#include "net.h"
#include "smbus.h"
#include "boards.h"
+#include "monitor.h"
+#include "fw_cfg.h"
+#include "hpet_emul.h"
+#include "watchdog.h"
+#include "smbios.h"
/* output Bochs bios info messages */
//#define DEBUG_BIOS
+/* Show multiboot debug output */
+//#define DEBUG_MULTIBOOT
+
#define BIOS_FILENAME "bios.bin"
#define VGABIOS_FILENAME "vgabios.bin"
#define VGABIOS_CIRRUS_FILENAME "vgabios-cirrus.bin"
+#define PC_MAX_BIOS_SIZE (4 * 1024 * 1024)
+
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
#define ACPI_DATA_SIZE 0x10000
+#define BIOS_CFG_IOPORT 0x510
+#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
+#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
#define MAX_IDE_BUS 2
static IOAPICState *ioapic;
static PCIDevice *i440fx_state;
+typedef struct rom_reset_data {
+ uint8_t *data;
+ target_phys_addr_t addr;
+ unsigned size;
+} RomResetData;
+
+static void option_rom_reset(void *_rrd)
+{
+ RomResetData *rrd = _rrd;
+
+ cpu_physical_memory_write_rom(rrd->addr, rrd->data, rrd->size);
+}
+
+static void option_rom_setup_reset(target_phys_addr_t addr, unsigned size)
+{
+ RomResetData *rrd = qemu_malloc(sizeof *rrd);
+
+ rrd->data = qemu_malloc(size);
+ cpu_physical_memory_read(addr, rrd->data, size);
+ rrd->addr = addr;
+ rrd->size = size;
+ qemu_register_reset(option_rom_reset, rrd);
+}
+
static void ioport80_write(void *opaque, uint32_t addr, uint32_t data)
{
}
/* Note: when using kqemu, it is more logical to return the host TSC
because kqemu does not trap the RDTSC instruction for
performance reasons */
-#if USE_KQEMU
+#ifdef CONFIG_KQEMU
if (env->kqemu_enabled) {
return cpu_get_real_ticks();
} else
static void pic_irq_request(void *opaque, int irq, int level)
{
- CPUState *env = opaque;
- if (level && apic_accept_pic_intr(env))
- cpu_interrupt(env, CPU_INTERRUPT_HARD);
+ CPUState *env = first_cpu;
+
+ if (env->apic_state) {
+ while (env) {
+ if (apic_accept_pic_intr(env))
+ apic_deliver_pic_intr(env, level);
+ env = env->next_cpu;
+ }
+ } else {
+ if (level)
+ cpu_interrupt(env, CPU_INTERRUPT_HARD);
+ else
+ cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
+ }
}
/* PC cmos mappings */
return 0;
}
+/* copy/pasted from cmos_init, should be made a general function
+ and used there as well */
+static int pc_boot_set(void *opaque, const char *boot_device)
+{
+ Monitor *mon = cur_mon;
+#define PC_MAX_BOOT_DEVICES 3
+ RTCState *s = (RTCState *)opaque;
+ int nbds, bds[3] = { 0, };
+ int i;
+
+ nbds = strlen(boot_device);
+ if (nbds > PC_MAX_BOOT_DEVICES) {
+ monitor_printf(mon, "Too many boot devices for PC\n");
+ return(1);
+ }
+ for (i = 0; i < nbds; i++) {
+ bds[i] = boot_device2nibble(boot_device[i]);
+ if (bds[i] == 0) {
+ monitor_printf(mon, "Invalid boot device for PC: '%c'\n",
+ boot_device[i]);
+ return(1);
+ }
+ }
+ rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
+ rtc_set_memory(s, 0x38, (bds[2] << 4));
+ return(0);
+}
+
/* hd_table must contain 4 block drivers */
-static void cmos_init(int ram_size, const char *boot_device, BlockDriverState **hd_table)
+static void cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
+ const char *boot_device, BlockDriverState **hd_table)
{
RTCState *s = rtc_state;
int nbds, bds[3] = { 0, };
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
+ if (above_4g_mem_size) {
+ rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16);
+ rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24);
+ rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32);
+ }
+
if (ram_size > (16 * 1024 * 1024))
val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
else
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
+ /* set the number of CPU */
+ rtc_set_memory(s, 0x5f, smp_cpus - 1);
+
/* set boot devices, and disable floppy signature check if requested */
#define PC_MAX_BOOT_DEVICES 3
nbds = strlen(boot_device);
}
}
-static void bochs_bios_init(void)
+extern uint64_t node_cpumask[MAX_NODES];
+
+static void *bochs_bios_init(void)
{
+ void *fw_cfg;
+ uint8_t *smbios_table;
+ size_t smbios_len;
+ uint64_t *numa_fw_cfg;
+ int i, j;
+
register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL);
register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL);
register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL);
+
+ fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
+ fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
+ acpi_tables_len);
+
+ smbios_table = smbios_get_table(&smbios_len);
+ if (smbios_table)
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
+ smbios_table, smbios_len);
+
+ /* allocate memory for the NUMA channel: one (64bit) word for the number
+ * of nodes, one word for each VCPU->node and one word for each node to
+ * hold the amount of memory.
+ */
+ numa_fw_cfg = qemu_mallocz((1 + smp_cpus + nb_numa_nodes) * 8);
+ numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
+ for (i = 0; i < smp_cpus; i++) {
+ for (j = 0; j < nb_numa_nodes; j++) {
+ if (node_cpumask[j] & (1 << i)) {
+ numa_fw_cfg[i + 1] = cpu_to_le64(j);
+ break;
+ }
+ }
+ }
+ for (i = 0; i < nb_numa_nodes; i++) {
+ numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
+ }
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
+ (1 + smp_cpus + nb_numa_nodes) * 8);
+
+ return fw_cfg;
}
/* Generate an initial boot sector which sets state and jump to
a specified vector */
-static void generate_bootsect(uint32_t gpr[8], uint16_t segs[6], uint16_t ip)
+static void generate_bootsect(target_phys_addr_t option_rom,
+ uint32_t gpr[8], uint16_t segs[6], uint16_t ip)
{
- uint8_t bootsect[512], *p;
+ uint8_t rom[512], *p, *reloc;
+ uint8_t sum;
int i;
- int hda;
- hda = drive_get_index(IF_IDE, 0, 0);
- if (hda == -1) {
- fprintf(stderr, "A disk image must be given for 'hda' when booting "
- "a Linux kernel\n");
- exit(1);
- }
+ memset(rom, 0, sizeof(rom));
+
+ p = rom;
+ /* Make sure we have an option rom signature */
+ *p++ = 0x55;
+ *p++ = 0xaa;
+
+ /* ROM size in sectors*/
+ *p++ = 1;
+
+ /* Hook int19 */
- memset(bootsect, 0, sizeof(bootsect));
+ *p++ = 0x50; /* push ax */
+ *p++ = 0x1e; /* push ds */
+ *p++ = 0x31; *p++ = 0xc0; /* xor ax, ax */
+ *p++ = 0x8e; *p++ = 0xd8; /* mov ax, ds */
- /* Copy the MSDOS partition table if possible */
- bdrv_read(drives_table[hda].bdrv, 0, bootsect, 1);
+ *p++ = 0xc7; *p++ = 0x06; /* movvw _start,0x64 */
+ *p++ = 0x64; *p++ = 0x00;
+ reloc = p;
+ *p++ = 0x00; *p++ = 0x00;
- /* Make sure we have a partition signature */
- bootsect[510] = 0x55;
- bootsect[511] = 0xaa;
+ *p++ = 0x8c; *p++ = 0x0e; /* mov cs,0x66 */
+ *p++ = 0x66; *p++ = 0x00;
+ *p++ = 0x1f; /* pop ds */
+ *p++ = 0x58; /* pop ax */
+ *p++ = 0xcb; /* lret */
+
/* Actual code */
- p = bootsect;
+ *reloc = (p - rom);
+
*p++ = 0xfa; /* CLI */
*p++ = 0xfc; /* CLD */
*p++ = segs[1]; /* CS */
*p++ = segs[1] >> 8;
- bdrv_set_boot_sector(drives_table[hda].bdrv, bootsect, sizeof(bootsect));
-}
-
-static int load_kernel(const char *filename, uint8_t *addr,
- uint8_t *real_addr)
-{
- int fd, size;
- int setup_sects;
-
- fd = open(filename, O_RDONLY | O_BINARY);
- if (fd < 0)
- return -1;
+ /* sign rom */
+ sum = 0;
+ for (i = 0; i < (sizeof(rom) - 1); i++)
+ sum += rom[i];
+ rom[sizeof(rom) - 1] = -sum;
- /* load 16 bit code */
- if (read(fd, real_addr, 512) != 512)
- goto fail;
- setup_sects = real_addr[0x1F1];
- if (!setup_sects)
- setup_sects = 4;
- if (read(fd, real_addr + 512, setup_sects * 512) !=
- setup_sects * 512)
- goto fail;
-
- /* load 32 bit code */
- size = read(fd, addr, 16 * 1024 * 1024);
- if (size < 0)
- goto fail;
- close(fd);
- return size;
- fail:
- close(fd);
- return -1;
+ cpu_physical_memory_write_rom(option_rom, rom, sizeof(rom));
+ option_rom_setup_reset(option_rom, sizeof (rom));
}
static long get_file_size(FILE *f)
return size;
}
-static void load_linux(const char *kernel_filename,
+#define MULTIBOOT_STRUCT_ADDR 0x9000
+
+#if MULTIBOOT_STRUCT_ADDR > 0xf0000
+#error multiboot struct needs to fit in 16 bit real mode
+#endif
+
+static int load_multiboot(void *fw_cfg,
+ FILE *f,
+ const char *kernel_filename,
+ const char *initrd_filename,
+ const char *kernel_cmdline,
+ uint8_t *header)
+{
+ int i, t, is_multiboot = 0;
+ uint32_t flags = 0;
+ uint32_t mh_entry_addr;
+ uint32_t mh_load_addr;
+ uint32_t mb_kernel_size;
+ uint32_t mmap_addr = MULTIBOOT_STRUCT_ADDR;
+ uint32_t mb_bootinfo = MULTIBOOT_STRUCT_ADDR + 0x500;
+ uint32_t mb_cmdline = mb_bootinfo + 0x200;
+ uint32_t mb_mod_end;
+
+ /* Ok, let's see if it is a multiboot image.
+ The header is 12x32bit long, so the latest entry may be 8192 - 48. */
+ for (i = 0; i < (8192 - 48); i += 4) {
+ if (ldl_p(header+i) == 0x1BADB002) {
+ uint32_t checksum = ldl_p(header+i+8);
+ flags = ldl_p(header+i+4);
+ checksum += flags;
+ checksum += (uint32_t)0x1BADB002;
+ if (!checksum) {
+ is_multiboot = 1;
+ break;
+ }
+ }
+ }
+
+ if (!is_multiboot)
+ return 0; /* no multiboot */
+
+#ifdef DEBUG_MULTIBOOT
+ fprintf(stderr, "qemu: I believe we found a multiboot image!\n");
+#endif
+
+ if (flags & 0x00000004) { /* MULTIBOOT_HEADER_HAS_VBE */
+ fprintf(stderr, "qemu: multiboot knows VBE. we don't.\n");
+ }
+ if (!(flags & 0x00010000)) { /* MULTIBOOT_HEADER_HAS_ADDR */
+ uint64_t elf_entry;
+ int kernel_size;
+ fclose(f);
+ kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL);
+ if (kernel_size < 0) {
+ fprintf(stderr, "Error while loading elf kernel\n");
+ exit(1);
+ }
+ mh_load_addr = mh_entry_addr = elf_entry;
+ mb_kernel_size = kernel_size;
+
+#ifdef DEBUG_MULTIBOOT
+ fprintf(stderr, "qemu: loading multiboot-elf kernel (%#x bytes) with entry %#zx\n",
+ mb_kernel_size, (size_t)mh_entry_addr);
+#endif
+ } else {
+ /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_ADDR. */
+ uint32_t mh_header_addr = ldl_p(header+i+12);
+ mh_load_addr = ldl_p(header+i+16);
+#ifdef DEBUG_MULTIBOOT
+ uint32_t mh_load_end_addr = ldl_p(header+i+20);
+ uint32_t mh_bss_end_addr = ldl_p(header+i+24);
+#endif
+ uint32_t mb_kernel_text_offset = i - (mh_header_addr - mh_load_addr);
+
+ mh_entry_addr = ldl_p(header+i+28);
+ mb_kernel_size = get_file_size(f) - mb_kernel_text_offset;
+
+ /* Valid if mh_flags sets MULTIBOOT_HEADER_HAS_VBE.
+ uint32_t mh_mode_type = ldl_p(header+i+32);
+ uint32_t mh_width = ldl_p(header+i+36);
+ uint32_t mh_height = ldl_p(header+i+40);
+ uint32_t mh_depth = ldl_p(header+i+44); */
+
+#ifdef DEBUG_MULTIBOOT
+ fprintf(stderr, "multiboot: mh_header_addr = %#x\n", mh_header_addr);
+ fprintf(stderr, "multiboot: mh_load_addr = %#x\n", mh_load_addr);
+ fprintf(stderr, "multiboot: mh_load_end_addr = %#x\n", mh_load_end_addr);
+ fprintf(stderr, "multiboot: mh_bss_end_addr = %#x\n", mh_bss_end_addr);
+#endif
+
+ fseek(f, mb_kernel_text_offset, SEEK_SET);
+
+#ifdef DEBUG_MULTIBOOT
+ fprintf(stderr, "qemu: loading multiboot kernel (%#x bytes) at %#x\n",
+ mb_kernel_size, mh_load_addr);
+#endif
+
+ if (!fread_targphys_ok(mh_load_addr, mb_kernel_size, f)) {
+ fprintf(stderr, "qemu: read error on multiboot kernel '%s' (%#x)\n",
+ kernel_filename, mb_kernel_size);
+ exit(1);
+ }
+ fclose(f);
+ }
+
+ /* blob size is only the kernel for now */
+ mb_mod_end = mh_load_addr + mb_kernel_size;
+
+ /* load modules */
+ stl_phys(mb_bootinfo + 20, 0x0); /* mods_count */
+ if (initrd_filename) {
+ uint32_t mb_mod_info = mb_bootinfo + 0x100;
+ uint32_t mb_mod_cmdline = mb_bootinfo + 0x300;
+ uint32_t mb_mod_start = mh_load_addr;
+ uint32_t mb_mod_length = mb_kernel_size;
+ char *next_initrd;
+ char *next_space;
+ int mb_mod_count = 0;
+
+ do {
+ next_initrd = strchr(initrd_filename, ',');
+ if (next_initrd)
+ *next_initrd = '\0';
+ /* if a space comes after the module filename, treat everything
+ after that as parameters */
+ cpu_physical_memory_write(mb_mod_cmdline, (uint8_t*)initrd_filename,
+ strlen(initrd_filename) + 1);
+ stl_phys(mb_mod_info + 8, mb_mod_cmdline); /* string */
+ mb_mod_cmdline += strlen(initrd_filename) + 1;
+ if ((next_space = strchr(initrd_filename, ' ')))
+ *next_space = '\0';
+#ifdef DEBUG_MULTIBOOT
+ printf("multiboot loading module: %s\n", initrd_filename);
+#endif
+ f = fopen(initrd_filename, "rb");
+ if (f) {
+ mb_mod_start = (mb_mod_start + mb_mod_length + (TARGET_PAGE_SIZE - 1))
+ & (TARGET_PAGE_MASK);
+ mb_mod_length = get_file_size(f);
+ mb_mod_end = mb_mod_start + mb_mod_length;
+
+ if (!fread_targphys_ok(mb_mod_start, mb_mod_length, f)) {
+ fprintf(stderr, "qemu: read error on multiboot module '%s' (%#x)\n",
+ initrd_filename, mb_mod_length);
+ exit(1);
+ }
+
+ mb_mod_count++;
+ stl_phys(mb_mod_info + 0, mb_mod_start);
+ stl_phys(mb_mod_info + 4, mb_mod_start + mb_mod_length);
+#ifdef DEBUG_MULTIBOOT
+ printf("mod_start: %#x\nmod_end: %#x\n", mb_mod_start,
+ mb_mod_start + mb_mod_length);
+#endif
+ stl_phys(mb_mod_info + 12, 0x0); /* reserved */
+ }
+ initrd_filename = next_initrd+1;
+ mb_mod_info += 16;
+ } while (next_initrd);
+ stl_phys(mb_bootinfo + 20, mb_mod_count); /* mods_count */
+ stl_phys(mb_bootinfo + 24, mb_bootinfo + 0x100); /* mods_addr */
+ }
+
+ /* Make sure we're getting kernel + modules back after reset */
+ option_rom_setup_reset(mh_load_addr, mb_mod_end - mh_load_addr);
+
+ /* Commandline support */
+ stl_phys(mb_bootinfo + 16, mb_cmdline);
+ t = strlen(kernel_filename);
+ cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_filename, t);
+ mb_cmdline += t;
+ stb_phys(mb_cmdline++, ' ');
+ t = strlen(kernel_cmdline) + 1;
+ cpu_physical_memory_write(mb_cmdline, (uint8_t*)kernel_cmdline, t);
+
+ /* the kernel is where we want it to be now */
+
+#define MULTIBOOT_FLAGS_MEMORY (1 << 0)
+#define MULTIBOOT_FLAGS_BOOT_DEVICE (1 << 1)
+#define MULTIBOOT_FLAGS_CMDLINE (1 << 2)
+#define MULTIBOOT_FLAGS_MODULES (1 << 3)
+#define MULTIBOOT_FLAGS_MMAP (1 << 6)
+ stl_phys(mb_bootinfo, MULTIBOOT_FLAGS_MEMORY
+ | MULTIBOOT_FLAGS_BOOT_DEVICE
+ | MULTIBOOT_FLAGS_CMDLINE
+ | MULTIBOOT_FLAGS_MODULES
+ | MULTIBOOT_FLAGS_MMAP);
+ stl_phys(mb_bootinfo + 4, 640); /* mem_lower */
+ stl_phys(mb_bootinfo + 8, ram_size / 1024); /* mem_upper */
+ stl_phys(mb_bootinfo + 12, 0x8001ffff); /* XXX: use the -boot switch? */
+ stl_phys(mb_bootinfo + 48, mmap_addr); /* mmap_addr */
+
+#ifdef DEBUG_MULTIBOOT
+ fprintf(stderr, "multiboot: mh_entry_addr = %#x\n", mh_entry_addr);
+#endif
+
+ /* Pass variables to option rom */
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_entry_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, mb_bootinfo);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, mmap_addr);
+
+ /* Make sure we're getting the config space back after reset */
+ option_rom_setup_reset(mb_bootinfo, 0x500);
+
+ option_rom[nb_option_roms] = "multiboot.bin";
+ nb_option_roms++;
+
+ return 1; /* yes, we are multiboot */
+}
+
+static void load_linux(void *fw_cfg,
+ target_phys_addr_t option_rom,
+ const char *kernel_filename,
const char *initrd_filename,
- const char *kernel_cmdline)
+ const char *kernel_cmdline,
+ target_phys_addr_t max_ram_size)
{
uint16_t protocol;
uint32_t gpr[8];
uint16_t seg[6];
uint16_t real_seg;
- int setup_size, kernel_size, initrd_size, cmdline_size;
+ int setup_size, kernel_size, initrd_size = 0, cmdline_size;
uint32_t initrd_max;
- uint8_t header[1024];
- uint8_t *real_addr, *prot_addr, *cmdline_addr, *initrd_addr;
+ uint8_t header[8192];
+ target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f, *fi;
/* Align to 16 bytes as a paranoia measure */
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f || !(kernel_size = get_file_size(f)) ||
- fread(header, 1, 1024, f) != 1024) {
+ fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
+ MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
#endif
if (ldl_p(header+0x202) == 0x53726448)
protocol = lduw_p(header+0x206);
- else
+ else {
+ /* This looks like a multiboot kernel. If it is, let's stop
+ treating it like a Linux kernel. */
+ if (load_multiboot(fw_cfg, f, kernel_filename,
+ initrd_filename, kernel_cmdline, header))
+ return;
protocol = 0;
+ }
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
- real_addr = phys_ram_base + 0x90000;
- cmdline_addr = phys_ram_base + 0x9a000 - cmdline_size;
- prot_addr = phys_ram_base + 0x10000;
+ real_addr = 0x90000;
+ cmdline_addr = 0x9a000 - cmdline_size;
+ prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
- real_addr = phys_ram_base + 0x90000;
- cmdline_addr = phys_ram_base + 0x9a000 - cmdline_size;
- prot_addr = phys_ram_base + 0x100000;
+ real_addr = 0x90000;
+ cmdline_addr = 0x9a000 - cmdline_size;
+ prot_addr = 0x100000;
} else {
/* High and recent kernel */
- real_addr = phys_ram_base + 0x10000;
- cmdline_addr = phys_ram_base + 0x20000;
- prot_addr = phys_ram_base + 0x100000;
+ real_addr = 0x10000;
+ cmdline_addr = 0x20000;
+ prot_addr = 0x100000;
}
#if 0
fprintf(stderr,
- "qemu: real_addr = %#zx\n"
- "qemu: cmdline_addr = %#zx\n"
- "qemu: prot_addr = %#zx\n",
- real_addr-phys_ram_base,
- cmdline_addr-phys_ram_base,
- prot_addr-phys_ram_base);
+ "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
+ "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
+ "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
+ real_addr,
+ cmdline_addr,
+ prot_addr);
#endif
/* highest address for loading the initrd */
else
initrd_max = 0x37ffffff;
- if (initrd_max >= ram_size-ACPI_DATA_SIZE)
- initrd_max = ram_size-ACPI_DATA_SIZE-1;
+ if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
+ initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
/* kernel command line */
- pstrcpy((char*)cmdline_addr, 4096, kernel_cmdline);
+ pstrcpy_targphys(cmdline_addr, 4096, kernel_cmdline);
if (protocol >= 0x202) {
- stl_p(header+0x228, cmdline_addr-phys_ram_base);
+ stl_p(header+0x228, cmdline_addr);
} else {
stw_p(header+0x20, 0xA33F);
stw_p(header+0x22, cmdline_addr-real_addr);
}
initrd_size = get_file_size(fi);
- initrd_addr = phys_ram_base + ((initrd_max-initrd_size) & ~4095);
+ initrd_addr = (initrd_max-initrd_size) & ~4095;
- fprintf(stderr, "qemu: loading initrd (%#x bytes) at %#zx\n",
- initrd_size, initrd_addr-phys_ram_base);
-
- if (fread(initrd_addr, 1, initrd_size, fi) != initrd_size) {
+ if (!fread_targphys_ok(initrd_addr, initrd_size, fi)) {
fprintf(stderr, "qemu: read error on initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
fclose(fi);
- stl_p(header+0x218, initrd_addr-phys_ram_base);
+ stl_p(header+0x218, initrd_addr);
stl_p(header+0x21c, initrd_size);
}
/* store the finalized header and load the rest of the kernel */
- memcpy(real_addr, header, 1024);
+ cpu_physical_memory_write(real_addr, header, ARRAY_SIZE(header));
setup_size = header[0x1f1];
if (setup_size == 0)
setup_size = 4;
setup_size = (setup_size+1)*512;
- kernel_size -= setup_size; /* Size of protected-mode code */
+ /* Size of protected-mode code */
+ kernel_size -= (setup_size > ARRAY_SIZE(header)) ? setup_size : ARRAY_SIZE(header);
+
+ /* In case we have read too much already, copy that over */
+ if (setup_size < ARRAY_SIZE(header)) {
+ cpu_physical_memory_write(prot_addr, header + setup_size, ARRAY_SIZE(header) - setup_size);
+ prot_addr += (ARRAY_SIZE(header) - setup_size);
+ setup_size = ARRAY_SIZE(header);
+ }
- if (fread(real_addr+1024, 1, setup_size-1024, f) != setup_size-1024 ||
- fread(prot_addr, 1, kernel_size, f) != kernel_size) {
+ if (!fread_targphys_ok(real_addr + ARRAY_SIZE(header),
+ setup_size - ARRAY_SIZE(header), f) ||
+ !fread_targphys_ok(prot_addr, kernel_size, f)) {
fprintf(stderr, "qemu: read error on kernel '%s'\n",
kernel_filename);
exit(1);
fclose(f);
/* generate bootsector to set up the initial register state */
- real_seg = (real_addr-phys_ram_base) >> 4;
+ real_seg = real_addr >> 4;
seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg;
seg[1] = real_seg+0x20; /* CS */
memset(gpr, 0, sizeof gpr);
gpr[4] = cmdline_addr-real_addr-16; /* SP (-16 is paranoia) */
- generate_bootsect(gpr, seg, 0);
-}
+ option_rom_setup_reset(real_addr, setup_size);
+ option_rom_setup_reset(prot_addr, kernel_size);
+ option_rom_setup_reset(cmdline_addr, cmdline_size);
+ if (initrd_filename)
+ option_rom_setup_reset(initrd_addr, initrd_size);
-static void main_cpu_reset(void *opaque)
-{
- CPUState *env = opaque;
- cpu_reset(env);
+ generate_bootsect(option_rom, gpr, seg, 0);
}
static const int ide_iobase[2] = { 0x1f0, 0x170 };
static void audio_init (PCIBus *pci_bus, qemu_irq *pic)
{
struct soundhw *c;
- int audio_enabled = 0;
-
- for (c = soundhw; !audio_enabled && c->name; ++c) {
- audio_enabled = c->enabled;
- }
- if (audio_enabled) {
- AudioState *s;
-
- s = AUD_init ();
- if (s) {
- for (c = soundhw; c->name; ++c) {
- if (c->enabled) {
- if (c->isa) {
- c->init.init_isa (s, pic);
- }
- else {
- if (pci_bus) {
- c->init.init_pci (pci_bus, s);
- }
- }
+ for (c = soundhw; c->name; ++c) {
+ if (c->enabled) {
+ if (c->isa) {
+ c->init.init_isa(pic);
+ } else {
+ if (pci_bus) {
+ c->init.init_pci(pci_bus);
}
}
}
nb_ne2k++;
}
+static int load_option_rom(const char *oprom, target_phys_addr_t start,
+ target_phys_addr_t end)
+{
+ int size;
+ char *filename;
+
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, oprom);
+ if (filename) {
+ size = get_image_size(filename);
+ if (size > 0 && start + size > end) {
+ fprintf(stderr, "Not enough space to load option rom '%s'\n",
+ oprom);
+ exit(1);
+ }
+ size = load_image_targphys(filename, start, end - start);
+ qemu_free(filename);
+ } else {
+ size = -1;
+ }
+ if (size < 0) {
+ fprintf(stderr, "Could not load option rom '%s'\n", oprom);
+ exit(1);
+ }
+ /* Round up optiom rom size to the next 2k boundary */
+ size = (size + 2047) & ~2047;
+ option_rom_setup_reset(start, size);
+ return size;
+}
+
+int cpu_is_bsp(CPUState *env)
+{
+ return env->cpuid_apic_id == 0;
+}
+
/* PC hardware initialisation */
-static void pc_init1(int ram_size, int vga_ram_size,
- const char *boot_device, DisplayState *ds,
+static void pc_init1(ram_addr_t ram_size,
+ const char *boot_device,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename,
int pci_enabled, const char *cpu_model)
{
- char buf[1024];
+ char *filename;
int ret, linux_boot, i;
- ram_addr_t ram_addr, vga_ram_addr, bios_offset, vga_bios_offset;
- int bios_size, isa_bios_size, vga_bios_size;
+ ram_addr_t ram_addr, bios_offset, option_rom_offset;
+ ram_addr_t below_4g_mem_size, above_4g_mem_size = 0;
+ int bios_size, isa_bios_size, oprom_area_size;
PCIBus *pci_bus;
+ PCIDevice *pci_dev;
int piix3_devfn = -1;
CPUState *env;
- NICInfo *nd;
qemu_irq *cpu_irq;
qemu_irq *i8259;
int index;
BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
BlockDriverState *fd[MAX_FD];
+ int using_vga = cirrus_vga_enabled || std_vga_enabled || vmsvga_enabled;
+ void *fw_cfg;
+
+ if (ram_size >= 0xe0000000 ) {
+ above_4g_mem_size = ram_size - 0xe0000000;
+ below_4g_mem_size = 0xe0000000;
+ } else {
+ below_4g_mem_size = ram_size;
+ }
linux_boot = (kernel_filename != NULL);
fprintf(stderr, "Unable to find x86 CPU definition\n");
exit(1);
}
- if (i != 0)
- env->hflags |= HF_HALTED_MASK;
- if (smp_cpus > 1) {
- /* XXX: enable it in all cases */
- env->cpuid_features |= CPUID_APIC;
- }
- register_savevm("cpu", i, 4, cpu_save, cpu_load, env);
- qemu_register_reset(main_cpu_reset, env);
- if (pci_enabled) {
+ if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) {
+ env->cpuid_apic_id = env->cpu_index;
+ /* APIC reset callback resets cpu */
apic_init(env);
+ } else {
+ qemu_register_reset((QEMUResetHandler*)cpu_reset, env);
}
- vmport_init(env);
}
+ vmport_init();
+
/* allocate RAM */
- ram_addr = qemu_ram_alloc(ram_size);
- cpu_register_physical_memory(0, ram_size, ram_addr);
+ ram_addr = qemu_ram_alloc(0xa0000);
+ cpu_register_physical_memory(0, 0xa0000, ram_addr);
+
+ /* Allocate, even though we won't register, so we don't break the
+ * phys_ram_base + PA assumption. This range includes vga (0xa0000 - 0xc0000),
+ * and some bios areas, which will be registered later
+ */
+ ram_addr = qemu_ram_alloc(0x100000 - 0xa0000);
+ ram_addr = qemu_ram_alloc(below_4g_mem_size - 0x100000);
+ cpu_register_physical_memory(0x100000,
+ below_4g_mem_size - 0x100000,
+ ram_addr);
+
+ /* above 4giga memory allocation */
+ if (above_4g_mem_size > 0) {
+#if TARGET_PHYS_ADDR_BITS == 32
+ hw_error("To much RAM for 32-bit physical address");
+#else
+ ram_addr = qemu_ram_alloc(above_4g_mem_size);
+ cpu_register_physical_memory(0x100000000ULL,
+ above_4g_mem_size,
+ ram_addr);
+#endif
+ }
- /* allocate VGA RAM */
- vga_ram_addr = qemu_ram_alloc(vga_ram_size);
/* BIOS load */
if (bios_name == NULL)
bios_name = BIOS_FILENAME;
- snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
- bios_size = get_image_size(buf);
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
+ if (filename) {
+ bios_size = get_image_size(filename);
+ } else {
+ bios_size = -1;
+ }
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios_offset = qemu_ram_alloc(bios_size);
- ret = load_image(buf, phys_ram_base + bios_offset);
+ ret = load_image(filename, qemu_get_ram_ptr(bios_offset));
if (ret != bios_size) {
bios_error:
- fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", buf);
+ fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
exit(1);
}
-
- /* VGA BIOS load */
- if (cirrus_vga_enabled) {
- snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_CIRRUS_FILENAME);
- } else {
- snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
- }
- vga_bios_size = get_image_size(buf);
- if (vga_bios_size <= 0 || vga_bios_size > 65536)
- goto vga_bios_error;
- vga_bios_offset = qemu_ram_alloc(65536);
-
- ret = load_image(buf, phys_ram_base + vga_bios_offset);
- if (ret != vga_bios_size) {
- vga_bios_error:
- fprintf(stderr, "qemu: could not load VGA BIOS '%s'\n", buf);
- exit(1);
+ if (filename) {
+ qemu_free(filename);
}
-
- /* setup basic memory access */
- cpu_register_physical_memory(0xc0000, 0x10000,
- vga_bios_offset | IO_MEM_ROM);
-
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = bios_size;
if (isa_bios_size > (128 * 1024))
isa_bios_size = 128 * 1024;
- cpu_register_physical_memory(0xd0000, (192 * 1024) - isa_bios_size,
- IO_MEM_UNASSIGNED);
cpu_register_physical_memory(0x100000 - isa_bios_size,
isa_bios_size,
(bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM);
- {
- ram_addr_t option_rom_offset;
- int size, offset;
-
- offset = 0;
- for (i = 0; i < nb_option_roms; i++) {
- size = get_image_size(option_rom[i]);
- if (size < 0) {
- fprintf(stderr, "Could not load option rom '%s'\n",
- option_rom[i]);
- exit(1);
- }
- if (size > (0x10000 - offset))
- goto option_rom_error;
- option_rom_offset = qemu_ram_alloc(size);
- ret = load_image(option_rom[i], phys_ram_base + option_rom_offset);
- if (ret != size) {
- option_rom_error:
- fprintf(stderr, "Too many option ROMS\n");
- exit(1);
- }
- size = (size + 4095) & ~4095;
- cpu_register_physical_memory(0xd0000 + offset,
- size, option_rom_offset | IO_MEM_ROM);
- offset += size;
+
+
+ option_rom_offset = qemu_ram_alloc(0x20000);
+ oprom_area_size = 0;
+ cpu_register_physical_memory(0xc0000, 0x20000, option_rom_offset);
+
+ if (using_vga) {
+ const char *vgabios_filename;
+ /* VGA BIOS load */
+ if (cirrus_vga_enabled) {
+ vgabios_filename = VGABIOS_CIRRUS_FILENAME;
+ } else {
+ vgabios_filename = VGABIOS_FILENAME;
}
+ oprom_area_size = load_option_rom(vgabios_filename, 0xc0000, 0xe0000);
}
+ /* Although video roms can grow larger than 0x8000, the area between
+ * 0xc0000 - 0xc8000 is reserved for them. It means we won't be looking
+ * for any other kind of option rom inside this area */
+ if (oprom_area_size < 0x8000)
+ oprom_area_size = 0x8000;
/* map all the bios at the top of memory */
cpu_register_physical_memory((uint32_t)(-bios_size),
bios_size, bios_offset | IO_MEM_ROM);
- bochs_bios_init();
+ fw_cfg = bochs_bios_init();
+
+ if (linux_boot) {
+ load_linux(fw_cfg, 0xc0000 + oprom_area_size,
+ kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
+ oprom_area_size += 2048;
+ }
+
+ for (i = 0; i < nb_option_roms; i++) {
+ oprom_area_size += load_option_rom(option_rom[i], 0xc0000 + oprom_area_size,
+ 0xe0000);
+ }
+
+ for (i = 0; i < nb_nics; i++) {
+ char nic_oprom[1024];
+ const char *model = nd_table[i].model;
+
+ if (!nd_table[i].bootable)
+ continue;
- if (linux_boot)
- load_linux(kernel_filename, initrd_filename, kernel_cmdline);
+ if (model == NULL)
+ model = "ne2k_pci";
+ snprintf(nic_oprom, sizeof(nic_oprom), "pxe-%s.bin", model);
- cpu_irq = qemu_allocate_irqs(pic_irq_request, first_cpu, 1);
+ oprom_area_size += load_option_rom(nic_oprom, 0xc0000 + oprom_area_size,
+ 0xe0000);
+ }
+
+ cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1);
i8259 = i8259_init(cpu_irq[0]);
ferr_irq = i8259[13];
if (cirrus_vga_enabled) {
if (pci_enabled) {
- pci_cirrus_vga_init(pci_bus,
- ds, phys_ram_base + vga_ram_addr,
- vga_ram_addr, vga_ram_size);
+ pci_cirrus_vga_init(pci_bus);
} else {
- isa_cirrus_vga_init(ds, phys_ram_base + vga_ram_addr,
- vga_ram_addr, vga_ram_size);
+ isa_cirrus_vga_init();
}
} else if (vmsvga_enabled) {
if (pci_enabled)
- pci_vmsvga_init(pci_bus, ds, phys_ram_base + vga_ram_addr,
- vga_ram_addr, vga_ram_size);
+ pci_vmsvga_init(pci_bus);
else
fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__);
- } else {
+ } else if (std_vga_enabled) {
if (pci_enabled) {
- pci_vga_init(pci_bus, ds, phys_ram_base + vga_ram_addr,
- vga_ram_addr, vga_ram_size, 0, 0);
+ pci_vga_init(pci_bus, 0, 0);
} else {
- isa_vga_init(ds, phys_ram_base + vga_ram_addr,
- vga_ram_addr, vga_ram_size);
+ isa_vga_init();
}
}
- rtc_state = rtc_init(0x70, i8259[8]);
+ rtc_state = rtc_init(0x70, i8259[8], 2000);
+
+ qemu_register_boot_set(pc_boot_set, rtc_state);
register_ioport_read(0x92, 1, 1, ioport92_read, NULL);
register_ioport_write(0x92, 1, 1, ioport92_write, NULL);
}
pit = pit_init(0x40, i8259[0]);
pcspk_init(pit);
+ if (!no_hpet) {
+ hpet_init(i8259);
+ }
if (pci_enabled) {
pic_set_alt_irq_func(isa_pic, ioapic_set_irq, ioapic);
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
- serial_init(serial_io[i], i8259[serial_irq[i]], serial_hds[i]);
+ serial_init(serial_io[i], i8259[serial_irq[i]], 115200,
+ serial_hds[i]);
}
}
}
}
+ watchdog_pc_init(pci_bus);
+
for(i = 0; i < nb_nics; i++) {
- nd = &nd_table[i];
- if (!nd->model) {
- if (pci_enabled) {
- nd->model = "ne2k_pci";
- } else {
- nd->model = "ne2k_isa";
- }
- }
- if (strcmp(nd->model, "ne2k_isa") == 0) {
+ NICInfo *nd = &nd_table[i];
+
+ if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
pc_init_ne2k_isa(nd, i8259);
- } else if (pci_enabled) {
- if (strcmp(nd->model, "?") == 0)
- fprintf(stderr, "qemu: Supported ISA NICs: ne2k_isa\n");
- pci_nic_init(pci_bus, nd, -1);
- } else if (strcmp(nd->model, "?") == 0) {
- fprintf(stderr, "qemu: Supported ISA NICs: ne2k_isa\n");
- exit(1);
- } else {
- fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model);
- exit(1);
- }
+ else
+ pci_nic_init(nd, "ne2k_pci", NULL);
}
+ piix4_acpi_system_hot_add_init();
+
if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
fprintf(stderr, "qemu: too many IDE bus\n");
exit(1);
}
floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
- cmos_init(ram_size, boot_device, hd);
+ cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device, hd);
if (pci_enabled && usb_enabled) {
usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
/* TODO: Populate SPD eeprom data. */
smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, i8259[9]);
for (i = 0; i < 8; i++) {
- smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
+ DeviceState *eeprom;
+ eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
+ qdev_set_prop_int(eeprom, "address", 0x50 + i);
+ qdev_set_prop_ptr(eeprom, "data", eeprom_buf + (i * 256));
+ qdev_init(eeprom);
}
}
if (pci_enabled) {
int max_bus;
- int bus, unit;
- void *scsi;
+ int bus;
max_bus = drive_get_max_bus(IF_SCSI);
-
for (bus = 0; bus <= max_bus; bus++) {
- scsi = lsi_scsi_init(pci_bus, -1);
- for (unit = 0; unit < LSI_MAX_DEVS; unit++) {
- index = drive_get_index(IF_SCSI, bus, unit);
- if (index == -1)
- continue;
- lsi_scsi_attach(scsi, drives_table[index].bdrv, unit);
- }
+ pci_create_simple(pci_bus, -1, "lsi53c895a");
+ }
+ }
+
+ /* Add virtio block devices */
+ if (pci_enabled) {
+ int index;
+ int unit_id = 0;
+
+ while ((index = drive_get_index(IF_VIRTIO, 0, unit_id)) != -1) {
+ pci_dev = pci_create("virtio-blk-pci",
+ drives_table[index].devaddr);
+ qdev_init(&pci_dev->qdev);
+ unit_id++;
+ }
+ }
+
+ /* Add virtio balloon device */
+ if (pci_enabled && !no_virtio_balloon) {
+ pci_create_simple(pci_bus, -1, "virtio-balloon-pci");
+ }
+
+ /* Add virtio console devices */
+ if (pci_enabled) {
+ for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
+ if (virtcon_hds[i]) {
+ pci_create_simple(pci_bus, -1, "virtio-console-pci");
+ }
}
}
}
-static void pc_init_pci(int ram_size, int vga_ram_size,
- const char *boot_device, DisplayState *ds,
+static void pc_init_pci(ram_addr_t ram_size,
+ const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
- pc_init1(ram_size, vga_ram_size, boot_device, ds,
+ pc_init1(ram_size, boot_device,
kernel_filename, kernel_cmdline,
initrd_filename, 1, cpu_model);
}
-static void pc_init_isa(int ram_size, int vga_ram_size,
- const char *boot_device, DisplayState *ds,
+static void pc_init_isa(ram_addr_t ram_size,
+ const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
- pc_init1(ram_size, vga_ram_size, boot_device, ds,
+ pc_init1(ram_size, boot_device,
kernel_filename, kernel_cmdline,
initrd_filename, 0, cpu_model);
}
-QEMUMachine pc_machine = {
- "pc",
- "Standard PC",
- pc_init_pci,
+/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
+ BIOS will read it and start S3 resume at POST Entry */
+void cmos_set_s3_resume(void)
+{
+ if (rtc_state)
+ rtc_set_memory(rtc_state, 0xF, 0xFE);
+}
+
+static QEMUMachine pc_machine = {
+ .name = "pc",
+ .desc = "Standard PC",
+ .init = pc_init_pci,
+ .max_cpus = 255,
+ .is_default = 1,
};
-QEMUMachine isapc_machine = {
- "isapc",
- "ISA-only PC",
- pc_init_isa,
+static QEMUMachine isapc_machine = {
+ .name = "isapc",
+ .desc = "ISA-only PC",
+ .init = pc_init_isa,
+ .max_cpus = 1,
};
+
+static void pc_machine_init(void)
+{
+ qemu_register_machine(&pc_machine);
+ qemu_register_machine(&isapc_machine);
+}
+
+machine_init(pc_machine_init);