#include "hw/sysbus.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
+#include "hw/ppc/spapr_cpu_core.h"
#include "hw/ppc/ppc.h"
#include "sysemu/watchdog.h"
#include "trace.h"
static int cap_papr;
static int cap_htab_fd;
static int cap_fixup_hcalls;
+static int cap_htm; /* Hardware transactional memory support */
static uint32_t debug_inst_opcode;
qemu_cpu_kick(CPU(cpu));
}
+/* Check whether we are running with KVM-PR (instead of KVM-HV). This
+ * should only be used for fallback tests - generally we should use
+ * explicit capabilities for the features we want, rather than
+ * assuming what is/isn't available depending on the KVM variant. */
+static bool kvmppc_is_pr(KVMState *ks)
+{
+ /* Assume KVM-PR if the GET_PVINFO capability is available */
+ return kvm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
+}
+
static int kvm_ppc_register_host_cpu_type(void);
int kvm_arch_init(MachineState *ms, KVMState *s)
* only activated after this by kvmppc_set_papr() */
cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
+ cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
if (!cap_interrupt_level) {
fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
*
* For that to work we make a few assumptions:
*
- * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
- * KVM which only supports 4K and 16M pages, but supports them
- * regardless of the backing store characteritics. We also don't
- * support 1T segments.
+ * - Check whether we are running "PR" KVM which only supports 4K
+ * and 16M pages, but supports them regardless of the backing
+ * store characteritics. We also don't support 1T segments.
*
* This is safe as if HV KVM ever supports that capability or PR
* KVM grows supports for more page/segment sizes, those versions
* implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
* this fallback.
*/
- if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
+ if (kvmppc_is_pr(cs->kvm_state)) {
/* No flags */
info->flags = 0;
info->slb_size = 64;
static long getrampagesize(void)
{
long hpsize = LONG_MAX;
+ long mainrampagesize;
Object *memdev_root;
if (mem_path) {
- return gethugepagesize(mem_path);
+ mainrampagesize = gethugepagesize(mem_path);
+ } else {
+ mainrampagesize = getpagesize();
}
/* it's possible we have memory-backend objects with
* backend isn't backed by hugepages.
*/
memdev_root = object_resolve_path("/objects", NULL);
- if (!memdev_root) {
- return getpagesize();
+ if (memdev_root) {
+ object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
}
-
- object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
-
if (hpsize == LONG_MAX) {
- return getpagesize();
+ /* No additional memory regions found ==> Report main RAM page size */
+ return mainrampagesize;
}
- if (nb_numa_nodes == 0 && hpsize > getpagesize()) {
- /* No NUMA nodes and normal RAM without -mem-path ==> no huge pages! */
+ /* If NUMA is disabled or the NUMA nodes are not backed with a
+ * memory-backend, then there is at least one node using "normal" RAM,
+ * so if its page size is smaller we have got to report that size instead.
+ */
+ if (hpsize > mainrampagesize &&
+ (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
static bool warned;
if (!warned) {
error_report("Huge page support disabled (n/a for main memory).");
warned = true;
}
- return getpagesize();
+ return mainrampagesize;
}
return hpsize;
CPUPPCState *env = &cpu->env;
long rampagesize;
int iq, ik, jq, jk;
+ bool has_64k_pages = false;
/* We only handle page sizes for 64-bit server guests for now */
if (!(env->mmu_model & POWERPC_MMU_64)) {
ksps->enc[jk].page_shift)) {
continue;
}
+ if (ksps->enc[jk].page_shift == 16) {
+ has_64k_pages = true;
+ }
qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
env->mmu_model &= ~POWERPC_MMU_1TSEG;
}
+ if (!has_64k_pages) {
+ env->mmu_model &= ~POWERPC_MMU_64K;
+ }
}
#else /* defined (TARGET_PPC64) */
idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
- /* Some targets support access to KVM's guest TLB. */
switch (cenv->mmu_model) {
case POWERPC_MMU_BOOKE206:
+ /* This target supports access to KVM's guest TLB */
ret = kvm_booke206_tlb_init(cpu);
break;
+ case POWERPC_MMU_2_07:
+ if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
+ /* KVM-HV has transactional memory on POWER8 also without the
+ * KVM_CAP_PPC_HTM extension, so enable it here instead. */
+ cap_htm = true;
+ }
+ break;
default:
break;
}
kvmppc_enable_hcall(kvm_state, H_SET_MODE);
}
+void kvmppc_enable_clear_ref_mod_hcalls(void)
+{
+ kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
+ kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
+}
+
void kvmppc_set_papr(PowerPCCPU *cpu)
{
CPUState *cs = CPU(cpu);
/* We have a kernel that predates the htab reset calls. For PR
* KVM, we need to allocate the htab ourselves, for an HV KVM of
- * this era, it has allocated a 16MB fixed size hash table
- * already. Kernels of this era have the GET_PVINFO capability
- * only on PR, so we use this hack to determine the right
- * answer */
- if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
+ * this era, it has allocated a 16MB fixed size hash table already. */
+ if (kvmppc_is_pr(kvm_state)) {
/* PR - tell caller to allocate htab */
return 0;
} else {
return cap_fixup_hcalls;
}
+bool kvmppc_has_cap_htm(void)
+{
+ return cap_htm;
+}
+
static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc)
{
ObjectClass *oc = OBJECT_CLASS(pcc);
return pvr_pcc;
}
-#if defined(TARGET_PPC64)
-static void spapr_cpu_core_host_initfn(Object *obj)
-{
- sPAPRCPUCore *core = SPAPR_CPU_CORE(obj);
- char *name = g_strdup_printf("%s-" TYPE_POWERPC_CPU, "host");
- ObjectClass *oc = object_class_by_name(name);
-
- g_assert(oc);
- g_free((void *)name);
- core->cpu_class = oc;
-}
-#endif
-
static int kvm_ppc_register_host_cpu_type(void)
{
TypeInfo type_info = {
type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
type_register(&type_info);
+ /* Register generic family CPU class for a family */
+ pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
+ dc = DEVICE_CLASS(pvr_pcc);
+ type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
+ type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
+ type_register(&type_info);
+
#if defined(TARGET_PPC64)
type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, "host");
type_info.parent = TYPE_SPAPR_CPU_CORE,
- type_info.instance_size = sizeof(sPAPRCPUCore),
- type_info.instance_init = spapr_cpu_core_host_initfn,
- type_info.class_init = NULL;
+ type_info.instance_size = sizeof(sPAPRCPUCore);
+ type_info.instance_init = NULL;
+ type_info.class_init = spapr_cpu_core_class_init;
+ type_info.class_data = (void *) "host";
type_register(&type_info);
g_free((void *)type_info.name);
- type_info.instance_size = 0;
- type_info.instance_init = NULL;
-#endif
- /* Register generic family CPU class for a family */
- pvr_pcc = ppc_cpu_get_family_class(pvr_pcc);
- dc = DEVICE_CLASS(pvr_pcc);
- type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
- type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc);
+ /* Register generic spapr CPU family class for current host CPU type */
+ type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, dc->desc);
+ type_info.class_data = (void *) dc->desc;
type_register(&type_info);
+ g_free((void *)type_info.name);
+#endif
return 0;
}
return 0;
}
+int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
+ int vector, PCIDevice *dev)
+{
+ return 0;
+}
+
+int kvm_arch_release_virq_post(int virq)
+{
+ return 0;
+}
+
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
return data & 0xffff;