/*
* i386 emulator main execution loop
*
- * Copyright (c) 2003 Fabrice Bellard
+ * Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
longjmp(env->jmp_env, 1);
}
#endif
+#if !(defined(TARGET_SPARC) || defined(TARGET_SH4))
+#define reg_T2
+#endif
/* exit the current TB from a signal handler. The host registers are
restored in a state compatible with the CPU emulator
longjmp(env->jmp_env, 1);
}
+
+static TranslationBlock *tb_find_slow(target_ulong pc,
+ target_ulong cs_base,
+ unsigned int flags)
+{
+ TranslationBlock *tb, **ptb1;
+ int code_gen_size;
+ unsigned int h;
+ target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
+ uint8_t *tc_ptr;
+
+ spin_lock(&tb_lock);
+
+ tb_invalidated_flag = 0;
+
+ regs_to_env(); /* XXX: do it just before cpu_gen_code() */
+
+ /* find translated block using physical mappings */
+ phys_pc = get_phys_addr_code(env, pc);
+ phys_page1 = phys_pc & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ h = tb_phys_hash_func(phys_pc);
+ ptb1 = &tb_phys_hash[h];
+ for(;;) {
+ tb = *ptb1;
+ if (!tb)
+ goto not_found;
+ if (tb->pc == pc &&
+ tb->page_addr[0] == phys_page1 &&
+ tb->cs_base == cs_base &&
+ tb->flags == flags) {
+ /* check next page if needed */
+ if (tb->page_addr[1] != -1) {
+ virt_page2 = (pc & TARGET_PAGE_MASK) +
+ TARGET_PAGE_SIZE;
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ if (tb->page_addr[1] == phys_page2)
+ goto found;
+ } else {
+ goto found;
+ }
+ }
+ ptb1 = &tb->phys_hash_next;
+ }
+ not_found:
+ /* if no translated code available, then translate it now */
+ tb = tb_alloc(pc);
+ if (!tb) {
+ /* flush must be done */
+ tb_flush(env);
+ /* cannot fail at this point */
+ tb = tb_alloc(pc);
+ /* don't forget to invalidate previous TB info */
+ tb_invalidated_flag = 1;
+ }
+ tc_ptr = code_gen_ptr;
+ tb->tc_ptr = tc_ptr;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
+ code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ }
+ tb_link_phys(tb, phys_pc, phys_page2);
+
+ found:
+ /* we add the TB in the virtual pc hash table */
+ env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
+ spin_unlock(&tb_lock);
+ return tb;
+}
+
+static inline TranslationBlock *tb_find_fast(void)
+{
+ TranslationBlock *tb;
+ target_ulong cs_base, pc;
+ unsigned int flags;
+
+ /* we record a subset of the CPU state. It will
+ always be the same before a given translated block
+ is executed. */
+#if defined(TARGET_I386)
+ flags = env->hflags;
+ flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ cs_base = env->segs[R_CS].base;
+ pc = cs_base + env->eip;
+#elif defined(TARGET_ARM)
+ flags = env->thumb | (env->vfp.vec_len << 1)
+ | (env->vfp.vec_stride << 4);
+ if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
+ flags |= (1 << 6);
+ if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
+ flags |= (1 << 7);
+ cs_base = 0;
+ pc = env->regs[15];
+#elif defined(TARGET_SPARC)
+#ifdef TARGET_SPARC64
+ flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
+#else
+ flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
+#endif
+ cs_base = env->npc;
+ pc = env->pc;
+#elif defined(TARGET_PPC)
+ flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
+ (msr_se << MSR_SE) | (msr_le << MSR_LE);
+ cs_base = 0;
+ pc = env->nip;
+#elif defined(TARGET_MIPS)
+ flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
+ cs_base = 0;
+ pc = env->PC;
+#elif defined(TARGET_SH4)
+ flags = env->sr & (SR_MD | SR_RB);
+ cs_base = 0; /* XXXXX */
+ pc = env->pc;
+#else
+#error unsupported CPU
+#endif
+ tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
+ if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
+ tb->flags != flags, 0)) {
+ tb = tb_find_slow(pc, cs_base, flags);
+ /* Note: we do it here to avoid a gcc bug on Mac OS X when
+ doing it in tb_find_slow */
+ if (tb_invalidated_flag) {
+ /* as some TB could have been invalidated because
+ of memory exceptions while generating the code, we
+ must recompute the hash index here */
+ T0 = 0;
+ }
+ }
+ return tb;
+}
+
+
/* main execution loop */
int cpu_exec(CPUState *env1)
{
- int saved_T0, saved_T1, saved_T2;
+ int saved_T0, saved_T1;
+#if defined(reg_T2)
+ int saved_T2;
+#endif
CPUState *saved_env;
+#if defined(TARGET_I386)
#ifdef reg_EAX
int saved_EAX;
#endif
#ifdef reg_EDI
int saved_EDI;
#endif
-#ifdef __sparc__
+#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ uint32_t *saved_regwptr;
+#endif
+#endif
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
int saved_i7, tmp_T0;
#endif
- int code_gen_size, ret, interrupt_request;
+ int ret, interrupt_request;
void (*gen_func)(void);
- TranslationBlock *tb, **ptb;
- target_ulong cs_base, pc;
+ TranslationBlock *tb;
uint8_t *tc_ptr;
- unsigned int flags;
+
+#if defined(TARGET_I386)
+ /* handle exit of HALTED state */
+ if (env1->hflags & HF_HALTED_MASK) {
+ /* disable halt condition */
+ if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env1->eflags & IF_MASK)) {
+ env1->hflags &= ~HF_HALTED_MASK;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_PPC)
+ if (env1->halted) {
+ if (env1->msr[MSR_EE] &&
+ (env1->interrupt_request &
+ (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_SPARC)
+ if (env1->halted) {
+ if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env1->psret != 0)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_ARM)
+ if (env1->halted) {
+ /* An interrupt wakes the CPU even if the I and F CPSR bits are
+ set. */
+ if (env1->interrupt_request
+ & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_MIPS)
+ if (env1->halted) {
+ if (env1->interrupt_request &
+ (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#endif
+
+ cpu_single_env = env1;
/* first we save global registers */
saved_env = env;
env = env1;
saved_T0 = T0;
saved_T1 = T1;
+#if defined(reg_T2)
saved_T2 = T2;
-#ifdef __sparc__
+#endif
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
/* we also save i7 because longjmp may not restore it */
asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
#endif
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ARM)
- {
- unsigned int psr;
- psr = env->cpsr;
- env->CF = (psr >> 29) & 1;
- env->NZF = (psr & 0xc0000000) ^ 0x40000000;
- env->VF = (psr << 3) & 0x80000000;
- env->cpsr = psr & ~0xf0000000;
- }
#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ saved_regwptr = REGWPTR;
+#endif
#elif defined(TARGET_PPC)
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+ /* XXXXX */
#else
#error unsupported target CPU
#endif
env->exception_next_eip, 0);
#elif defined(TARGET_PPC)
do_interrupt(env);
+#elif defined(TARGET_MIPS)
+ do_interrupt(env);
#elif defined(TARGET_SPARC)
- do_interrupt(env->exception_index,
- 0,
- env->error_code,
- env->exception_next_pc, 0);
+ do_interrupt(env->exception_index);
+#elif defined(TARGET_ARM)
+ do_interrupt(env);
+#elif defined(TARGET_SH4)
+ do_interrupt(env);
#endif
}
env->exception_index = -1;
+ }
+#ifdef USE_KQEMU
+ if (kqemu_is_ok(env) && env->interrupt_request == 0) {
+ int ret;
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+ ret = kqemu_cpu_exec(env);
+ /* put eflags in CPU temporary format */
+ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ DF = 1 - (2 * ((env->eflags >> 10) & 1));
+ CC_OP = CC_OP_EFLAGS;
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ if (ret == 1) {
+ /* exception */
+ longjmp(env->jmp_env, 1);
+ } else if (ret == 2) {
+ /* softmmu execution needed */
+ } else {
+ if (env->interrupt_request != 0) {
+ /* hardware interrupt will be executed just after */
+ } else {
+ /* otherwise, we restart */
+ longjmp(env->jmp_env, 1);
+ }
+ }
}
+#endif
+
T0 = 0; /* force lookup of first TB */
for(;;) {
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
/* g1 can be modified by some libc? functions */
tmp_T0 = T0;
#endif
do_interrupt(intno, 0, 0, 0, 1);
/* ensure that no TB jump will be modified as
the program flow was changed */
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
tmp_T0 = 0;
#else
T0 = 0;
}
#endif
if (msr_ee != 0) {
- if ((interrupt_request & CPU_INTERRUPT_HARD)) {
+ if ((interrupt_request & CPU_INTERRUPT_HARD)) {
/* Raise it */
env->exception_index = EXCP_EXTERNAL;
env->error_code = 0;
do_interrupt(env);
- env->interrupt_request &= ~CPU_INTERRUPT_HARD;
- } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
- /* Raise it */
- env->exception_index = EXCP_DECR;
- env->error_code = 0;
- do_interrupt(env);
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
+ /* Raise it */
+ env->exception_index = EXCP_DECR;
+ env->error_code = 0;
+ do_interrupt(env);
env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
- }
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
}
-#elif defined(TARGET_SPARC)
- if (interrupt_request & CPU_INTERRUPT_HARD) {
- do_interrupt(env->interrupt_index, 0, 0, 0, 0);
+#elif defined(TARGET_MIPS)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->CP0_Status & (1 << CP0St_IE)) &&
+ (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
+ !(env->hflags & MIPS_HFLAG_EXL) &&
+ !(env->hflags & MIPS_HFLAG_ERL) &&
+ !(env->hflags & MIPS_HFLAG_DM)) {
+ /* Raise it */
+ env->exception_index = EXCP_EXT_INTERRUPT;
+ env->error_code = 0;
+ do_interrupt(env);
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+#elif defined(TARGET_SPARC)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->psret != 0)) {
+ int pil = env->interrupt_index & 15;
+ int type = env->interrupt_index & 0xf0;
+
+ if (((type == TT_EXTINT) &&
+ (pil == 15 || pil > env->psrpil)) ||
+ type != TT_EXTINT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ do_interrupt(env->interrupt_index);
+ env->interrupt_index = 0;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
} else if (interrupt_request & CPU_INTERRUPT_TIMER) {
//do_interrupt(0, 0, 0, 0, 0);
env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
- }
+ } else if (interrupt_request & CPU_INTERRUPT_HALT) {
+ env1->halted = 1;
+ return EXCP_HALTED;
+ }
+#elif defined(TARGET_ARM)
+ if (interrupt_request & CPU_INTERRUPT_FIQ
+ && !(env->uncached_cpsr & CPSR_F)) {
+ env->exception_index = EXCP_FIQ;
+ do_interrupt(env);
+ }
+ if (interrupt_request & CPU_INTERRUPT_HARD
+ && !(env->uncached_cpsr & CPSR_I)) {
+ env->exception_index = EXCP_IRQ;
+ do_interrupt(env);
+ }
+#elif defined(TARGET_SH4)
+ /* XXXXX */
#endif
- if (interrupt_request & CPU_INTERRUPT_EXITTB) {
+ /* Don't use the cached interupt_request value,
+ do_interrupt may have updated the EXITTB flag. */
+ if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
/* ensure that no TB jump will be modified as
the program flow was changed */
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
tmp_T0 = 0;
#else
T0 = 0;
}
}
#ifdef DEBUG_EXEC
- if ((loglevel & CPU_LOG_EXEC)) {
+ if ((loglevel & CPU_LOG_TB_CPU)) {
#if defined(TARGET_I386)
/* restore flags in standard format */
+#ifdef reg_EAX
env->regs[R_EAX] = EAX;
+#endif
+#ifdef reg_EBX
env->regs[R_EBX] = EBX;
+#endif
+#ifdef reg_ECX
env->regs[R_ECX] = ECX;
+#endif
+#ifdef reg_EDX
env->regs[R_EDX] = EDX;
+#endif
+#ifdef reg_ESI
env->regs[R_ESI] = ESI;
+#endif
+#ifdef reg_EDI
env->regs[R_EDI] = EDI;
+#endif
+#ifdef reg_EBP
env->regs[R_EBP] = EBP;
+#endif
+#ifdef reg_ESP
env->regs[R_ESP] = ESP;
+#endif
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ARM)
- env->cpsr = compute_cpsr();
cpu_dump_state(env, logfile, fprintf, 0);
- env->cpsr &= ~0xf0000000;
#elif defined(TARGET_SPARC)
- cpu_dump_state (env, logfile, fprintf, 0);
+ REGWPTR = env->regbase + (env->cwp * 16);
+ env->regwptr = REGWPTR;
+ cpu_dump_state(env, logfile, fprintf, 0);
#elif defined(TARGET_PPC)
cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_MIPS)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_SH4)
+ cpu_dump_state(env, logfile, fprintf, 0);
#else
#error unsupported target CPU
#endif
}
#endif
- /* we record a subset of the CPU state. It will
- always be the same before a given translated block
- is executed. */
-#if defined(TARGET_I386)
- flags = env->hflags;
- flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
- cs_base = env->segs[R_CS].base;
- pc = cs_base + env->eip;
-#elif defined(TARGET_ARM)
- flags = 0;
- cs_base = 0;
- pc = env->regs[15];
-#elif defined(TARGET_SPARC)
- flags = 0;
- cs_base = env->npc;
- pc = env->pc;
-#elif defined(TARGET_PPC)
- flags = 0;
- cs_base = 0;
- pc = env->nip;
-#else
-#error unsupported CPU
-#endif
- tb = tb_find(&ptb, pc, cs_base,
- flags);
- if (!tb) {
- TranslationBlock **ptb1;
- unsigned int h;
- target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
-
-
- spin_lock(&tb_lock);
-
- tb_invalidated_flag = 0;
-
- regs_to_env(); /* XXX: do it just before cpu_gen_code() */
-
- /* find translated block using physical mappings */
- phys_pc = get_phys_addr_code(env, pc);
- phys_page1 = phys_pc & TARGET_PAGE_MASK;
- phys_page2 = -1;
- h = tb_phys_hash_func(phys_pc);
- ptb1 = &tb_phys_hash[h];
- for(;;) {
- tb = *ptb1;
- if (!tb)
- goto not_found;
- if (tb->pc == pc &&
- tb->page_addr[0] == phys_page1 &&
- tb->cs_base == cs_base &&
- tb->flags == flags) {
- /* check next page if needed */
- if (tb->page_addr[1] != -1) {
- virt_page2 = (pc & TARGET_PAGE_MASK) +
- TARGET_PAGE_SIZE;
- phys_page2 = get_phys_addr_code(env, virt_page2);
- if (tb->page_addr[1] == phys_page2)
- goto found;
- } else {
- goto found;
- }
- }
- ptb1 = &tb->phys_hash_next;
- }
- not_found:
- /* if no translated code available, then translate it now */
- tb = tb_alloc(pc);
- if (!tb) {
- /* flush must be done */
- tb_flush(env);
- /* cannot fail at this point */
- tb = tb_alloc(pc);
- /* don't forget to invalidate previous TB info */
- ptb = &tb_hash[tb_hash_func(pc)];
- T0 = 0;
- }
- tc_ptr = code_gen_ptr;
- tb->tc_ptr = tc_ptr;
- tb->cs_base = cs_base;
- tb->flags = flags;
- cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
- code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
-
- /* check next page if needed */
- virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
- phys_page2 = -1;
- if ((pc & TARGET_PAGE_MASK) != virt_page2) {
- phys_page2 = get_phys_addr_code(env, virt_page2);
- }
- tb_link_phys(tb, phys_pc, phys_page2);
-
- found:
- if (tb_invalidated_flag) {
- /* as some TB could have been invalidated because
- of memory exceptions while generating the code, we
- must recompute the hash index here */
- ptb = &tb_hash[tb_hash_func(pc)];
- while (*ptb != NULL)
- ptb = &(*ptb)->hash_next;
- T0 = 0;
- }
- /* we add the TB in the virtual pc hash table */
- *ptb = tb;
- tb->hash_next = NULL;
- tb_link(tb);
- spin_unlock(&tb_lock);
- }
+ tb = tb_find_fast();
#ifdef DEBUG_EXEC
- if ((loglevel & CPU_LOG_EXEC) && (env->hflags & HF_LMA_MASK)) {
+ if ((loglevel & CPU_LOG_EXEC)) {
fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
(long)tb->tc_ptr, tb->pc,
lookup_symbol(tb->pc));
}
#endif
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
T0 = tmp_T0;
#endif
- /* see if we can patch the calling TB. */
+ /* see if we can patch the calling TB. When the TB
+ spans two pages, we cannot safely do a direct
+ jump. */
{
- if (T0 != 0
+ if (T0 != 0 &&
+#if USE_KQEMU
+ (env->kqemu_enabled != 2) &&
+#endif
+ tb->page_addr[1] == -1
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
&& (tb->cflags & CF_CODE_COPY) ==
(((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
"mov %%o7,%%i0"
: /* no outputs */
: "r" (gen_func)
- : "i0", "i1", "i2", "i3", "i4", "i5");
+ : "i0", "i1", "i2", "i3", "i4", "i5",
+ "l0", "l1", "l2", "l3", "l4", "l5",
+ "l6", "l7");
#elif defined(__arm__)
asm volatile ("mov pc, %0\n\t"
".global exec_loop\n\t"
);
}
}
+#elif defined(__ia64)
+ struct fptr {
+ void *ip;
+ void *gp;
+ } fp;
+
+ fp.ip = tc_ptr;
+ fp.gp = code_gen_buffer + 2 * (1 << 20);
+ (*(void (*)(void)) &fp)();
#else
gen_func();
#endif
/* do not allow linking to another block */
T0 = 0;
}
+#endif
+#if defined(USE_KQEMU)
+#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
+ if (kqemu_is_ok(env) &&
+ (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
+ cpu_loop_exit();
+ }
#endif
}
} else {
EDI = saved_EDI;
#endif
#elif defined(TARGET_ARM)
- env->cpsr = compute_cpsr();
+ /* XXX: Save/restore host fpu exception state?. */
#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ REGWPTR = saved_regwptr;
+#endif
#elif defined(TARGET_PPC)
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+ /* XXXXX */
#else
#error unsupported target CPU
#endif
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
#endif
T0 = saved_T0;
T1 = saved_T1;
+#if defined(reg_T2)
T2 = saved_T2;
+#endif
env = saved_env;
+ /* fail safe : never use cpu_single_env outside cpu_exec() */
+ cpu_single_env = NULL;
return ret;
}
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
- if (is_write && page_unprotect(address, pc, puc)) {
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
return 1;
}
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
- raise_exception_err(EXCP0E_PAGE, env->error_code);
+ raise_exception_err(env->exception_index, env->error_code);
} else {
/* activate soft MMU for this block */
env->hflags |= HF_SOFTMMU_MASK;
int is_write, sigset_t *old_set,
void *puc)
{
- /* XXX: do more */
- return 0;
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
}
#elif defined(TARGET_SPARC)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
int is_write, sigset_t *old_set,
void *puc)
{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
/* XXX: locking issue */
- if (is_write && page_unprotect(address, pc, puc)) {
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
return 1;
}
- return 0;
+ /* see if it is an MMU fault */
+ ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
}
#elif defined (TARGET_PPC)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
TranslationBlock *tb;
int ret;
-#if 1
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#endif
#if defined(DEBUG_SIGNAL)
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
- if (is_write && page_unprotect(address, pc, puc)) {
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
return 1;
}
/* never comes here */
return 1;
}
+
+#elif defined (TARGET_MIPS)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ do_raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_SH4)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
#else
#error unsupported target CPU
#endif
&uc->uc_sigmask, puc);
}
+#elif defined(__ia64)
+
+#ifndef __ISR_VALID
+ /* This ought to be in <bits/siginfo.h>... */
+# define __ISR_VALID 1
+#endif
+
+int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long ip;
+ int is_write = 0;
+
+ ip = uc->uc_mcontext.sc_ip;
+ switch (host_signum) {
+ case SIGILL:
+ case SIGFPE:
+ case SIGSEGV:
+ case SIGBUS:
+ case SIGTRAP:
+ if (info->si_code && (info->si_segvflags & __ISR_VALID))
+ /* ISR.W (write-access) is bit 33: */
+ is_write = (info->si_isr >> 33) & 1;
+ break;
+
+ default:
+ break;
+ }
+ return handle_cpu_signal(ip, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__s390__)
+
+int cpu_signal_handler(int host_signum, struct siginfo *info,
+ void *puc)
+{
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.psw.addr;
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
#else
#error host CPU specific signal handler needed