- case 0: /* Device ID. */
- return env->cp15.c0_cpuid;
- case 1: /* Cache Type. */
- return env->cp15.c0_cachetype;
- case 2: /* TCM status. */
- return 0;
- case 3: /* TLB type register. */
- return 0; /* No lockable TLB entries. */
- case 5: /* MPIDR */
- /* The MPIDR was standardised in v7; prior to
- * this it was implemented only in the 11MPCore.
- * For all other pre-v7 cores it does not exist.
- */
- if (arm_feature(env, ARM_FEATURE_V7) ||
- ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
- int mpidr = env->cpu_index;
- /* We don't support setting cluster ID ([8..11])
- * so these bits always RAZ.
- */
- if (arm_feature(env, ARM_FEATURE_V7MP)) {
- mpidr |= (1 << 31);
- /* Cores which are uniprocessor (non-coherent)
- * but still implement the MP extensions set
- * bit 30. (For instance, A9UP.) However we do
- * not currently model any of those cores.
- */
- }
- return mpidr;
- }
- /* otherwise fall through to the unimplemented-reg case */
- default:
- goto bad_reg;
- }
- case 1:
- if (!arm_feature(env, ARM_FEATURE_V6))
- goto bad_reg;
- return env->cp15.c0_c1[op2];
- case 2:
- if (!arm_feature(env, ARM_FEATURE_V6))
- goto bad_reg;
- return env->cp15.c0_c2[op2];
- case 3: case 4: case 5: case 6: case 7:
- return 0;
- default:
- goto bad_reg;
- }
- case 1:
- /* These registers aren't documented on arm11 cores. However
- Linux looks at them anyway. */
- if (!arm_feature(env, ARM_FEATURE_V6))
- goto bad_reg;
- if (crm != 0)
- goto bad_reg;
- if (!arm_feature(env, ARM_FEATURE_V7))
- return 0;
-
- switch (op2) {
- case 0:
- return env->cp15.c0_ccsid[env->cp15.c0_cssel];
- case 1:
- return env->cp15.c0_clid;
- case 7:
- return 0;
- }
- goto bad_reg;
- case 2:
- if (op2 != 0 || crm != 0)
- goto bad_reg;
- return env->cp15.c0_cssel;
- default:
- goto bad_reg;
- }
- case 1: /* System configuration. */
- if (arm_feature(env, ARM_FEATURE_V7)
- && op1 == 0 && crm == 1 && op2 == 0) {
- return env->cp15.c1_scr;
- }
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- op2 = 0;
- switch (op2) {
- case 0: /* Control register. */
- return env->cp15.c1_sys;
- case 1: /* Auxiliary control register. */
- if (arm_feature(env, ARM_FEATURE_XSCALE))
- return env->cp15.c1_xscaleauxcr;
- if (!arm_feature(env, ARM_FEATURE_AUXCR))
- goto bad_reg;
- switch (ARM_CPUID(env)) {
- case ARM_CPUID_ARM1026:
- return 1;
- case ARM_CPUID_ARM1136:
- case ARM_CPUID_ARM1136_R2:
- case ARM_CPUID_ARM1176:
- return 7;
- case ARM_CPUID_ARM11MPCORE:
- return 1;
- case ARM_CPUID_CORTEXA8:
- return 2;
- case ARM_CPUID_CORTEXA9:
- case ARM_CPUID_CORTEXA15:
- return 0;
- default:
- goto bad_reg;
- }
- case 2: /* Coprocessor access register. */
- if (arm_feature(env, ARM_FEATURE_XSCALE))
- goto bad_reg;
- return env->cp15.c1_coproc;
- default:
- goto bad_reg;
- }
- case 2: /* MMU Page table control / MPU cache control. */
- if (arm_feature(env, ARM_FEATURE_MPU)) {
- switch (op2) {
- case 0:
- return env->cp15.c2_data;
- break;
- case 1:
- return env->cp15.c2_insn;
- break;
- default:
- goto bad_reg;
- }
- } else {
- switch (op2) {
- case 0:
- return env->cp15.c2_base0;
- case 1:
- return env->cp15.c2_base1;
- case 2:
- return env->cp15.c2_control;
- default:
- goto bad_reg;
- }
- }
- case 3: /* MMU Domain access control / MPU write buffer control. */
- return env->cp15.c3;
- case 4: /* Reserved. */
- goto bad_reg;
- case 5: /* MMU Fault status / MPU access permission. */
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- op2 = 0;
- switch (op2) {
- case 0:
- if (arm_feature(env, ARM_FEATURE_MPU))
- return simple_mpu_ap_bits(env->cp15.c5_data);
- return env->cp15.c5_data;
- case 1:
- if (arm_feature(env, ARM_FEATURE_MPU))
- return simple_mpu_ap_bits(env->cp15.c5_data);
- return env->cp15.c5_insn;
- case 2:
- if (!arm_feature(env, ARM_FEATURE_MPU))
- goto bad_reg;
- return env->cp15.c5_data;
- case 3:
- if (!arm_feature(env, ARM_FEATURE_MPU))
- goto bad_reg;
- return env->cp15.c5_insn;
- default:
- goto bad_reg;
- }
- case 6: /* MMU Fault address. */
- if (arm_feature(env, ARM_FEATURE_MPU)) {
- if (crm >= 8)
- goto bad_reg;
- return env->cp15.c6_region[crm];
- } else {
- if (arm_feature(env, ARM_FEATURE_OMAPCP))
- op2 = 0;
- switch (op2) {
- case 0:
- return env->cp15.c6_data;
- case 1:
- if (arm_feature(env, ARM_FEATURE_V6)) {
- /* Watchpoint Fault Adrress. */
- return 0; /* Not implemented. */
- } else {
- /* Instruction Fault Adrress. */
- /* Arm9 doesn't have an IFAR, but implementing it anyway
- shouldn't do any harm. */
- return env->cp15.c6_insn;
- }
- case 2:
- if (arm_feature(env, ARM_FEATURE_V6)) {
- /* Instruction Fault Adrress. */
- return env->cp15.c6_insn;
- } else {
- goto bad_reg;
- }
- default:
- goto bad_reg;
- }
- }
- case 7: /* Cache control. */
- if (crm == 4 && op1 == 0 && op2 == 0) {
- return env->cp15.c7_par;
- }
- /* FIXME: Should only clear Z flag if destination is r15. */
- env->ZF = 0;
- return 0;
- case 8: /* MMU TLB control. */
- goto bad_reg;
- case 9:
- switch (crm) {
- case 0: /* Cache lockdown */
- switch (op1) {
- case 0: /* L1 cache. */
- if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
- return 0;
- }
- switch (op2) {
- case 0:
- return env->cp15.c9_data;
- case 1:
- return env->cp15.c9_insn;
- default:
- goto bad_reg;
- }
- case 1: /* L2 cache */
- /* L2 Lockdown and Auxiliary control. */
- switch (op2) {
- case 0:
- /* L2 cache lockdown (A8 only) */
- return 0;
- case 2:
- /* L2 cache auxiliary control (A8) or control (A15) */
- if (ARM_CPUID(env) == ARM_CPUID_CORTEXA15) {
- /* Linux wants the number of processors from here.
- * Might as well set the interrupt-controller bit too.
- */
- return ((smp_cpus - 1) << 24) | (1 << 23);
- }
- return 0;
- case 3:
- /* L2 cache extended control (A15) */
- return 0;
- default:
- goto bad_reg;
- }
- default:
- goto bad_reg;
- }
- break;
- case 12: /* Performance monitor control */
- if (!arm_feature(env, ARM_FEATURE_V7)) {
- goto bad_reg;
- }
- switch (op2) {
- case 0: /* performance monitor control register */
- return env->cp15.c9_pmcr;
- case 1: /* count enable set */
- case 2: /* count enable clear */
- return env->cp15.c9_pmcnten;
- case 3: /* overflow flag status */
- return env->cp15.c9_pmovsr;
- case 4: /* software increment */
- case 5: /* event counter selection register */
- return 0; /* Unimplemented, RAZ/WI */
- default:
- goto bad_reg;
- }
- case 13: /* Performance counters */
- if (!arm_feature(env, ARM_FEATURE_V7)) {
- goto bad_reg;
- }
- switch (op2) {
- case 1: /* Event type select */
- return env->cp15.c9_pmxevtyper;
- case 0: /* Cycle count register */
- case 2: /* Event count register */
- /* Unimplemented, so RAZ/WI */
- return 0;
- default:
- goto bad_reg;
- }
- case 14: /* Performance monitor control */
- if (!arm_feature(env, ARM_FEATURE_V7)) {
- goto bad_reg;
- }
- switch (op2) {
- case 0: /* user enable */
- return env->cp15.c9_pmuserenr;
- case 1: /* interrupt enable set */
- case 2: /* interrupt enable clear */
- return env->cp15.c9_pminten;
- default:
- goto bad_reg;
- }
- default:
- goto bad_reg;
- }
- break;
- case 10: /* MMU TLB lockdown. */
- /* ??? TLB lockdown not implemented. */
- return 0;
- case 11: /* TCM DMA control. */
- case 12: /* Reserved. */
- goto bad_reg;
- case 13: /* Process ID. */
- switch (op2) {
- case 0:
- return env->cp15.c13_fcse;
- case 1:
- return env->cp15.c13_context;
- default:
- goto bad_reg;
- }
- case 14: /* Generic timer */
- if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
- /* Dummy implementation: RAZ/WI for all */
- return 0;
- }
- goto bad_reg;
- case 15: /* Implementation specific. */
- if (arm_feature(env, ARM_FEATURE_XSCALE)) {
- if (op2 == 0 && crm == 1)
- return env->cp15.c15_cpar;
-
- goto bad_reg;
- }
- if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
- switch (crm) {
- case 0:
- return 0;
- case 1: /* Read TI925T configuration. */
- return env->cp15.c15_ticonfig;
- case 2: /* Read I_max. */
- return env->cp15.c15_i_max;
- case 3: /* Read I_min. */
- return env->cp15.c15_i_min;
- case 4: /* Read thread-ID. */
- return env->cp15.c15_threadid;
- case 8: /* TI925T_status */
- return 0;
- }
- /* TODO: Peripheral port remap register:
- * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
- * controller base address at $rn & ~0xfff and map size of
- * 0x200 << ($rn & 0xfff), when MMU is off. */
- goto bad_reg;
- }
- if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
- switch (crm) {
- case 0:
- if ((op1 == 4) && (op2 == 0)) {
- /* The config_base_address should hold the value of
- * the peripheral base. ARM should get this from a CPU
- * object property, but that support isn't available in
- * December 2011. Default to 0 for now and board models
- * that care can set it by a private hook */
- return env->cp15.c15_config_base_address;
- } else if ((op1 == 0) && (op2 == 0)) {
- /* power_control should be set to maximum latency. Again,
- default to 0 and set by private hook */
- return env->cp15.c15_power_control;
- } else if ((op1 == 0) && (op2 == 1)) {
- return env->cp15.c15_diagnostic;
- } else if ((op1 == 0) && (op2 == 2)) {
- return env->cp15.c15_power_diagnostic;
- }
- break;
- case 1: /* NEON Busy */
- return 0;
- case 5: /* tlb lockdown */
- case 6:
- case 7:
- if ((op1 == 5) && (op2 == 2)) {
- return 0;
- }
- break;
- default:
- break;
- }
- goto bad_reg;
- }
- return 0;
- }
-bad_reg:
- /* ??? For debugging only. Should raise illegal instruction exception. */
- cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
- (insn >> 16) & 0xf, crm, op1, op2);
- return 0;
-}
-
-void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
+void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
env->regs[13] = val;
}
}
-uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
+uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
return env->regs[13];
}
}
-uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
+uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
switch (reg) {
case 0: /* APSR */
}
}
-void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
+void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
switch (reg) {
case 0: /* APSR */
}
}
-void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
- ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
- void *opaque)
-{
- if (cpnum < 0 || cpnum > 14) {
- cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
- return;
- }
-
- env->cp[cpnum].cp_read = cp_read;
- env->cp[cpnum].cp_write = cp_write;
- env->cp[cpnum].opaque = opaque;
-}
-
#endif
/* Note that signed overflow is undefined in C. The following routines are
return target_bits;
}
-uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
+uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
{
int i;
uint32_t fpscr;
return fpscr;
}
-uint32_t vfp_get_fpscr(CPUState *env)
+uint32_t vfp_get_fpscr(CPUARMState *env)
{
return HELPER(vfp_get_fpscr)(env);
}
return host_bits;
}
-void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
+void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
{
int i;
uint32_t changed;
set_float_exception_flags(0, &env->vfp.standard_fp_status);
}
-void vfp_set_fpscr(CPUState *env, uint32_t val)
+void vfp_set_fpscr(CPUARMState *env, uint32_t val)
{
HELPER(vfp_set_fpscr)(env, val);
}
return float64_abs(a);
}
-float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
+float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
{
return float32_sqrt(a, &env->vfp.fp_status);
}
-float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
+float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
{
return float64_sqrt(a, &env->vfp.fp_status);
}
/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
-void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
+void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
{ \
uint32_t flags; \
switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
-void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
+void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
{ \
uint32_t flags; \
switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
#undef FLOAT_CONVS
/* floating point conversion */
-float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
+float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
{
float64 r = float32_to_float64(x, &env->vfp.fp_status);
/* ARM requires that S<->D conversion of any kind of NaN generates
return float64_maybe_silence_nan(r);
}
-float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
+float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
{
float32 r = float64_to_float32(x, &env->vfp.fp_status);
/* ARM requires that S<->D conversion of any kind of NaN generates
#undef VFP_CONV_FIX
/* Half precision conversions. */
-static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
+static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float32 r = float16_to_float32(make_float16(a), ieee, s);
return r;
}
-static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
+static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
{
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
float16 r = float32_to_float16(a, ieee, s);
return float16_val(r);
}
-float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
+float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}
-uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
+uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}
-float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
+float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}
-uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
+uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
-float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
+float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
return float32_sub(float32_two, float32_mul(a, b, s), s);
}
-float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
+float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
float32 product;
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
*/
-static float64 recip_estimate(float64 a, CPUState *env)
+static float64 recip_estimate(float64 a, CPUARMState *env)
{
/* These calculations mustn't set any fp exception flags,
* so we use a local copy of the fp_status.
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
-float32 HELPER(recpe_f32)(float32 a, CPUState *env)
+float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
float64 f64;
/* The algorithm that must be used to calculate the estimate
* is specified by the ARM ARM.
*/
-static float64 recip_sqrt_estimate(float64 a, CPUState *env)
+static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
{
/* These calculations mustn't set any fp exception flags,
* so we use a local copy of the fp_status.
return float64_div(int64_to_float64(q_int, s), float64_256, s);
}
-float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
+float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
{
float_status *s = &env->vfp.standard_fp_status;
int result_exp;
return make_float32(val);
}
-uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
+uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
{
float64 f64;
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}
-uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
+uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
{
float64 f64;
float_status *fpst = fpstp;
return float64_muladd(a, b, c, 0, fpst);
}
-
-void HELPER(set_teecr)(CPUState *env, uint32_t val)
-{
- val &= 1;
- if (env->teecr != val) {
- env->teecr = val;
- tb_flush(env);
- }
-}